ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis and Evaluation of Peptidyl Michael Acceptors That Inactivate Human Rhinovirus 3C Protease and Inhibit Virus Replication
My Activity

    Article

    Synthesis and Evaluation of Peptidyl Michael Acceptors That Inactivate Human Rhinovirus 3C Protease and Inhibit Virus Replication
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045-2506, and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
    Other Access Options

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 1998, 41, 14, 2579–2587
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm980114+
    Published June 16, 1998
    Copyright © 1998 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Human rhinovirus, the chief cause of the common cold, contains a positive-sense strand of RNA which is translated into a large polyprotein in infected cells. Cleavage of the latter to produce the mature viral proteins required for replication is catalyzed in large part by a virally encoded cysteine proteinase (3Cpro) which is highly selective for −Q∼GP− cleavage sites. We synthesized peptidyl derivatives of vinylogous glutamine or methionine sulfone esters (e.g., Boc-Val-Leu-Phe-vGln-OR:  R = Me, 1; R = Et, 2) and evaluated them as inhibitors of HRV-14 3C protease (3Cpro). Compounds 1 and 2 and several related tetra- and pentapeptide analogues rapidly inactivated 3Cpro with submicromolar IC50 values. Electrospray mass spectrometry confirmed the expected 1:1 stoichiometry of 3Cpro inactivation by 1, 2, and several other analogues. Compound 2 also proved to be useful for active site titration of 3Cpro, which has not been possible heretofore because of the lack of a suitable reagent. In contrast to 1, 2, and congeners, peptidyl Michael acceptors lacking a P4 residue have greatly reduced or negligible activity against 3Cpro, consistent with previously established structure−activity relationships for 3Cpro substrates. Hydrolysis of the P1 vinylogous glutamine ester to a carboxylic acid also decreased inhibitory activity considerably, consistent with the decreased reactivity of acrylic acids vs acrylic esters as Michael acceptors. Incorporating a vinylogous methionine sulfone ester in place of the corresponding glutamine derivative in 1 also reduced activity substantially. Compounds 1 and 2 and several of their analogues inhibited HRV replication in cell culture by 50% at low micromolar concentrations while showing little or no evidence of cytotoxicity at 10-fold higher concentrations. Peptidyl Michael acceptors and their analogues may prove useful as therapeutic agents for pathologies involving cysteine proteinase enzymes.

    Copyright © 1998 American Chemical Society

    Purchase This Content

    Single Article Purchase is temporarily unavailable. Please try again in a few hours.

     University of Kansas.

     Eli Lilly and Co.

    *

     Address correspondence to:  Dr. Robert P. Hanzlik at University of Kansas. Tel:  785-864-3750. Fax:  785-864-5326. E-mail:  rhanzlik@ rx.pharm.ukans.edu.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 53 publications.

    1. Gorakhnath R. Jachak, K. Kashinath, N. Vasudevan, Paresh R. Athawale, Rahul Choudhury, Santoshkumar S. Dange, Heena Agarwal, Manoj Kumar Barthwal, D. Srinivasa Reddy. Comprehensive Study on Solomonamides: Total Synthesis, Stereochemical Revision, and SAR Studies toward Identification of Simplified Lead. The Journal of Organic Chemistry 2023, 88 (24) , 17088-17133. https://doi.org/10.1021/acs.joc.3c01987
    2. Dandan He, Wentao Zhong, Miaomiao Zhou, Bowen Wang, Meng Li, Huanfeng Jiang, Wanqing Wu. Palladium-Catalyzed Regio- and Stereoselective Coupling of Alkynylsulfones with Alkenes: Access to Dichlorinated Vinyl Sulfones. Organic Letters 2022, 24 (31) , 5802-5806. https://doi.org/10.1021/acs.orglett.2c02324
    3. Eduardo Rodrigo, Inés Alonso, José Luis García Ruano, and M. Belén Cid . Expanding the Potential of Heteroaryl Vinyl Sulfones. The Journal of Organic Chemistry 2016, 81 (22) , 10887-10899. https://doi.org/10.1021/acs.joc.6b01956
    4. Arun K. Ghosh and Margherita Brindisi . Organic Carbamates in Drug Design and Medicinal Chemistry. Journal of Medicinal Chemistry 2015, 58 (7) , 2895-2940. https://doi.org/10.1021/jm501371s
    5. S. Shiva Shankar, Sushil N. Benke, Narem Nagendra, Prabhakar Lal Srivastava, Hirekodathakallu V. Thulasiram, and Hosahudya N. Gopi . Self-Assembly to Function: Design, Synthesis, and Broad Spectrum Antimicrobial Properties of Short Hybrid E-Vinylogous Lipopeptides. Journal of Medicinal Chemistry 2013, 56 (21) , 8468-8474. https://doi.org/10.1021/jm400884w
    6. Han-Zhong Zhang,, Hong Zhang,, William Kemnitzer,, Ben Tseng,, Jindrich Cinatl, Jr.,, Martin Michaelis,, Hans Wilhelm Doerr, and, Sui Xiong Cai. Design and Synthesis of Dipeptidyl Glutaminyl Fluoromethyl Ketones as Potent Severe Acute Respiratory Syndrome Coronovirus (SARS-CoV) Inhibitors. Journal of Medicinal Chemistry 2006, 49 (3) , 1198-1201. https://doi.org/10.1021/jm0507678
    7. James C. Powers,, Juliana L. Asgian,, Özlem Doǧan Ekici, and, Karen Ellis James. Irreversible Inhibitors of Serine, Cysteine, and Threonine Proteases. Chemical Reviews 2002, 102 (12) , 4639-4750. https://doi.org/10.1021/cr010182v
    8. Liang Tong. Viral Proteases. Chemical Reviews 2002, 102 (12) , 4609-4626. https://doi.org/10.1021/cr010184f
    9. Theodore O. Johnson,, Ye Hua,, Hiep T. Luu,, Edward L. Brown,, Fora Chan,, Shao Song Chu,, Peter S. Dragovich,, Brian W. Eastman,, Rose Ann Ferre,, Shella A. Fuhrman,, Thomas F. Hendrickson,, Fausto C. Maldonado,, David A. Matthews,, James W. Meador, III,, Amy K. Patick,, Siegfried H. Reich,, Donald J. Skalitzky,, Stephen T. Worland,, Michelle Yang, and, Leora S. Zalman. Structure-Based Design of a Parallel Synthetic Array Directed Toward the Discovery of Irreversible Inhibitors of Human Rhinovirus 3C Protease. Journal of Medicinal Chemistry 2002, 45 (10) , 2016-2023. https://doi.org/10.1021/jm010435c
    10. Manjinder S. Lall,, Yeeman K. Ramtohul,, Michael N. G. James, and, John C. Vederas. Serine and Threonine β-Lactones:  A New Class of Hepatitis A Virus 3C Cysteine Proteinase Inhibitors. The Journal of Organic Chemistry 2002, 67 (5) , 1536-1547. https://doi.org/10.1021/jo0109016
    11. Thomas J. Caulfield,, Sharmila Patel,, Joseph M. Salvino,, Lara Liester, and, Richard Labaudiniere. Parallel Solid-Phase Synthesis of Peptidyl Michael Acceptors. Journal of Combinatorial Chemistry 2000, 2 (6) , 600-603. https://doi.org/10.1021/cc0000444
    12. Siegfried H. Reich,, Theodore Johnson,, Michael B. Wallace,, Susan E. Kephart,, Shella A. Fuhrman,, Stephen T. Worland,, David A. Matthews,, Thomas F. Hendrickson,, Fora Chan,, James Meador, III,, Rose Ann Ferre,, Edward L. Brown,, Dorothy M. DeLisle,, Amy K. Patick,, Susan L. Binford, and, Clifford E. Ford. Substituted Benzamide Inhibitors of Human Rhinovirus 3C Protease:  Structure-Based Design, Synthesis, and Biological Evaluation. Journal of Medicinal Chemistry 2000, 43 (9) , 1670-1683. https://doi.org/10.1021/jm9903242
    13. Donmienne Leung,, Giovanni Abbenante, and, David P. Fairlie. Protease Inhibitors:  Current Status and Future Prospects. Journal of Medicinal Chemistry 2000, 43 (3) , 305-341. https://doi.org/10.1021/jm990412m
    14. Richard D. Hill and, John C. Vederas. Azodicarboxamides:  A New Class of Cysteine Proteinase Inhibitor for Hepatitis A Virus and Human Rhinovirus 3C Enzymes. The Journal of Organic Chemistry 1999, 64 (26) , 9538-9546. https://doi.org/10.1021/jo9915123
    15. Manjinder S. Lall,, Constantine Karvellas, and, John C. Vederas. β-Lactones as a New Class of Cysteine Proteinase Inhibitors:  Inhibition of Hepatitis A Virus 3C Proteinase by N-Cbz-serine β-Lactone. Organic Letters 1999, 1 (5) , 803-806. https://doi.org/10.1021/ol990148r
    16. Christos Papaneophytou. Breaking the Chain: Protease Inhibitors as Game Changers in Respiratory Viruses Management. International Journal of Molecular Sciences 2024, 25 (15) , 8105. https://doi.org/10.3390/ijms25158105
    17. Pfariso Maumela, Mahloro Hope Serepa-Dlamini. In Silico Analysis of Novel Bacterial Metabolites with Anticancer Activities. Metabolites 2024, 14 (3) , 163. https://doi.org/10.3390/metabo14030163
    18. Louise A. Stubbing, Jonathan G. Hubert, Joseph Bell-Tyrer, Yann O. Hermant, Sung Hyun Yang, Alice M. McSweeney, Geena M. McKenzie-Goldsmith, Vernon K. Ward, Daniel P. Furkert, Margaret A. Brimble. P 1 Glutamine isosteres in the design of inhibitors of 3C/3CL protease of human viruses of the Pisoniviricetes class. RSC Chemical Biology 2023, 4 (8) , 533-547. https://doi.org/10.1039/D3CB00075C
    19. Ram Khattri, Daniel Morris, Caroline Davis, Stephanie Bilinovich, Andrew Caras, Matthew Panzner, Michael Debord, Thomas Leeper. An NMR-Guided Screening Method for Selective Fragment Docking and Synthesis of a Warhead Inhibitor. Molecules 2016, 21 (7) , 846. https://doi.org/10.3390/molecules21070846
    20. Di Sun, Shun Chen, Anchun Cheng, Mingshu Wang. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells. Viruses 2016, 8 (3) , 82. https://doi.org/10.3390/v8030082
    21. Armando M. De Palma, Johan Neyts. Antiviral Drugs. 2014, 461-482. https://doi.org/10.1128/9781555816698.ch29
    22. Louis E.-C. Leong, Christopher T. Cornell, Bert L. Semler. Processing Determinants and Functions of Cleavage Products of Picornavirus Polyproteins. 2014, 185-197. https://doi.org/10.1128/9781555817916.ch16
    23. David S. Wishart. Picornain 3C (human rhinovirus). 2013, 2402-2406. https://doi.org/10.1016/B978-0-12-382219-2.00536-6
    24. Katrin Schünemann, Stephen Connelly, Renata Kowalczyk, Jonathan Sperry, Ian A. Wilson, John D. Fraser, Margaret A. Brimble. A simple solid phase, peptide-based fluorescent assay for the efficient and universal screening of HRV 3C protease inhibitors. Bioorganic & Medicinal Chemistry Letters 2012, 22 (15) , 5018-5024. https://doi.org/10.1016/j.bmcl.2012.06.015
    25. Iuri E. Gouvea, Jorge A.N. Santos, Fernanda M. Burlandy, Ivarne L.S. Tersariol, Edson E. da Silva, Maria A. Juliano, Luiz Juliano, Rodrigo L.O.R. Cunha. Poliovirus 3C proteinase inhibition by organotelluranes. Biological Chemistry 2011, 392 (6) https://doi.org/10.1515/bc.2011.059
    26. Sachitanand M. Mali, Anupam Bandyopadhyay, Sandip V. Jadhav, Mothukuri Ganesh Kumar, Hosahudya N. Gopi. Synthesis of α, β-unsaturated γ-amino esters with unprecedented high (E)-stereoselectivity and their conformational analysis in peptides. Organic & Biomolecular Chemistry 2011, 9 (19) , 6566. https://doi.org/10.1039/c1ob05732d
    27. Pınar Kasaplar, Özgür Yılmazer Çakmak, Ali Çağır. Michael acceptor properties of 6-bicycloaryl substituted (R)-5,6-dihydro-2H-pyran-2-ones. Bioorganic Chemistry 2010, 38 (5) , 186-189. https://doi.org/10.1016/j.bioorg.2010.06.005
    28. Keiichi Masuya, Naoki Teno. Small molecules for bone diseases. Expert Opinion on Therapeutic Patents 2010, 20 (4) , 563-582. https://doi.org/10.1517/13543771003604729
    29. Armando M. De Palma, Inge Vliegen, Erik De Clercq, Johan Neyts. Selective inhibitors of picornavirus replication. Medicinal Research Reviews 2008, 28 (6) , 823-884. https://doi.org/10.1002/med.20125
    30. Alex G. Taranto, Paulo Carvalho, Mitchell A. Avery. QM/QM studies for Michael reaction in coronavirus main protease (3CLPro). Journal of Molecular Graphics and Modelling 2008, 27 (3) , 275-285. https://doi.org/10.1016/j.jmgm.2008.05.002
    31. Magne O. Sydnes, Yoshio Hayashi, Vinay K. Sharma, Takashi Hamada, Usman Bacha, Jennifer Barrila, Ernesto Freire, Yoshiaki Kiso. Synthesis of glutamic acid and glutamine peptides possessing a trifluoromethyl ketone group as SARS-CoV 3CL protease inhibitors. Tetrahedron 2006, 62 (36) , 8601-8609. https://doi.org/10.1016/j.tet.2006.06.052
    32. Domenica Musumeci, Margherita Valente, Domenica Capasso, Rosanna Palumbo, Matthias Görlach, Michaela Schmidtke, Roland Zell, Giovanni N. Roviello, Roberto Sapio, Carlo Pedone, Enrico M. Bucci. A short PNA targeting coxsackievirus B3 5′-nontranslated region prevents virus-induced cytolysis. Journal of Peptide Science 2006, 12 (3) , 161-170. https://doi.org/10.1002/psc.708
    33. Mahesh Uttamchandani, Jun Wang, Shao Q. Yao. Protein and small molecule microarrays: powerful tools for high-throughput proteomics. Mol. BioSyst. 2006, 2 (1) , 58-68. https://doi.org/10.1039/B513935J
    34. Amy K. Patick, Mary A. Brothers, Fausto Maldonado, Susan Binford, Oscar Maldonado, Shella Fuhrman, Annkatrin Petersen, George J. Smith, Leora S. Zalman, Leigh Ann Burns-Naas, Jonathan Q. Tran. In Vitro Antiviral Activity and Single-Dose Pharmacokinetics in Humans of a Novel, Orally Bioavailable Inhibitor of Human Rhinovirus 3C Protease. Antimicrobial Agents and Chemotherapy 2005, 49 (6) , 2267-2275. https://doi.org/10.1128/AAC.49.6.2267-2275.2005
    35. I. Forristal. The chemistry of α, β-unsaturated sulfoxides and sulfones: an update. Journal of Sulfur Chemistry 2005, 26 (2) , 163-185. https://doi.org/10.1080/17415990500100115
    36. Shu-Hui Chen, Jason Lamar, Frantz Victor, Nancy Snyder, Robert Johnson, Beverly A. Heinz, Mark Wakulchik, Q.May Wang. Synthesis and evaluation of tripeptidyl α-Ketoamides as human rhinovirus 3C protease inhibitors. Bioorganic & Medicinal Chemistry Letters 2003, 13 (20) , 3531-3536. https://doi.org/10.1016/S0960-894X(03)00753-4
    37. Stephen E. Webber, Joseph T. Marakovits, Peter S. Dragovich, Thomas J. Prins, Ru Zhou, Shella A. Fuhrman, Amy K. Patick, David A. Matthews, Caroline A. Lee, Babu Srinivasan, Terry Moran, Clifford E. Ford, Mary A. Brothers, James E.V. Harr, James W. Meador, Rose Ann Ferre, Stephen T. Worland. Design and synthesis of irreversible depsipeptidyl human rhinovirus 3C protease inhibitors. Bioorganic & Medicinal Chemistry Letters 2001, 11 (20) , 2683-2686. https://doi.org/10.1016/S0960-894X(01)00542-X
    38. Michael A Murray, James W Janc, Shankar Venkatraman, Lilia M Babé. Peptidyl Diazomethyl Ketones Inhibit the Human Rhinovirus 3C Protease: Effect on Virus Yield by Partial Block of P3 Polyprotein Processing. Antiviral Chemistry and Chemotherapy 2001, 12 (5) , 273-281. https://doi.org/10.1177/095632020101200502
    39. Nicolas Winssinger, Jennifer L. Harris, Bradley J. Backes, Peter G. Schultz. Von Split-Pool-Molekülbibliotheken zu räumlich adressierbaren Mikro-Arrays und deren Einsatz in der funktionellen Proteomik. Angewandte Chemie 2001, 113 (17) , 3254-3258. https://doi.org/10.1002/1521-3757(20010903)113:17<3254::AID-ANGE3254>3.0.CO;2-9
    40. Nicolas Winssinger, Jennifer L. Harris, Bradley J. Backes, Peter G. Schultz. From Split-Pool Libraries to Spatially Addressable Microarrays and Its Application to Functional Proteomic Profiling. Angewandte Chemie International Edition 2001, 40 (17) , 3152-3155. https://doi.org/10.1002/1521-3773(20010903)40:17<3152::AID-ANIE3152>3.0.CO;2-P
    41. Q.May Wang, Robert B. Johnson. Activation of Human Rhinovirus-14 3C Protease. Virology 2001, 280 (1) , 80-86. https://doi.org/10.1006/viro.2000.0760
    42. Peter S Dragovich. Recent advances in the development of human rhinovirus 3C protease inhibitors. Expert Opinion on Therapeutic Patents 2001, 11 (2) , 177-184. https://doi.org/10.1517/13543776.11.2.177
    43. Q. May Wang. Protease inhibitors as potential antiviral agents for the treatment of picornaviral infections. 2001, 229-253. https://doi.org/10.1007/978-3-0348-7784-8_6
    44. Ming Xian, Q.May Wang, Xinchao Chen, Kun Wang, Peng G. Wang. S-Nitrosothiols as novel, reversible inhibitors of human rhinovirus 3C protease. Bioorganic & Medicinal Chemistry Letters 2000, 10 (18) , 2097-2100. https://doi.org/10.1016/S0960-894X(00)00420-0
    45. L. S. Zalman, M. A. Brothers, P. S. Dragovich, R. Zhou, T. J. Prins, S. T. Worland, A. K. Patick. Inhibition of Human Rhinovirus-Induced Cytokine Production by AG7088, a Human Rhinovirus 3C Protease Inhibitor. Antimicrobial Agents and Chemotherapy 2000, 44 (5) , 1236-1241. https://doi.org/10.1128/AAC.44.5.1236-1241.2000
    46. E. M. Bergmann, M. N. G. James. The 3C Proteinases of Picornaviruses and Other Positive-Sense, Single-Stranded RNA Viruses. 2000, 117-143. https://doi.org/10.1007/978-3-642-57092-6_7
    47. Robert W. Marquis. Chapter 28. Inhibition of cysteine proteases. 2000, 309-320. https://doi.org/10.1016/S0065-7743(00)35029-1
    48. A. K. Patick, S. L. Binford, M. A. Brothers, R. L. Jackson, C. E. Ford, M. D. Diem, F. Maldonado, P. S. Dragovich, R. Zhou, T. J. Prins, S. A. Fuhrman, J. W. Meador, L. S. Zalman, D. A. Matthews, S. T. Worland. In Vitro Antiviral Activity of AG7088, a Potent Inhibitor of Human Rhinovirus 3C Protease. Antimicrobial Agents and Chemotherapy 1999, 43 (10) , 2444-2450. https://doi.org/10.1128/AAC.43.10.2444
    49. Peter S Dragovich, Stephen E Webber, Thomas J Prins, Ru Zhou, Joseph T Marakovits, Jayashree G Tikhe, Shella A Fuhrman, Amy K Patick, David A Matthews, Clifford E Ford, Edward L Brown, Susan L Binford, James W Meador, Rose Ann Ferre, Stephen T Worland. Structure-based design of irreversible, tripeptidyl human rhinovirus 3C protease inhibitors containing N-methyl amino acids. Bioorganic & Medicinal Chemistry Letters 1999, 9 (15) , 2189-2194. https://doi.org/10.1016/S0960-894X(99)00368-6
    50. Gregory A. Cox, Robert B. Johnson, James A. Cook, Mark Wakulchik, Melvin G. Johnson, Elcira C. Villarreal, Q. May Wang. Identification and Characterization of Human Rhinovirus-14 3C Protease Deamidation Isoform. Journal of Biological Chemistry 1999, 274 (19) , 13211-13216. https://doi.org/10.1074/jbc.274.19.13211
    51. Y Huang. Synthesis and testing of azaglutamine derivatives as inhibitors of Hepatitis A Virus (HAV) 3C proteinase. Bioorganic & Medicinal Chemistry 1999, 7 (4) , 607-619. https://doi.org/10.1016/S0968-0896(99)00006-1
    52. Shankar Venkatraman, Jian-she Kong, Sanjay Nimkar, Q.May Wang, Jeffrey Aubé, Robert P. Hanzlik. Design, synthesis, and evaluation of azapeptides as substrates and inhibitors for human rhinovirus 3C protease. Bioorganic & Medicinal Chemistry Letters 1999, 9 (4) , 577-580. https://doi.org/10.1016/S0960-894X(99)00049-9
    53. Q. May Wang. Protease inhibitors as potential antiviral agents for the treatment of picornaviral infections. 1999, 197-219. https://doi.org/10.1007/978-3-0348-8730-4_5

    Journal of Medicinal Chemistry

    Cite this: J. Med. Chem. 1998, 41, 14, 2579–2587
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jm980114+
    Published June 16, 1998
    Copyright © 1998 American Chemical Society

    Article Views

    738

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.