ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Synthesis of Cytotoxic Indenoisoquinoline Topoisomerase I Poisons

View Author Information
Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, Purdue University, West Lafayette, Indiana 47906, Information Technology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892, and Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892-4255
Cite this: J. Med. Chem. 1999, 42, 3, 446–457
Publication Date (Web):January 6, 1999
https://doi.org/10.1021/jm9803323
Copyright © 1999 American Chemical Society

    Article Views

    1181

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    A number of indenoisoquinolines were prepared and evaluated for cytotoxicity in human cancer cell cultures and for activity vs topoisomerase 1 (top1). The two most cytotoxic indenoisoquinolines proved to be cis-6-ethyl-5,6,12,13-tetrahydro-2,3-dimethoxy-8,9-(methylenedioxy)-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (21) and cis-6-allyl-5,6,12,13-tetrahydro-2,3-dimethoxy-8,9-(methylenedioxy)-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (22), both of which displayed submicromolar mean graph midpoints when tested in 55 human cancer cell cultures. Two of the most potent top1 inhibitors were 6-(3-carboxy-1-propyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (26) and 6-ethyl-2,3-dimethoxy-8,9-(methylenedioxy)-11H-indeno[1,2-c]isoquinolinium chloride (27), both of which also inhibited top2, unwound DNA, and are assumed to be DNA intercalators. However, two additional potent top1 inhibitors, 6-allyl-5,6-dihydro-2,3-dimethoxy-8,9-(methylenedioxy)-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (13c) and 5,6-dihydro-6-(4-hydroxybut-1-yl)-2,3-dimethoxy-8,9-methylenedioxy-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (19a), did not unwind DNA and did not affect top2. Some of the DNA cleavage sites detected in the presence of the indenoisoquinolines were different from those seen with the camptothecins. The cleavage sites induced by the indenoisoquinolines were reversed by salt treatment, which is consistent with the reversible trapping of top1 cleavable complexes by the indenoisoquinolines. In general, the potencies of the indenoisoquinolines as top1 inhibitors did not correlate with their potencies as cytotoxic agents, as some of the most cytotoxic agents had little if any effect on top1. On the other hand, the most potent of the indenoisoquinolines vs top1 were not the most cytotoxic. In several cases, moderate activity was observed for both cytotoxicity and activity vs top1.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Laboratory of Molecular Pharmacology, NCI.

     Information Technology Branch, NCI. This paper is dedicated in memory of Dr. Kenneth Paull.

    §

     Purdue University.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    This article is cited by 118 publications.

    1. Manish K. Gupta, Ankita Panda, Nagendra K. Sharma. Ru(II)-Catalyzed C(sp2)–H Activation Annulation: Synthesis of Fluorescent Benzoisoquinolonyl Acetate/Peptides from N-Arylamides and Ethyne at Room Temperature. The Journal of Organic Chemistry 2024, Article ASAP.
    2. Mark Cushman. Design and Synthesis of Indenoisoquinolines Targeting Topoisomerase I and Other Biological Macromolecules for Cancer Chemotherapy. Journal of Medicinal Chemistry 2021, 64 (24) , 17572-17600. https://doi.org/10.1021/acs.jmedchem.1c01491
    3. Sara Y. Howard, Michael J. Di Maso, Kristin Shimabukuro, Noah P. Burlow, Darlene Q. Tan, James C. Fettinger, Thomas C. Malig, Jason E. Hein, Jared T. Shaw. Mechanistic Investigation of Castagnoli–Cushman Multicomponent Reactions Leading to a Three-Component Synthesis of Dihydroisoquinolones. The Journal of Organic Chemistry 2021, 86 (17) , 11599-11607. https://doi.org/10.1021/acs.joc.1c01163
    4. Manish Rawat, Diwan S. Rawat. CuO@NiO Nanocomposite Catalyzed Synthesis of Biologically Active Indenoisoquinoline Derivatives. ACS Sustainable Chemistry & Engineering 2020, 8 (36) , 13701-13712. https://doi.org/10.1021/acssuschemeng.0c03898
    5. Qian Wang, Jesse Tuinhof, Kumchok C. Mgimpatsang, Katarzyna Kurpiewska, Justyna Kalinowska-Tluscik, Alexander Dömling. Copper-Catalyzed Modular Assembly of Polyheterocycles. The Journal of Organic Chemistry 2020, 85 (15) , 9915-9927. https://doi.org/10.1021/acs.joc.0c01238
    6. Kai-Bo Wang, Mohamed S. A. Elsayed, Guanhui Wu, Nanjie Deng, Mark Cushman, Danzhou Yang. Indenoisoquinoline Topoisomerase Inhibitors Strongly Bind and Stabilize the MYC Promoter G-Quadruplex and Downregulate MYC. Journal of the American Chemical Society 2019, 141 (28) , 11059-11070. https://doi.org/10.1021/jacs.9b02679
    7. Biswajit Kundu, Subhendu K. Das, Srijita Paul Chowdhuri, Sourav Pal, Dipayan Sarkar, Arijit Ghosh, Ayan Mukherjee, Debomita Bhattacharya, Benu Brata Das, Arindam Talukdar. Discovery and Mechanistic Study of Tailor-Made Quinoline Derivatives as Topoisomerase 1 Poison with Potent Anticancer Activity. Journal of Medicinal Chemistry 2019, 62 (7) , 3428-3446. https://doi.org/10.1021/acs.jmedchem.8b01938
    8. Peng Wu and Thomas E. Nielsen . Scaffold Diversity from N-Acyliminium Ions. Chemical Reviews 2017, 117 (12) , 7811-7856. https://doi.org/10.1021/acs.chemrev.6b00806
    9. Chia-Yu Huang, Veerababurao Kavala, Chun-Wei Kuo, Ashok Konala, Tang-Hao Yang, and Ching-Fa Yao . Synthesis of Biologically Active Indenoisoquinoline Derivatives via a One-Pot Copper(II)-Catalyzed Tandem Reaction. The Journal of Organic Chemistry 2017, 82 (4) , 1961-1968. https://doi.org/10.1021/acs.joc.6b02814
    10. Peng-Cheng Lv, Mohamed S. A. Elsayed, Keli Agama, Christophe Marchand, Yves Pommier, and Mark Cushman . Design, Synthesis, and Biological Evaluation of Potential Prodrugs Related to the Experimental Anticancer Agent Indotecan (LMP400). Journal of Medicinal Chemistry 2016, 59 (10) , 4890-4899. https://doi.org/10.1021/acs.jmedchem.6b00220
    11. Qing Jiang, Jing-Yu Wang, and Cancheng Guo . Iodine(III)-Mediated C–H Alkoxylation of Aniline Derivatives with Alcohols under Metal-Free Conditions. The Journal of Organic Chemistry 2014, 79 (18) , 8768-8773. https://doi.org/10.1021/jo501601u
    12. Peng-Cheng Lv, Keli Agama, Christophe Marchand, Yves Pommier, and Mark Cushman . Design, Synthesis, and Biological Evaluation of O-2-Modified Indenoisoquinolines as Dual Topoisomerase I–Tyrosyl-DNA Phosphodiesterase I Inhibitors. Journal of Medicinal Chemistry 2014, 57 (10) , 4324-4336. https://doi.org/10.1021/jm500294a
    13. Kate J. Akerman, Alexander M. Fagenson, Vidusha Cyril, Michael Taylor, Mark T. Muller, Matthew P. Akerman, and Orde Q. Munro . Gold(III) Macrocycles: Nucleotide-Specific Unconventional Catalytic Inhibitors of Human Topoisomerase I. Journal of the American Chemical Society 2014, 136 (15) , 5670-5682. https://doi.org/10.1021/ja412350f
    14. William P. Unsworth, Graeme Coulthard, Christiana Kitsiou, and Richard J. K. Taylor . Direct Imine Acylation for Molecular Diversity in Heterocyclic Synthesis. The Journal of Organic Chemistry 2014, 79 (3) , 1368-1376. https://doi.org/10.1021/jo402768r
    15. William P. Unsworth, Christiana Kitsiou, and Richard J. K. Taylor . Direct Imine Acylation: Rapid Access to Diverse Heterocyclic Scaffolds. Organic Letters 2013, 15 (2) , 258-261. https://doi.org/10.1021/ol303073b
    16. Trung Xuan Nguyen, Andrew Morrell, Martin Conda-Sheridan, Christophe Marchand, Keli Agama, Alun Bermingam, Andrew G. Stephen, Adel Chergui, Alena Naumova, Robert Fisher, Barry R. O’Keefe, Yves Pommier, and Mark Cushman . Synthesis and Biological Evaluation of the First Dual Tyrosyl-DNA Phosphodiesterase I (Tdp1)–Topoisomerase I (Top1) Inhibitors. Journal of Medicinal Chemistry 2012, 55 (9) , 4457-4478. https://doi.org/10.1021/jm300335n
    17. Katherine E. Peterson, Maris A. Cinelli, Andrew E. Morrell, Akhil Mehta, Thomas S. Dexheimer, Keli Agama, Smitha Antony, Yves Pommier, and Mark Cushman . Alcohol-, Diol-, and Carbohydrate-Substituted Indenoisoquinolines as Topoisomerase I Inhibitors: Investigating the Relationships Involving Stereochemistry, Hydrogen Bonding, and Biological Activity. Journal of Medicinal Chemistry 2011, 54 (14) , 4937-4953. https://doi.org/10.1021/jm101338z
    18. Evgeny Kiselev, Thomas S. Dexheimer, Yves Pommier, and Mark Cushman . Design, Synthesis, and Evaluation of Dibenzo[c,h][1,6]naphthyridines as Topoisomerase I Inhibitors and Potential Anticancer Agents. Journal of Medicinal Chemistry 2010, 53 (24) , 8716-8726. https://doi.org/10.1021/jm101048k
    19. Bingnan Han, Luke H. Stockwin, Chad Hancock, Sherry X. Yu, Melinda G. Hollingshead and Dianne L. Newton . Proteomic Analysis of Nuclei Isolated from Cancer Cell Lines Treated with Indenoisoquinoline NSC 724998, a Novel Topoisomerase I Inhibitor. Journal of Proteome Research 2010, 9 (8) , 4016-4027. https://doi.org/10.1021/pr100194d
    20. Yunlong Song, Zhiyu Shao, Thomas S. Dexheimer, Evan S. Scher, Yves Pommier and Mark Cushman . Structure-Based Design, Synthesis, and Biological Studies of New Anticancer Norindenoisoquinoline Topoisomerase I Inhibitors. Journal of Medicinal Chemistry 2010, 53 (5) , 1979-1989. https://doi.org/10.1021/jm901649x
    21. Yves Pommier. DNA Topoisomerase I Inhibitors: Chemistry, Biology, and Interfacial Inhibition. Chemical Reviews 2009, 109 (7) , 2894-2902. https://doi.org/10.1021/cr900097c
    22. Marcos González-López and Jared T. Shaw. Cyclic Anhydrides in Formal Cycloadditions and Multicomponent Reactions. Chemical Reviews 2009, 109 (1) , 164-189. https://doi.org/10.1021/cr8002714
    23. Yunlong Song and Mark Cushman. The Binding Orientation of a Norindenoisoquinoline in the Topoisomerase I−DNA Cleavage Complex Is Primarily Governed by π−π Stacking Interactions. The Journal of Physical Chemistry B 2008, 112 (31) , 9484-9489. https://doi.org/10.1021/jp8005603
    24. Adina Ryckebusch, Deborah Garcin, Amélie Lansiaux, Jean-François Goossens, Brigitte Baldeyrou, Raymond Houssin, Christian Bailly and Jean-Pierre Hénichart. Synthesis, Cytotoxicity, DNA Interaction, and Topoisomerase II Inhibition Properties of Novel Indeno[2,1-c]quinolin-7-one and Indeno[1,2-c]isoquinolin-5,11-dione Derivatives. Journal of Medicinal Chemistry 2008, 51 (12) , 3617-3629. https://doi.org/10.1021/jm800017u
    25. Omar Khdour and, Edward B. Skibo. Chemistry of Pyrrolo[1,2-a]indole- and Pyrido[1,2-a]indole-Based Quinone Methides. Mechanistic Explanations for Differences in Cytostatic/Cytotoxic Properties. The Journal of Organic Chemistry 2007, 72 (23) , 8636-8647. https://doi.org/10.1021/jo070866o
    26. Hung Hoang,, Daniel V. LaBarbera,, Kaleem A. Mohammed,, Chris M. Ireland, and, Edward B. Skibo. Synthesis and Biological Evaluation of Imidazoquinoxalinones, Imidazole Analogues of Pyrroloiminoquinone Marine Natural Products. Journal of Medicinal Chemistry 2007, 50 (19) , 4561-4571. https://doi.org/10.1021/jm0700870
    27. Andrew Morrell,, Michael Placzek,, Seth Parmley,, Brian Grella,, Smitha Antony,, Yves Pommier, and, Mark Cushman. Optimization of the Indenone Ring of Indenoisoquinoline Topoisomerase I Inhibitors. Journal of Medicinal Chemistry 2007, 50 (18) , 4388-4404. https://doi.org/10.1021/jm070307+
    28. Andrew Morrell,, Michael Placzek,, Seth Parmley,, Smitha Antony,, Thomas S. Dexheimer,, Yves Pommier, and, Mark Cushman. Nitrated Indenoisoquinolines as Topoisomerase I Inhibitors:  A Systematic Study and Optimization. Journal of Medicinal Chemistry 2007, 50 (18) , 4419-4430. https://doi.org/10.1021/jm070361q
    29. Andrew Morrell,, Michael S. Placzek,, Jamin D. Steffen,, Smitha Antony,, Keli Agama,, Yves Pommier, and, Mark Cushman. Investigation of the Lactam Side Chain Length Necessary for Optimal Indenoisoquinoline Topoisomerase I Inhibition and Cytotoxicity in Human Cancer Cell Cultures. Journal of Medicinal Chemistry 2007, 50 (9) , 2040-2048. https://doi.org/10.1021/jm0613119
    30. Andrew Morrell,, Smitha Antony,, Glenda Kohlhagen,, Yves Pommier, and, Mark Cushman. A Systematic Study of Nitrated Indenoisoquinolines Reveals a Potent Topoisomerase I Inhibitor. Journal of Medicinal Chemistry 2006, 49 (26) , 7740-7753. https://doi.org/10.1021/jm060974n
    31. Muthukaman Nagarajan,, Andrew Morrell,, Smitha Antony,, Glenda Kohlhagen,, Keli Agama,, Yves Pommier,, Patricia A. Ragazzon,, Nichola C. Garbett,, Jonathan B. Chaires,, Melinda Hollingshead, and, Mark Cushman. Synthesis and Biological Evaluation of Bisindenoisoquinolines as Topoisomerase I Inhibitors. Journal of Medicinal Chemistry 2006, 49 (17) , 5129-5140. https://doi.org/10.1021/jm060046o
    32. Xiangshu Xiao and, Mark Cushman. A Facile Method To Transform trans-4-Carboxy-3,4-dihydro-3-phenyl- 1(2H)-isoquinolones to Indeno[1,2-c]isoquinolines. The Journal of Organic Chemistry 2005, 70 (16) , 6496-6498. https://doi.org/10.1021/jo050831t
    33. Alexandra Ioanoviciu,, Smitha Antony,, Yves Pommier,, Bart L. Staker,, Lance Stewart, and, Mark Cushman. Synthesis and Mechanism of Action Studies of a Series of Norindenoisoquinoline Topoisomerase I Poisons Reveal an Inhibitor with a Flipped Orientation in the Ternary DNA−Enzyme−Inhibitor Complex As Determined by X-ray Crystallographic Analysis. Journal of Medicinal Chemistry 2005, 48 (15) , 4803-4814. https://doi.org/10.1021/jm050076b
    34. Xiangshu Xiao,, Smitha Antony,, Yves Pommier, and, Mark Cushman. On the Binding of Indeno[1,2-c]isoquinolines in the DNA−Topoisomerase I Cleavage Complex. Journal of Medicinal Chemistry 2005, 48 (9) , 3231-3238. https://doi.org/10.1021/jm050017y
    35. Bart L. Staker,, Michael D. Feese,, Mark Cushman,, Yves Pommier,, David Zembower,, Lance Stewart, and, Alex B. Burgin. Structures of Three Classes of Anticancer Agents Bound to the Human Topoisomerase I−DNA Covalent Complex. Journal of Medicinal Chemistry 2005, 48 (7) , 2336-2345. https://doi.org/10.1021/jm049146p
    36. Muthukaman Nagarajan,, Andrew Morrell,, Brian C. Fort,, Marintha Rae Meckley,, Smitha Antony,, Glenda Kohlhagen,, Yves Pommier, and, Mark Cushman. Synthesis and Anticancer Activity of Simplified Indenoisoquinoline Topoisomerase I Inhibitors Lacking Substituents on the Aromatic Rings. Journal of Medicinal Chemistry 2004, 47 (23) , 5651-5661. https://doi.org/10.1021/jm040025z
    37. Xiangshu Xiao,, Smitha Antony,, Glenda Kohlhagen,, Yves Pommier, and, Mark Cushman. Novel Autoxidative Cleavage Reaction of 9-Fluoredenes Discovered during Synthesis of a Potential DNA-Threading Indenoisoquinoline. The Journal of Organic Chemistry 2004, 69 (22) , 7495-7501. https://doi.org/10.1021/jo048808f
    38. Bruce E. Maryanoff,, Han-Cheng Zhang,, Judith H. Cohen,, Ignatius J. Turchi, and, Cynthia A. Maryanoff. Cyclizations of N-Acyliminium Ions. Chemical Reviews 2004, 104 (3) , 1431-1628. https://doi.org/10.1021/cr0306182
    39. Muthukaman Nagarajan,, Xiangshu Xiao,, Smitha Antony,, Glenda Kohlhagen,, Yves Pommier, and, Mark Cushman. Design, Synthesis, and Biological Evaluation of Indenoisoquinoline Topoisomerase I Inhibitors Featuring Polyamine Side Chains on the Lactam Nitrogen. Journal of Medicinal Chemistry 2003, 46 (26) , 5712-5724. https://doi.org/10.1021/jm030313f
    40. Brian M. Fox,, Xiangshu Xiao,, Smitha Antony,, Glenda Kohlhagen,, Yves Pommier,, Bart L. Staker,, Lance Stewart, and, Mark Cushman. Design, Synthesis, and Biological Evaluation of Cytotoxic 11-Alkenylindenoisoquinoline Topoisomerase I Inhibitors and Indenoisoquinoline−Camptothecin Hybrids. Journal of Medicinal Chemistry 2003, 46 (15) , 3275-3282. https://doi.org/10.1021/jm0300476
    41. Muthusamy Jayaraman,, Brian M. Fox,, Melinda Hollingshead,, Glenda Kohlhagen,, Yves Pommier, and, Mark Cushman. Synthesis of New Dihydroindeno[1,2-c]isoquinoline and Indenoisoquinolinium Chloride Topoisomerase I Inhibitors Having High in Vivo Anticancer Activity in the Hollow Fiber Animal Model. Journal of Medicinal Chemistry 2002, 45 (1) , 242-249. https://doi.org/10.1021/jm000498f
    42. Mark Cushman,, Muthusamy Jayaraman,, Jeffrey A. Vroman,, Anna K. Fukunaga,, Brian M. Fox,, Glenda Kohlhagen,, Dirk Strumberg, and, Yves Pommier. Synthesis of New Indeno[1,2-c]isoquinolines:  Cytotoxic Non-Camptothecin Topoisomerase I Inhibitors. Journal of Medicinal Chemistry 2000, 43 (20) , 3688-3698. https://doi.org/10.1021/jm000029d
    43. David Bom,, Dennis P. Curran,, Stefan Kruszewski,, Stephen G. Zimmer,, J. Thompson Strode,, Glenda Kohlhagen,, Wu Du,, Ashok J. Chavan,, Kimberly A. Fraley,, Alex L. Bingcang,, Lori J. Latus,, Yves Pommier, and, Thomas G. Burke. The Novel Silatecan 7-tert-Butyldimethylsilyl-10-hydroxycamptothecin Displays High Lipophilicity, Improved Human Blood Stability, and Potent Anticancer Activity. Journal of Medicinal Chemistry 2000, 43 (21) , 3970-3980. https://doi.org/10.1021/jm000144o
    44. Huang Zeng, Shengyuan Zhang, Hua Nie, Junhao Li, Jiunlong Yang, Yuanbei Zhuang, Yingjie Huang, Miao Zeng. Identification of FTY720 and COH29 as novel topoisomerase I catalytic inhibitors by experimental and computational studies. Bioorganic Chemistry 2024, 147 , 107412. https://doi.org/10.1016/j.bioorg.2024.107412
    45. Ahmed Mohamed Nabil Helaly, Doaa Ghorab. Perspective Chapter: Topoisomerase 1 and Colo Rectal Carcinoma. 2023https://doi.org/10.5772/intechopen.108988
    46. Semiha Kevser Bali, Zeynep Pinar Haslak, Gulsah Cifci, Viktorya Aviyente. DNA preference of indenoisoquinolines: a computational approach. Organic & Biomolecular Chemistry 2023, 21 (21) , 4518-4528. https://doi.org/10.1039/D3OB00162H
    47. José Luis Ramiro, Sonia Martínez-Caballero, Ana G. Neo, Jesús Díaz, Carlos F. Marcos. The Castagnoli–Cushman Reaction. Molecules 2023, 28 (6) , 2654. https://doi.org/10.3390/molecules28062654
    48. Arindam Talukdar, Biswajit Kundu, Dipayan Sarkar, Sunny Goon, Mohabul Alam Mondal. Topoisomerase I inhibitors: Challenges, progress and the road ahead. European Journal of Medicinal Chemistry 2022, 236 , 114304. https://doi.org/10.1016/j.ejmech.2022.114304
    49. Eman M. Ahmed, Nadia A. Khalil, Ashraf F. Zaher, Shimaa M. Alhamaky, Mona S. El-Zoghbi. Synthesis, molecular modeling and biological evaluation of new benzo[4,5]thieno[3,2-b]pyran derivatives as topoisomerase I-DNA binary complex poisons. Bioorganic Chemistry 2021, 112 , 104915. https://doi.org/10.1016/j.bioorg.2021.104915
    50. Ruimao Hua. Isoquinolone Syntheses by Annulation Protocols. Catalysts 2021, 11 (5) , 620. https://doi.org/10.3390/catal11050620
    51. Biswajit Kundu, Dipayan Sarkar, Srijita Paul Chowdhuri, Sourav Pal, Subhendu K. Das, Benu Brata Das, Arindam Talukdar. Development of a metabolically stable topoisomerase I poison as anticancer agent. European Journal of Medicinal Chemistry 2020, 202 , 112551. https://doi.org/10.1016/j.ejmech.2020.112551
    52. Sumirtha Balaratnam, John S. Schneekloth. Transcriptional regulation of MYC through G-quadruplex structures. 2020, 361-407. https://doi.org/10.1016/bs.armc.2020.05.002
    53. Thompho J. Rashamuse, Angela T. Harrison, Salerwe Mosebi, Sandy van Vuuren, E. Mabel Coyanis, Moira L. Bode. Design, synthesis and biological evaluation of imidazole and oxazole fragments as HIV-1 integrase-LEDGF/p75 disruptors and inhibitors of microbial pathogens. Bioorganic & Medicinal Chemistry 2020, 28 (1) , 115210. https://doi.org/10.1016/j.bmc.2019.115210
    54. Rosa M. Reguera, Ehab K. Elmahallawy, Carlos García-Estrada, Rubén Carbajo-Andrés, Rafael Balaña-Fouce. DNA Topoisomerases of Leishmania Parasites; Druggable Targets for Drug Discovery. Current Medicinal Chemistry 2019, 26 (32) , 5900-5923. https://doi.org/10.2174/0929867325666180518074959
    55. Carolina G. Oliveira, Isolda Romero-Canelón, Monize M. Silva, James P. C. Coverdale, Pedro Ivo S. Maia, Alzir A. Batista, Silvia Castelli, Alessandro Desideri, Peter J. Sadler, Victor M. Deflon. Palladium( ii ) complexes with thiosemicarbazones derived from pyrene as topoisomerase IB inhibitors. Dalton Transactions 2019, 48 (44) , 16509-16517. https://doi.org/10.1039/C9DT02570G
    56. Maris A. Cinelli. Topoisomerase 1B poisons: Over a half‐century of drug leads, clinical candidates, and serendipitous discoveries. Medicinal Research Reviews 2019, 39 (4) , 1294-1337. https://doi.org/10.1002/med.21546
    57. Nguyen Tien Dung, Le Nhat Thuy Giang, Pham Hoai Thu, Ngo Hanh Thuong, Dang Thi Tuyet Anh, Luc Quang Tan, Nguyen Ha Thanh, Le Thi Tu Anh, Nguyen Tuan Anh, Bach Long Giang, Nguyen Van Tuyen, Phan Van Kiem. Synthesis and Cytotoxic Evaluation of Carboxylic Acid-Functionalized Indenoisoquinolines. Natural Product Communications 2019, 14 (5) , 1934578X1984978. https://doi.org/10.1177/1934578X19849787
    58. V. E. Kalugin, A. M. Shestopalov. The synthesis of 3-cyano-2-(organylamino)thieno[3,2-c]isoquinoline derivatives. Russian Chemical Bulletin 2019, 68 (3) , 588-596. https://doi.org/10.1007/s11172-019-2459-6
    59. Hyeong-Min Lee, Ellen P. Clark, M. Bram Kuijer, Mark Cushman, Yves Pommier, Benjamin D. Philpot. Characterization and structure-activity relationships of indenoisoquinoline-derived topoisomerase I inhibitors in unsilencing the dormant Ube3a gene associated with Angelman syndrome. Molecular Autism 2018, 9 (1) https://doi.org/10.1186/s13229-018-0228-2
    60. V. E. Kalugin, A. M. Shestopalov. Synthesis of 5-aminopyrido[3′,2′:4,5]thieno[3,2-c]isoquinoline derivatives from 3-cyanopyridine-2(1H)-thiones and 2-(chloromethyl)benzamide. Russian Chemical Bulletin 2018, 67 (8) , 1492-1499. https://doi.org/10.1007/s11172-018-2245-x
    61. V. E. Kalugin, A. M. Shestopalov. The synthesis of substituted 5-aminopyrido[3′,2′:4,5]thieno[3,2-c]isoquinolines and their sulfinyl and sulfonyl derivatives. Russian Chemical Bulletin 2018, 67 (5) , 902-911. https://doi.org/10.1007/s11172-018-2155-y
    62. Justine L. Delgado, Chao-Ming Hsieh, Nei-Li Chan, Hiroshi Hiasa. Topoisomerases as anticancer targets. Biochemical Journal 2018, 475 (2) , 373-398. https://doi.org/10.1042/BCJ20160583
    63. Lalmohan Jhulki, Parul Dutta, Manas Kumar Santra, Marlon H. Cardoso, Karen G. N. Oshiro, Octávio L. Franco, Valerio Bertolasi, Anvarhusein A. Isab, Christopher W. Bielawski, Joydev Dinda. Synthesis and cytotoxic characteristics displayed by a series of Ag( i )-, Au( i )- and Au( iii )-complexes supported by a common N-heterocyclic carbene. New Journal of Chemistry 2018, 42 (16) , 13948-13956. https://doi.org/10.1039/C8NJ02008F
    64. John A. Gurak, Van T. Tran, Miranda M. Sroda, Keary M. Engle. N-alkylation of 2-pyridone derivatives via palladium(II)-catalyzed directed alkene hydroamination. Tetrahedron 2017, 73 (26) , 3636-3642. https://doi.org/10.1016/j.tet.2017.03.091
    65. V. E. Kalugin, A. M. Shestopalov. Synthesis of substituted pyrido[3´,2´:4,5]thieno[3,2-c]isoquinolin-5(6H)-ones and their sulfinyl and sulfonyl derivatives. Russian Chemical Bulletin 2017, 66 (3) , 523-530. https://doi.org/10.1007/s11172-017-1766-z
    66. Nader Ghaffari Khaligh, Hanna S. Abbo, Salam J. J. Titinchi. Synthesis of N-methyl imines in the presence of poly(N-vinylpyridine) as a reusable solid base catalyst by a mechanochemical process. Research on Chemical Intermediates 2017, 43 (2) , 901-910. https://doi.org/10.1007/s11164-016-2672-y
    67. Sateesh Kumar Arepalli, Byeongwoo Park, Jae-Kyung Jung, Kiho Lee, Heesoon Lee. A facile one-pot regioselective synthesis of functionalized novel benzo[f]chromeno[4,3-b][1,7]naphthyridines and benzo[f][1,7]naphthyridines via an imino Diels-Alder reaction. Tetrahedron Letters 2017, 58 (5) , 449-454. https://doi.org/10.1016/j.tetlet.2016.12.050
    68. O. Shablykina, V. Moskvina, V. Savchenko, V. Khilya. USING OF 3-ARYLISOCOUMARINS IN 3-ARYLISOQUINOLONS SYNTHESIS. Bulletin of Taras Shevchenko National University of Kyiv. Chemistry 2017, (2(54)) , 18-30. https://doi.org/10.17721/1728-2209.2017.2(54).2
    69. Tham Pham Thi, Lena Decuyper, Tan Luc Quang, Chinh Pham The, Tuyet Anh Dang Thi, Ha Thanh Nguyen, Thuy Giang Le Nhat, Tra Nguyen Thanh, Phuong Hoang Thi, Matthias D’hooghe, Tuyen Van Nguyen. Synthesis and cytotoxic evaluation of novel indenoisoquinoline-propan-2-ol hybrids. Tetrahedron Letters 2016, 57 (4) , 466-471. https://doi.org/10.1016/j.tetlet.2015.12.045
    70. Bo Jiang, Rong Fu, Jiang-Kai Qiu, Yan Yu, Shu-Liang Wang, Shu-Jiang Tu. A new [4 + 1]/[4 + 2]bicycliaztion strategy for accessing functionalized indeno[1,2-b]pyran-2-ones. RSC Advances 2016, 6 (78) , 74372-74375. https://doi.org/10.1039/C6RA16462E
    71. Kun-Quan Chen, Han-Ming Zhang, Dong-Ling Wang, De-Qun Sun, Song Ye. Enantioselective N-heterocyclic carbene-catalyzed synthesis of indenopyrones. Organic & Biomolecular Chemistry 2015, 13 (24) , 6694-6697. https://doi.org/10.1039/C5OB00859J
    72. V. E. Kalugin, A. M. Shestopalov. Synthesis of substituted benzothieno[3,2-c]isoquinolin-5(6H)-ones and their sulfinyl and sulfonyl derivatives. Russian Chemical Bulletin 2014, 63 (11) , 2478-2484. https://doi.org/10.1007/s11172-014-0765-6
    73. Fedor I. Zubkov, Eugenia V. Nikitina, Timur R. Galeev, Vladimir P. Zaytsev, Victor N. Khrustalev, Roman A. Novikov, Daria N. Orlova, Alexey V. Varlamov. General synthetic approach towards annelated 3a,6-epoxyisoindoles by tandem acylation/IMDAF reaction of furylazaheterocycles. Scope and limitations. Tetrahedron 2014, 70 (8) , 1659-1690. https://doi.org/10.1016/j.tet.2014.01.008
    74. L G Dezhenkova, V B Tsvetkov, A A Shtil. Topoisomerase I and II inhibitors: chemical structure, mechanisms of action and role in cancer chemotherapy. Russian Chemical Reviews 2014, 83 (1) , 82-94. https://doi.org/10.1070/RC2014v083n01ABEH004363
    75. Andrea Coletta, Silvia Castelli, Giovanni Chillemi, Nico Sanna, Mark Cushman, Yves Pommier, Alessandro Desideri, . Solvent Dependency of the UV-Vis Spectrum of Indenoisoquinolines: Role of Keto-Oxygens as Polarity Interaction Probes. PLoS ONE 2013, 8 (9) , e73881. https://doi.org/10.1371/journal.pone.0073881
    76. Daulat B Khadka, Won-Jea Cho. Topoisomerase inhibitors as anticancer agents: a patent update. Expert Opinion on Therapeutic Patents 2013, 23 (8) , 1033-1056. https://doi.org/10.1517/13543776.2013.790958
    77. Majid M. Heravi, Hoda Hamidi. Recent advances in synthesis of 2-pyridones: a key heterocycle is revisited. Journal of the Iranian Chemical Society 2013, 10 (2) , 265-273. https://doi.org/10.1007/s13738-012-0155-7
    78. Shubhashis Chakrabarty, Michael S. Croft, Melissa G. Marko, Guillermo Moyna. Synthesis and evaluation as potential anticancer agents of novel tetracyclic indenoquinoline derivatives. Bioorganic & Medicinal Chemistry 2013, 21 (5) , 1143-1149. https://doi.org/10.1016/j.bmc.2012.12.026
    79. Niko S. Radulović, Ana B. Miltojević, Rastko D. Vukićević. Simple and efficient one-pot solvent-free synthesis of N-methyl imines of aromatic aldehydes. Comptes Rendus Chimie 2013, 16 (3) , 257-270. https://doi.org/10.1016/j.crci.2013.01.010
    80. William P. Unsworth, Richard J. K. Taylor. ‘Upenamide: trials and tribulations. Organic & Biomolecular Chemistry 2013, 11 (42) , 7250. https://doi.org/10.1039/c3ob41519h
    81. Giordano Mancini, Ilda D’Annessa, Andrea Coletta, Giovanni Chillemi, Yves Pommier, Mark Cushman, Alessandro Desideri, . Binding of an Indenoisoquinoline to the Topoisomerase-DNA Complex Induces Reduction of Linker Mobility and Strengthening of Protein-DNA Interaction. PLoS ONE 2012, 7 (12) , e51354. https://doi.org/10.1371/journal.pone.0051354
    82. Xiaoyun Zhang, Rubing Wang, Li Zhao, Na Lu, Jubo Wang, Qidong You, Zhiyu Li, Qinglong Guo. Synthesis and biological evaluations of novel indenoisoquinolines as topoisomerase I inhibitors. Bioorganic & Medicinal Chemistry Letters 2012, 22 (2) , 1276-1281. https://doi.org/10.1016/j.bmcl.2011.10.019
    83. Stéphane Lebrun, Axel Couture, Eric Deniau, Pierre Grandclaudon. Suzuki–Miyaura cross-coupling and ring-closing metathesis: a strategic combination to the synthesis of indeno[1,2-c]isoquinolin-5,11-diones. Tetrahedron Letters 2011, 52 (13) , 1481-1484. https://doi.org/10.1016/j.tetlet.2011.01.113
    84. Daulat Bikram Khadka, Won-Jea Cho. 3-Arylisoquinolines as novel topoisomerase I inhibitors. Bioorganic & Medicinal Chemistry 2011, 19 (2) , 724-734. https://doi.org/10.1016/j.bmc.2010.10.057
    85. Li Shuai, Minggang Deng, Dan Zhang, Yangyang Zhou, Xiang Zhou. Quadruplex-Duplex Motifs as New Topoisomerase I Inhibitors. Nucleosides, Nucleotides & Nucleic Acids 2010, 29 (11-12) , 841-853. https://doi.org/10.1080/15257770.2010.530635
    86. Sasiwadee Boonya‐udtayan, Nattawut Yotapan, Christina Woo, Carson J. Bruns, Somsak Ruchirawat, Nopporn Thasana. Synthesis and Biological Activities of Azalamellarins. Chemistry – An Asian Journal 2010, 5 (9) , 2113-2123. https://doi.org/10.1002/asia.201000237
    87. Li Shuai, Shaoru Wang, Lixia Zhang, Boqiao Fu, Xiang Zhou. Cationic Porphyrins and Analogues as New DNA Topoisomerase I and II Inhibitors. Chemistry & Biodiversity 2009, 6 (6) , 827-837. https://doi.org/10.1002/cbdv.200800083
    88. Yves Pommier, Mark Cushman. The indenoisoquinoline noncamptothecin topoisomerase I inhibitors: update and perspectives. Molecular Cancer Therapeutics 2009, 8 (5) , 1008-1014. https://doi.org/10.1158/1535-7163.MCT-08-0706
    89. N. M. Baker, R. Rajan, A. Mondragon. Structural studies of type I topoisomerases. Nucleic Acids Research 2009, 37 (3) , 693-701. https://doi.org/10.1093/nar/gkn1009
    90. Rahul P. Bakshi, Dongpei Sang, Andrew Morrell, Mark Cushman, Theresa A. Shapiro. Activity of Indenoisoquinolines against African Trypanosomes. Antimicrobial Agents and Chemotherapy 2009, 53 (1) , 123-128. https://doi.org/10.1128/AAC.00650-07
    91. Thomas S Dexheimer, Yves Pommier. DNA cleavage assay for the identification of topoisomerase I inhibitors. Nature Protocols 2008, 3 (11) , 1736-1750. https://doi.org/10.1038/nprot.2008.174
    92. Anindya Goswami, Shirley Qiu, Thomas S. Dexheimer, Padhma Ranganathan, Ravshan Burikhanov, Yves Pommier, Vivek M. Rangnekar. Par-4 Binds to Topoisomerase 1 and Attenuates Its DNA Relaxation Activity. Cancer Research 2008, 68 (15) , 6190-6198. https://doi.org/10.1158/0008-5472.CAN-08-0831
    93. Kazutaka Takagi, Thomas S. Dexheimer, Christophe Redon, Olivier Sordet, Keli Agama, Gilbert Lavielle, Alain Pierré, Susan E. Bates, Yves Pommier. Novel E-ring camptothecin keto analogues (S38809 and S39625) are stable, potent, and selective topoisomerase I inhibitors without being substrates of drug efflux transporters. Molecular Cancer Therapeutics 2007, 6 (12) , 3229-3238. https://doi.org/10.1158/1535-7163.MCT-07-0441
    94. Liangce Rong, Haiying Wang, Jingwen Shi, Fang Yang, Hao Yao, Shuajiang Tu, Daqing Shi. An efficient and facile procedure for the synthesis of 4,6‐diaryl‐2(1 H )‐pyridones under solvent‐free conditions. Journal of Heterocyclic Chemistry 2007, 44 (6) , 1505-1508. https://doi.org/10.1002/jhet.5570440641
    95. Smitha Antony, Keli K. Agama, Ze-Hong Miao, Kazutaka Takagi, Mollie H. Wright, Ana I. Robles, Lyuba Varticovski, Muthukaman Nagarajan, Andrew Morrell, Mark Cushman, Yves Pommier. Novel Indenoisoquinolines NSC 725776 and NSC 724998 Produce Persistent Topoisomerase I Cleavage Complexes and Overcome Multidrug Resistance. Cancer Research 2007, 67 (21) , 10397-10405. https://doi.org/10.1158/0008-5472.CAN-07-0938
    96. Shujiang Tu, Xiaotong Zhu, Feng Shi, Jinpeng Zhang, Yan Zhang. An efficient microwave‐assisted synthesis of 3,5‐unsubstituted 4‐substituted‐6‐aryl‐3,4‐dihydropyridin‐2(1 H )‐ones derivatives. Journal of Heterocyclic Chemistry 2007, 44 (4) , 837-842. https://doi.org/10.1002/jhet.5570440414
    97. Rachel L. Clark, Fiona M. Deane, Nahoum G. Anthony, Blair F. Johnston, Florence O. McCarthy, Simon P. Mackay. Exploring DNA topoisomerase I inhibition by the benzo[c]phenanthridines fagaronine and ethoxidine using steered molecular dynamics. Bioorganic & Medicinal Chemistry 2007, 15 (14) , 4741-4752. https://doi.org/10.1016/j.bmc.2007.05.002
    98. François Tillequin. Rutaceous alkaloids as models for the design of novel antitumor drugs. Phytochemistry Reviews 2007, 6 (1) , 65-79. https://doi.org/10.1007/s11101-006-9010-8
    99. Xiangshu Xiao, Andrew Morrell, Phillip E. Fanwick, Mark Cushman. On the mechanism of conversion of 4-carboxy-3,4-dihydro-3-phenyl-1(2H)-isoquinolones to indeno[1,2-c]isoquinolines by thionyl chloride. Tetrahedron 2006, 62 (41) , 9705-9712. https://doi.org/10.1016/j.tet.2006.07.072
    100. Smitha Antony, Keli K. Agama, Ze-Hong Miao, Melinda Hollingshead, Susan L. Holbeck, Mollie H. Wright, Lyuba Varticovski, Muthukaman Nagarajan, Andrew Morrell, Mark Cushman, Yves Pommier. Bisindenoisoquinoline Bis-1,3-{(5,6-dihydro-5,11-diketo-11 H -indeno[1,2- c ]isoquinoline)-6-propylamino}propane bis(trifluoroacetate) (NSC 727357), a DNA Intercalator and Topoisomerase Inhibitor with Antitumor Activity. Molecular Pharmacology 2006, 70 (3) , 1109-1120. https://doi.org/10.1124/mol.106.024372
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect