ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Synthesis, Pharmacological Characterization, and Molecular Modeling of Heterobicyclic Amino Acids Related to (+)-2-Aminobicyclo[3.1.0]hexane- 2,6-dicarboxylic Acid (LY354740):  Identification of Two New Potent, Selective, and Systemically Active Agonists for Group II Metabotropic Glutamate Receptors

View Author Information
Discovery Chemistry, Process Research and Development, Neuroscience, and Toxicology Research Divisions, Eli Lilly and Company, Indianapolis, Indiana 46285, and Lilly Research Centre, Ltd., Windelsham, Surrey GU20 6PH, U.K.
Cite this: J. Med. Chem. 1999, 42, 6, 1027–1040
Publication Date (Web):March 2, 1999
https://doi.org/10.1021/jm980616n
Copyright © 1999 American Chemical Society

    Article Views

    1723

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    As part of our ongoing research program aimed at the identification of highly potent, selective, and systemically active agonists for group II metabotropic glutamate (mGlu) receptors, we have prepared novel heterobicyclic amino acids (−)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268, ()-9) and (−)-2-thia-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY389795, ()-10). Compounds ()-9 and ()-10 are structurally related to our previously described nanomolar potency group II mGlu receptor agonist, (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate monohydrate (LY354740 monohydrate, 5), with the C4-methylene unit of 5 being replaced with either an oxygen atom (as in ()-9) or a sulfur atom (as in ()-10). Compounds ()-9 and ()-10 potently and stereospecifically displaced specific binding of the mGlu2/3 receptor antagonist ([3H]LY341495) in rat cerebral cortical homogenates, displaying IC50 values of 15 ± 4 and 8.4 ± 0.8 nM, respectively, while having no effect up to 100 000 nM on radioligand binding to the glutamate recognition site on NMDA, AMPA, or kainate receptors. Compounds ()-9 and ()-10 also potently displaced [3H]LY341495 binding from membranes expressing recombinant human group II mGlu receptor subtypes:  ()-9, Ki = 14.1 ± 1.4 nM at mGlu2 and 5.8 ± 0.64 nM at mGlu3; ()-10, Ki = 40.6 ± 3.7 nM at mGlu2 and 4.7 ± 1.2 nM at mGlu3. Evaluation of the functional effects of ()-9 and ()-10 on second-messenger responses in nonneuronal cells expressing human mGlu receptor subtypes demonstrated each to be a highly potent agonist for group II mGlu receptors:  ()-9, EC50 = 2.69 ± 0.26 nM at mGlu2 and 4.58 ± 0.04 nM at mGlu3; ()-10, EC50 = 3.91 ± 0.81 nM at mGlu2 and 7.63 ± 2.08 nM at mGlu3. In contrast, neither compound (up to 10 000 nM) displayed either agonist or antagonist activity in cells expressing recombinant human mGlu1a, mGlu5a, mGlu4a, or mGlu7a receptors. The agonist effects of ()-9 and ()-10 at group II mGlu receptors were not totally specific, however, as mGlu6 agonist activity was observed at high nanomolar concentrations for ()-9 (EC50 = 401 ± 46 nM) and at micromolar concentrations (EC50 = 2 430 ± 600 nM) for ()-10; furthermore, each activated mGlu8 receptors at micromolar concentrations (EC50 = 1 690 ± 130 and 7 340 ± 2 720 nM, respectively). Intraperitoneal administration of either ()-9 or ()-10 in the mouse resulted in a dose-related blockade of limbic seizure activity produced by the nonselective group I/group II mGluR agonist (1S,3R)-ACPD (()-9 ED50 = 19 mg/kg, ()-10 ED50 = 14 mg/kg), indicating that these molecules effectively cross the blood-brain barrier following systemic administration and suppress group I mGluR-mediated limbic excitation. Thus, heterobicyclic amino acids ()-9 and ()-10 are novel pharmacological tools useful for exploring the functions of mGlu receptors in vitro and in vivo.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author:  Dr. James A. Monn, Eli Lilly and Co., Lilly Corporate Center, Mail Drop Code 0510, Indianapolis, IN 46285. Tel:  (317) 276-9101. Fax:  (317) 277-7600. E-mail:  [email protected].

     Process Research and Development Division.

     Neuroscience Division.

     Lilly Research Centre, Ltd.

    §

     Toxicology Research Division.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    X-ray crystallographic data pertaining to ()-9 and tablulated combustion analyses on new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 251 publications.

    1. Fabien Emmetiere, Alexander J. Grenning. Diastereoselective Synthesis of 2,3,4-Trisubstituted Tetrahydrofurans via Thermally Reactive 1,5-Diene-tert-butyl Carbonates. Organic Letters 2020, 22 (3) , 842-847. https://doi.org/10.1021/acs.orglett.9b04306
    2. James A. Monn, Steven S. Henry, Steven M. Massey, David K. Clawson, Qi Chen, Benjamin A. Diseroad, Rajni M. Bhardwaj, Shane Atwell, Frances Lu, Jing Wang, Marijane Russell, Beverly A. Heinz, Xu-shan Wang, Joan H. Carter, Brian G. Getman, Kofi Adragni, Lisa M. Broad, Helene E. Sanger, Daniel Ursu, John T. Catlow, Steven Swanson, Bryan G. Johnson, David B. Shaw, David L. McKinzie, Junliang Hao. Synthesis and Pharmacological Characterization of C4β-Amide-Substituted 2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1S,2S,4S,5R,6S)-2-Amino-4-[(3-methoxybenzoyl)amino]bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2794193), a Highly Potent and Selective mGlu3 Receptor Agonist. Journal of Medicinal Chemistry 2018, 61 (6) , 2303-2328. https://doi.org/10.1021/acs.jmedchem.7b01481
    3. Enza Lacivita, Roberto Perrone, Lucia Margari, and Marcello Leopoldo . Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. Journal of Medicinal Chemistry 2017, 60 (22) , 9114-9141. https://doi.org/10.1021/acs.jmedchem.7b00965
    4. Craig W. Lindsley, Kyle A. Emmitte, Corey R. Hopkins, Thomas M. Bridges, Karen J. Gregory, Colleen M. Niswender, and P. Jeffrey Conn . Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chemical Reviews 2016, 116 (11) , 6707-6741. https://doi.org/10.1021/acs.chemrev.5b00656
    5. James A. Monn, Lourdes Prieto, Lorena Taboada, Junliang Hao, Matthew R. Reinhard, Steven S. Henry, Christopher D. Beadle, Lesley Walton, Teresa Man, Helene Rudyk, Barry Clark, David Tupper, S. Richard Baker, Carlos Lamas, Carlos Montero, Alicia Marcos, Jaime Blanco, Mark Bures, David K. Clawson, Shane Atwell, Frances Lu, Jing Wang, Marijane Russell, Beverly A. Heinz, Xushan Wang, Joan H. Carter, Brian G. Getman, John T. Catlow, Steven Swanson, Bryan G. Johnson, David B. Shaw, and David L. McKinzie . Synthesis and Pharmacological Characterization of C4-(Thiotriazolyl)-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1R,2S,4R,5R,6R)-2-Amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2812223), a Highly Potent, Functionally Selective mGlu2 Receptor Agonist. Journal of Medicinal Chemistry 2015, 58 (18) , 7526-7548. https://doi.org/10.1021/acs.jmedchem.5b01124
    6. James A. Monn, Lourdes Prieto, Lorena Taboada, Concepcion Pedregal, Junliang Hao, Matt R. Reinhard, Steven S. Henry, Paul J. Goldsmith, Christopher D. Beadle, Lesley Walton, Teresa Man, Helene Rudyk, Barry Clark, David Tupper, S. Richard Baker, Carlos Lamas, Carlos Montero, Alicia Marcos, Jaime Blanco, Mark Bures, David K. Clawson, Shane Atwell, Frances Lu, Jing Wang, Marijane Russell, Beverly A. Heinz, Xushan Wang, Joan H. Carter, Chuanxi Xiang, John T. Catlow, Steven Swanson, Helen Sanger, Lisa M. Broad, Michael P. Johnson, Kelly L. Knopp, Rosa M. A. Simmons, Bryan G. Johnson, David B. Shaw, and David L. McKinzie . Synthesis and Pharmacological Characterization of C4-Disubstituted Analogs of 1S,2S,5R,6S-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylate: Identification of a Potent, Selective Metabotropic Glutamate Receptor Agonist and Determination of Agonist-Bound Human mGlu2 and mGlu3 Amino Terminal Domain Structures. Journal of Medicinal Chemistry 2015, 58 (4) , 1776-1794. https://doi.org/10.1021/jm501612y
    7. Raveendra-Panickar Dhanya, Douglas J. Sheffler, Russell Dahl, Melinda Davis, Pooi San Lee, Li Yang, Hilary Highfield Nickols, Hyekyung P. Cho, Layton H. Smith, Manoranjan S. D’Souza, P. Jeffrey Conn, Andre Der-Avakian, Athina Markou, and Nicholas D. P. Cosford . Design and Synthesis of Systemically Active Metabotropic Glutamate Subtype-2 and -3 (mGlu2/3) Receptor Positive Allosteric Modulators (PAMs): Pharmacological Characterization and Assessment in a Rat Model of Cocaine Dependence. Journal of Medicinal Chemistry 2014, 57 (10) , 4154-4172. https://doi.org/10.1021/jm5000563
    8. Cody J. Wenthur, Ryan Morrison, Andrew S. Felts, Katrina A. Smith, Julie L. Engers, Frank W. Byers, J. Scott Daniels, Kyle A. Emmitte, P. Jeffrey Conn, and Craig W. Lindsley . Discovery of (R)-(2-Fluoro-4-((-4-methoxyphenyl)ethynyl)phenyl) (3-Hydroxypiperidin-1-yl)methanone (ML337), An mGlu3 Selective and CNS Penetrant Negative Allosteric Modulator (NAM). Journal of Medicinal Chemistry 2013, 56 (12) , 5208-5212. https://doi.org/10.1021/jm400439t
    9. James A. Monn, Matthew J. Valli, Steven M. Massey, Junliang Hao, Matthew R. Reinhard, Mark G. Bures, Beverly A. Heinz, Xushan Wang, Joan H. Carter, Brian G. Getman, Gregory A. Stephenson, Marc Herin, John T. Catlow, Steven Swanson, Bryan G. Johnson, David L. McKinzie, and Steven S. Henry . Synthesis and Pharmacological Characterization of 4-Substituted-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylates: Identification of New Potent and Selective Metabotropic Glutamate 2/3 Receptor Agonists. Journal of Medicinal Chemistry 2013, 56 (11) , 4442-4455. https://doi.org/10.1021/jm4000165
    10. Steven S. Henry, Molly D. Brady, Dana L. T. Laird, J. Craig Ruble, David L. Varie, and James A. Monn . Improved Synthesis of C4α- and C4β-Methyl Analogues of 2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylate. Organic Letters 2012, 14 (11) , 2662-2665. https://doi.org/10.1021/ol300516y
    11. Mario Waser, Eric D. Moher, Sandy S. K. Borders, Marvin M. Hansen, David W. Hoard, Michael E. Laurila, Michael E. LeTourneau, Richard D. Miller, Michael L. Phillips, Kevin A. Sullivan, Jeffrey A. Ward, Chaoyu Xie, Cheryl A. Bye, Tanja Leitner, Brigitte Herzog-Krimbacher, Marcus Kordian, and Martin Müllner . Process Development for a Key Synthetic Intermediate of LY2140023, a Clinical Candidate for the Treatment of Schizophrenia. Organic Process Research & Development 2011, 15 (6) , 1266-1274. https://doi.org/10.1021/op100325h
    12. Miles Congreve, Christopher J. Langmead, Jonathan S. Mason, and Fiona H. Marshall . Progress in Structure Based Drug Design for G Protein-Coupled Receptors. Journal of Medicinal Chemistry 2011, 54 (13) , 4283-4311. https://doi.org/10.1021/jm200371q
    13. Raveendra-Panickar Dhanya, Shyama Sidique, Douglas J. Sheffler, Hilary Highfield Nickols, Ananda Herath, Li Yang, Russell Dahl, Robert Ardecky, Svetlana Semenova, Athina Markou, P. Jeffrey Conn, and Nicholas D. P. Cosford . Design and Synthesis of an Orally Active Metabotropic Glutamate Receptor Subtype-2 (mGluR2) Positive Allosteric Modulator (PAM) That Decreases Cocaine Self-Administration in Rats. Journal of Medicinal Chemistry 2011, 54 (1) , 342-353. https://doi.org/10.1021/jm1012165
    14. Santosh J. Gharpure, Manoj K. Shukla and U. Vijayasree. Stereoselective Synthesis of Donor−Acceptor Substituted Cyclopropafuranones by Intramolecular Cyclopropanation of Vinylogous Carbonates: Divergent Synthesis of Tetrahydrofuran-3-one, Tetrahydropyran-3-one, and Lactones. Organic Letters 2009, 11 (23) , 5466-5469. https://doi.org/10.1021/ol902301h
    15. Farina Brackmann and, Armin de Meijere. Natural Occurrence, Syntheses, and Applications of Cyclopropyl-Group-Containing α-Amino Acids. 2. 3,4- and 4,5-Methanoamino Acids. Chemical Reviews 2007, 107 (11) , 4538-4583. https://doi.org/10.1021/cr0784083
    16. James A. Monn,, Steven M. Massey,, Matthew J. Valli,, Steven S. Henry,, Gregory A. Stephenson,, Mark Bures,, Marc Hérin,, John Catlow,, Deborah Giera,, Rebecca A. Wright,, Bryan G. Johnson,, Sherri L. Andis,, Ann Kingston, and, Darryle D. Schoepp. Synthesis and Metabotropic Glutamate Receptor Activity of S-Oxidized Variants of (−)-4-Amino-2-thiabicyclo-[3.1.0]hexane-4,6-dicarboxylate:  Identification of Potent, Selective, and Orally Bioavailable Agonists for mGlu2/3 Receptors. Journal of Medicinal Chemistry 2007, 50 (2) , 233-240. https://doi.org/10.1021/jm060917u
    17. Ossama M. Rasmy,, Radhe K. Vaid,, Michael J. Semo,, Erik C. Chelius,, Roger L. Robey,, Charles A. Alt,, Gary A. Rhodes, and, Jeffery T. Vicenzi. Process Development of (1S,2S,5R,6S)- Spiro[bicyclo[3.1.0]hexane-2‘,5‘-dioxo-2,4‘-imidazolidine]-6-carboxylic Acid, (R)-α-Methylbenzenemethanamine Salt (LSN344309). Organic Process Research & Development 2006, 10 (1) , 28-32. https://doi.org/10.1021/op049829e
    18. Lushi Tan,, Nobuyoshi Yasuda,, Naoki Yoshikawa,, Frederick W. Hartner,, Kan Kaung Eng,, William R. Leonard,, Fuh-Rong Tsay,, Ralph P. Volante, and, Richard D. Tillyer. Stereoselective Syntheses of Highly Functionalized Bicyclo[3.1.0]hexanes:  A General Methodology for the Synthesis of Potent and Selective mGluR2/3 Agonists. The Journal of Organic Chemistry 2005, 70 (20) , 8027-8034. https://doi.org/10.1021/jo0511187
    19. Anthony B. Pinkerton,, Jean-Michel Vernier,, Hervé Schaffhauser,, Blake A. Rowe,, Una C. Campbell,, Dana E. Rodriguez,, Daniel S. Lorrain,, Christopher S. Baccei,, Lorrie P. Daggett, and, Linda J. Bristow. Phenyl-tetrazolyl Acetophenones:  Discovery of Positive Allosteric Potentiatiors for the Metabotropic Glutamate 2 Receptor. Journal of Medicinal Chemistry 2004, 47 (18) , 4595-4599. https://doi.org/10.1021/jm040088h
    20. Wenlin Lee and, Marvin J. Miller. Concise Synthesis of 4-Acylamino Analogues of 2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic Acids (LY354740) from an Acylnitroso Diels−Alder Cycloadduct. The Journal of Organic Chemistry 2004, 69 (13) , 4516-4519. https://doi.org/10.1021/jo0495034
    21. Anatoliy Volkov,, Xue Li,, Tibor Koritsanszky, and, Philip Coppens. Ab Initio Quality Electrostatic Atomic and Molecular Properties Including Intermolecular Energies from a Transferable Theoretical Pseudoatom Databank. The Journal of Physical Chemistry A 2004, 108 (19) , 4283-4300. https://doi.org/10.1021/jp0379796
    22. Michael P. Johnson,, Melvyn Baez,, G. Erik Jagdmann, Jr.,, Thomas C. Britton,, Thomas H. Large,, David O. Callagaro,, Joseph P. Tizzano,, James A. Monn, and, Darryle D. Schoepp. Discovery of Allosteric Potentiators for the Metabotropic Glutamate 2 Receptor:  Synthesis and Subtype Selectivity of N-(4-(2-Methoxyphenoxy)phenyl)-N-(2,2,2− trifluoroethylsulfonyl)pyrid-3-ylmethylamine. Journal of Medicinal Chemistry 2003, 46 (15) , 3189-3192. https://doi.org/10.1021/jm034015u
    23. Rasmus P. Clausen,, Hans Bräuner-Osborne,, Jeremy R. Greenwood,, Mette B. Hermit,, Tine B. Stensbøl,, Birgitte Nielsen, and, Povl Krogsgaard-Larsen. Selective Agonists at Group II Metabotropic Glutamate Receptors:  Synthesis, Stereochemistry, and Molecular Pharmacology of (S)- and (R)-2-Amino-4-(4-hydroxy[1,2,5]thiadiazol-3-yl)butyric Acid. Journal of Medicinal Chemistry 2002, 45 (19) , 4240-4245. https://doi.org/10.1021/jm020122x
    24. Hugues-Olivier Bertrand,, Anne-Sophie Bessis,, Jean-Philippe Pin, and, Francine C. Acher. Common and Selective Molecular Determinants Involved in Metabotopic Glutamate Receptor Agonist Activity. Journal of Medicinal Chemistry 2002, 45 (15) , 3171-3183. https://doi.org/10.1021/jm010323l
    25. Michael Rowley,, Linda J. Bristow, and, Peter H. Hutson. Current and Novel Approaches to the Drug Treatment of Schizophrenia. Journal of Medicinal Chemistry 2001, 44 (4) , 477-501. https://doi.org/10.1021/jm0002432
    26. Atsuro Nakazato,, Toshihito Kumagai,, Kazunari Sakagami,, Ryoko Yoshikawa,, Yoshiko Suzuki,, Shigeyuki Chaki,, Hisanaka Ito,, Takeo Taguchi,, Shigetada Nakanishi, and, Shigeru Okuyama. Synthesis, SARs, and Pharmacological Characterization of 2-Amino-3 or 6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic Acid Derivatives as Potent, Selective, and Orally Active Group II Metabotropic Glutamate Receptor Agonists. Journal of Medicinal Chemistry 2000, 43 (25) , 4893-4909. https://doi.org/10.1021/jm000346k
    27. Hans Bräuner-Osborne,, Jan Egebjerg,, Elsebet Ø. Nielsen,, Ulf Madsen, and, Povl Krogsgaard-Larsen. Ligands for Glutamate Receptors:  Design and Therapeutic Prospects. Journal of Medicinal Chemistry 2000, 43 (14) , 2609-2645. https://doi.org/10.1021/jm000007r
    28. Michael P. Doyle,, Brant J. Chapman,, Wenhao Hu, and, Chad S. Peterson, , M. Anthony McKervey and, Concepción F. Garcia. Catalytic Intramolecular Addition of Metal Carbenes to Remote Furans. Organic Letters 1999, 1 (9) , 1327-1329. https://doi.org/10.1021/ol990168t
    29. Nadia Rabeh, Baraa Hajjar, Jude O. Maraka, Ashwin F. Sammanasunathan, Mohammed Khan, Saif M.I. Alkhaaldi, Samy Mansour, Rashed T. Almheiri, Hamdan Hamdan, Khaled S. Abd-Elrahman. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomedicine & Pharmacotherapy 2023, 168 , 115733. https://doi.org/10.1016/j.biopha.2023.115733
    30. Lena Ball, Julia Bauer, Dietmar Krautwurst. Heterodimerization of Chemoreceptors TAS1R3 and mGlu2 in Human Blood Leukocytes. International Journal of Molecular Sciences 2023, 24 (16) , 12942. https://doi.org/10.3390/ijms241612942
    31. Si Han Li, Khaled S. Abd-Elrahman, Stephen S.G. Ferguson. Targeting mGluR2/3 for treatment of neurodegenerative and neuropsychiatric diseases. Pharmacology & Therapeutics 2022, 239 , 108275. https://doi.org/10.1016/j.pharmthera.2022.108275
    32. Francesca Mazzo, Ioana Butnaru, Olivera Grubisha, Elena Ficulle, Helen Sanger, Griffin Fitzgerald, Feng Pan, Francesca Pasqui, Tracey Murray, James Monn, Xia Li, Michael Hutton, Suchira Bose, Giampietro Schiavo, Emanuele Sher. Metabotropic Glutamate Receptors Modulate Exocytotic Tau Release and Propagation. Journal of Pharmacology and Experimental Therapeutics 2022, 383 (2) , 117-128. https://doi.org/10.1124/jpet.122.001307
    33. Junliang Hao. Discovery of Subtype Selective Agonists of the Group II Metabotropic Glutamate Receptors. 2022, 113-143. https://doi.org/10.1002/9781119627784.ch6
    34. Cecilie Morland, Kaja Nordengen. N-Acetyl-Aspartyl-Glutamate in Brain Health and Disease. International Journal of Molecular Sciences 2022, 23 (3) , 1268. https://doi.org/10.3390/ijms23031268
    35. Manuela Zinni, Jérôme Mairesse, Julien Pansiot, Francesco Fazio, Luisa Iacovelli, Nico Antenucci, Rosamaria Orlando, Ferdinando Nicoletti, Daniel Vaiman, Olivier Baud. mGlu3 receptor regulates microglial cell reactivity in neonatal rats. Journal of Neuroinflammation 2021, 18 (1) https://doi.org/10.1186/s12974-020-02049-z
    36. Si Han Li, Tash-Lynn L. Colson, Khaled S. Abd-Elrahman, Stephen S.G. Ferguson. Metabotropic Glutamate Receptor 2/3 Activation Improves Motor Performance and Reduces Pathology in Heterozygous zQ175 Huntington Disease Mice. Journal of Pharmacology and Experimental Therapeutics 2021, 379 (1) , 74-84. https://doi.org/10.1124/jpet.121.000735
    37. Karen J. Gregory, Cyril Goudet, . International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacological Reviews 2021, 73 (1) , 521-569. https://doi.org/10.1124/pr.119.019133
    38. Adjia Hamadjida, Lamia Sid‐Otmane, Cynthia Kwan, Imane Frouni, Vaidehi Nafade, Dominique Bédard, Dave Gagnon, Marie‐Josée Wallman, Claude Rouillard, André Parent, Martin Parent, Philippe Huot. The highly selective mGlu 2 receptor positive allosteric modulator LY‐487,379 alleviates l ‐DOPA‐induced dyskinesia in the 6‐OHDA‐lesioned rat model of Parkinson's disease. European Journal of Neuroscience 2020, 51 (12) , 2412-2422. https://doi.org/10.1111/ejn.14679
    39. Youheng Shu, Tracy L. Diamond, James C. Hershey, Shaei Huang, Brian C. Magliaro, Julie A. O'Brien, Kelly-Ann S. Schlegel, Vanita Puri, Victor N. Uebele, Jason M. Uslaner, Cheng Wang, Antonella Converso. Discovery of 4-arylquinoline-2-carboxamides, highly potent and selective class of mGluR2 negative allosteric modulators: From HTS to activity in animal models. Bioorganic & Medicinal Chemistry Letters 2020, 30 (9) , 127066. https://doi.org/10.1016/j.bmcl.2020.127066
    40. Erik J. Garcia, Mary E. Cain. Environmental enrichment and a selective metabotropic glutamate receptor2/3 (mGluR2/3) agonist suppress amphetamine self-administration: Characterizing baseline differences. Pharmacology Biochemistry and Behavior 2020, 192 , 172907. https://doi.org/10.1016/j.pbb.2020.172907
    41. Jeffrey M. Witkin. mGlu2/3 receptor antagonism: A mechanism to induce rapid antidepressant effects without ketamine-associated side-effects. Pharmacology Biochemistry and Behavior 2020, 190 , 172854. https://doi.org/10.1016/j.pbb.2020.172854
    42. Yang Tan, Yan Xu, Chi Cheng, Cong Zheng, Weiqi Zeng, Ji Wang, Xiaoqian Zhang, Xiaoman Yang, Jialing Wang, Xiaomei Yang, Shuke Nie, Xuebing Cao. LY354740 Reduces Extracellular Glutamate Concentration, Inhibits Phosphorylation of Fyn/NMDARs, and Expression of PLK2/pS129 α-Synuclein in Mice Treated With Acute or Sub-Acute MPTP. Frontiers in Pharmacology 2020, 11 https://doi.org/10.3389/fphar.2020.00183
    43. Paul W. Czoty, Bruce E. Blough, Antonio Landavazo, Michael A. Nader. Effects of the mGluR2/3 receptor agonist LY379268 on the reinforcing strength of cocaine in rhesus monkeys. Psychopharmacology 2020, 237 (2) , 409-417. https://doi.org/10.1007/s00213-019-05377-y
    44. Junliang Hao, Qi Chen. Insights into the Structural Aspects of the mGlu Receptor Orthosteric Binding Site. Current Topics in Medicinal Chemistry 2019, 19 (26) , 2421-2446. https://doi.org/10.2174/1568026619666191011094935
    45. Elysia Sokolenko, Matthew R Hudson, Jess Nithianantharajah, Nigel C Jones. The mGluR 2/3 agonist LY379268 reverses NMDA receptor antagonist effects on cortical gamma oscillations and phase coherence, but not working memory impairments, in mice. Journal of Psychopharmacology 2019, 33 (12) , 1588-1599. https://doi.org/10.1177/0269881119875976
    46. Panos Zanos, Jaclyn N. Highland, Brent W. Stewart, Polymnia Georgiou, Carleigh E. Jenne, Jacqueline Lovett, Patrick J. Morris, Craig J. Thomas, Ruin Moaddel, Carlos A. Zarate, Todd D. Gould. ( 2R,6R )-hydroxynorketamine exerts mGlu 2 receptor-dependent antidepressant actions. Proceedings of the National Academy of Sciences 2019, 116 (13) , 6441-6450. https://doi.org/10.1073/pnas.1819540116
    47. Junliang Hao, Qi Chen. On the origin of the 2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate scaffold’s unique group II selectivity for the mGlu receptors. Bioorganic & Medicinal Chemistry Letters 2019, 29 (2) , 297-301. https://doi.org/10.1016/j.bmcl.2018.11.033
    48. Thor C. Møller, Jerome Hottin, Caroline Clerté, Jurriaan M. Zwier, Thierry Durroux, Philippe Rondard, Laurent Prézeau, Catherine A. Royer, Jean-Philippe Pin, Emmanuel Margeat, Julie Kniazeff. Oligomerization of a G protein-coupled receptor in neurons controlled by its structural dynamics. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-28682-6
    49. Antonietta Arcella, Maria Antonietta Oliva, Sabrina Staffieri, Massimo Sanchez, Michele Madonna, Barbara Riozzi, Vincenzo Esposito, Felice Giangaspero, Luigi Frati. Effects of aloe emodin on U87MG glioblastoma cell growth: In vitro and in vivo study. Environmental Toxicology 2018, 33 (11) , 1160-1167. https://doi.org/10.1002/tox.22622
    50. Navjeet Kaur. Photochemical mediated reactions in five-membered O- heterocycles synthesis. Synthetic Communications 2018, 48 (17) , 2119-2149. https://doi.org/10.1080/00397911.2018.1485165
    51. Daniele Caprioli, Zuzana Justinova, Marco Venniro, Yavin Shaham. Effect of Novel Allosteric Modulators of Metabotropic Glutamate Receptors on Drug Self-administration and Relapse: A Review of Preclinical Studies and Their Clinical Implications. Biological Psychiatry 2018, 84 (3) , 180-192. https://doi.org/10.1016/j.biopsych.2017.08.018
    52. Dennis R. Grayson, Alessandro Guidotti. DNA Methylation in Animal Models of Psychosis. 2018, 105-132. https://doi.org/10.1016/bs.pmbts.2017.12.012
    53. Ruchi Malik, Pakhuri Mehta, Shubham Srivastava, Bhanwar Singh Choudhary, Manish Sharma. Structure-based screening, ADMET profiling, and molecular dynamic studies on mGlu2 receptor for identification of newer antiepileptic agents. Journal of Biomolecular Structure and Dynamics 2017, 35 (16) , 3433-3448. https://doi.org/10.1080/07391102.2016.1257440
    54. Jasmeet K. Virdee, Gabriella Saro, Antoine Fouillet, Jeremy Findlay, Filipa Ferreira, Sarah Eversden, Michael J. O’Neill, Joanna Wolak, Daniel Ursu. A high-throughput model for investigating neuronal function and synaptic transmission in cultured neuronal networks. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-15171-5
    55. Rafal T. Olszewski, Karolina J. Janczura, Tomasz Bzdega, Elise K. Der, Faustino Venzor, Brennen O’Rourke, Timothy J. Hark, Kirsten E. Craddock, Shankar Balasubramanian, Charbel Moussa, Joseph H. Neale. NAAG Peptidase Inhibitors Act via mGluR3: Animal Models of Memory, Alzheimer’s, and Ethanol Intoxication. Neurochemical Research 2017, 42 (9) , 2646-2657. https://doi.org/10.1007/s11064-017-2181-4
    56. Jane B. Acri, Alan J. Cross, Phil Skolnick. From bench to bedside: mGluR2 positive allosteric modulators as medications to treat substance use disorders. Psychopharmacology 2017, 234 (9-10) , 1347-1355. https://doi.org/10.1007/s00213-016-4501-9
    57. Michael P Johnson, Mark A Muhlhauser, Eric S Nisenbaum, Rosa M A Simmons, Beth M Forster, Kelly L Knopp, Lijuan Yang, Denise Morrow, Dominic L Li, Jeffrey D Kennedy, Steven Swanson, James A Monn. Broad spectrum efficacy with LY2969822, an oral prodrug of metabotropic glutamate 2/3 receptor agonist LY2934747, in rodent pain models. British Journal of Pharmacology 2017, 174 (9) , 822-835. https://doi.org/10.1111/bph.13740
    58. Christian C. Felder, Douglas A. Schober, Yuan Tu, Anne Quets, Hongling Xiao, Marla Watt, Ed Siuda, Eric Nisenbaum, Chuanxi Xiang, Beverly Heinz, Lourdes Prieto, David L. McKinzie, James A. Monn. Translational Pharmacology of the Metabotropic Glutamate 2 Receptor–Preferring Agonist LY2812223 in the Animal and Human Brain. Journal of Pharmacology and Experimental Therapeutics 2017, 361 (1) , 190-197. https://doi.org/10.1124/jpet.116.237859
    59. Raffael Vorberg, Nils Trapp, Erick M. Carreira, Klaus Müller. Bicyclo[3.2.0]heptane as a Core Structure for Conformational Locking of 1,3‐Bis‐Pharmacophores, Exemplified by GABA. Chemistry – A European Journal 2017, 23 (13) , 3126-3138. https://doi.org/10.1002/chem.201605179
    60. Jeffrey M. Witkin, Paul L. Ornstein, Charles H. Mitch, Renhua Li, Stephon C. Smith, Beverly A. Heinz, Xu-Shan Wang, Chuanxi Xiang, Joan H. Carter, Wesley H. Anderson, Xia Li, Lisa M. Broad, Francesca Pasqui, Stephen M. Fitzjohn, Helen E. Sanger, Jodi L. Smith, John Catlow, Steven Swanson, James A. Monn. In vitro pharmacological and rat pharmacokinetic characterization of LY3020371, a potent and selective mGlu 2/3 receptor antagonist. Neuropharmacology 2017, 115 , 100-114. https://doi.org/10.1016/j.neuropharm.2015.12.021
    61. Takahiro Nonaka, Toshihiko Yamada, Tatsuhiro Ishimura, Daiying Zuo, John R Moffett, Joseph H Neale, Tatsuo Yamamoto. A role for the locus coeruleus in the analgesic efficacy of N-acetylaspartylglutamate peptidase (GCPII) inhibitors ZJ43 and 2-PMPA. Molecular Pain 2017, 13 , 174480691769700. https://doi.org/10.1177/1744806917697008
    62. D. Jantas, A. Gręda, S. Gołda, M. Korostyński, W. Lasoń. The neuroprotective effects of orthosteric agonists of group II and III mGluRs in primary neuronal cell cultures are dependent on developmental stage. Neuropharmacology 2016, 111 , 195-211. https://doi.org/10.1016/j.neuropharm.2016.09.003
    63. M R Hudson, G Rind, T J O'Brien, N C Jones. Reversal of evoked gamma oscillation deficits is predictive of antipsychotic activity with a unique profile for clozapine. Translational Psychiatry 2016, 6 (4) , e784-e784. https://doi.org/10.1038/tp.2016.51
    64. Mary Jeanne Kallman. Anti-Epileptic Activity. 2016, 1215-1306. https://doi.org/10.1007/978-3-319-05392-9_28
    65. Santina Chiechio. Modulation of Chronic Pain by Metabotropic Glutamate Receptors. 2016, 63-89. https://doi.org/10.1016/bs.apha.2015.11.001
    66. Zuzana Justinova, Leigh V. Panlilio, Maria E. Secci, Godfrey H. Redhi, Charles W. Schindler, Alan J. Cross, Ladislav Mrzljak, Amy Medd, Yavin Shaham, Steven R. Goldberg. The Novel Metabotropic Glutamate Receptor 2 Positive Allosteric Modulator, AZD8529, Decreases Nicotine Self-Administration and Relapse in Squirrel Monkeys. Biological Psychiatry 2015, 78 (7) , 452-462. https://doi.org/10.1016/j.biopsych.2015.01.014
    67. Daniele Caprioli, Marco Venniro, Tamara Zeric, Xuan Li, Sweta Adhikary, Rajtarun Madangopal, Nathan J. Marchant, Federica Lucantonio, Geoffrey Schoenbaum, Jennifer M. Bossert, Yavin Shaham. Effect of the Novel Positive Allosteric Modulator of Metabotropic Glutamate Receptor 2 AZD8529 on Incubation of Methamphetamine Craving After Prolonged Voluntary Abstinence in a Rat Model. Biological Psychiatry 2015, 78 (7) , 463-473. https://doi.org/10.1016/j.biopsych.2015.02.018
    68. Luca Bragina, Tiziana Bonifacino, Silvia Bassi, Marco Milanese, Giambattista Bonanno, Fiorenzo Conti. Differential expression of metabotropic glutamate and GABA receptors at neocortical glutamatergic and GABAergic axon terminals. Frontiers in Cellular Neuroscience 2015, 9 https://doi.org/10.3389/fncel.2015.00345
    69. Anel A. Jaramillo, Patrick A. Randall, Suzanne Frisbee, Kristen R. Fisher, Joyce Besheer. Activation of mGluR2/3 following stress hormone exposure restores sensitivity to alcohol in rats. Alcohol 2015, 49 (6) , 525-532. https://doi.org/10.1016/j.alcohol.2015.03.008
    70. Melissa A. Erlandson, Olivier J. Manzoni, Ingrid Bureau, . The Functional Organization of Neocortical Networks Investigated in Slices with Local Field Recordings and Laser Scanning Photostimulation. PLOS ONE 2015, 10 (7) , e0132008. https://doi.org/10.1371/journal.pone.0132008
    71. Nanyan Zhang, Peng Zhong, Seung Min Shin, Jacob Metallo, Eric Danielson, Christopher M. Olsen, Qing-song Liu, Sang H. Lee. S-SCAM, A Rare Copy Number Variation Gene, Induces Schizophrenia-Related Endophenotypes in Transgenic Mouse Model. The Journal of Neuroscience 2015, 35 (5) , 1892-1904. https://doi.org/10.1523/JNEUROSCI.3658-14.2015
    72. Giuseppe Battaglia, Barbara Riozzi, Domenico Bucci, Luisa Di Menna, Gemma Molinaro, Simone Pallottino, Ferdinando Nicoletti, Valeria Bruno. Activation of mGlu3 metabotropic glutamate receptors enhances GDNF and GLT-1 formation in the spinal cord and rescues motor neurons in the SOD-1 mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease 2015, 74 , 126-136. https://doi.org/10.1016/j.nbd.2014.11.012
    73. Mary Jeanne Kallman. Anti-Epileptic Activity. 2015, 1-112. https://doi.org/10.1007/978-3-642-27728-3_28-1
    74. Rosamaria Orlando, Marina Borro, Marta Motolese, Gemma Molinaro, Sergio Scaccianoce, Alessandra Caruso, Luigi di Nuzzo, Filippo Caraci, Francesco Matrisciano, Anna Pittaluga, Jerome Mairesse, Maurizio Simmaco, Robert Nisticò, James A. Monn, Ferdinando Nicoletti. Levels of the Rab GDP dissociation inhibitor (GDI) are altered in the prenatal restrain stress mouse model of schizophrenia and are differentially regulated by the mGlu2/3 receptor agonists, LY379268 and LY354740. Neuropharmacology 2014, 86 , 133-144. https://doi.org/10.1016/j.neuropharm.2014.07.009
    75. Shen Yin, Colleen M. Niswender. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications. Cellular Signalling 2014, 26 (10) , 2284-2297. https://doi.org/10.1016/j.cellsig.2014.04.022
    76. Nikolaos Pitsikas, Athina Markou. The metabotropic glutamate 2/3 receptor agonist LY379268 counteracted ketamine-and apomorphine-induced performance deficits in the object recognition task, but not object location task, in rats. Neuropharmacology 2014, 85 , 27-35. https://doi.org/10.1016/j.neuropharm.2014.05.008
    77. Cody J. Wenthur, Ryan D. Morrison, J. Scott Daniels, P. Jeffrey Conn, Craig W. Lindsley. Synthesis and SAR of substituted pyrazolo[1,5-a]quinazolines as dual mGlu2/mGlu3 NAMs. Bioorganic & Medicinal Chemistry Letters 2014, 24 (12) , 2693-2698. https://doi.org/10.1016/j.bmcl.2014.04.051
    78. Lucyna Pomierny-Chamioło, Kinga Rup, Bartosz Pomierny, Ewa Niedzielska, Peter W. Kalivas, Małgorzata Filip. Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacology & Therapeutics 2014, 142 (3) , 281-305. https://doi.org/10.1016/j.pharmthera.2013.12.012
    79. Hamdi Rmedi, Ahmed Baklouti. A new approach for the synthesis of N-sulfonyl hydantoins. Tetrahedron Letters 2014, 55 (26) , 3585-3587. https://doi.org/10.1016/j.tetlet.2014.04.110
    80. Rodney A. Fernandes, Asim K. Chowdhury, Pullaiah Kattanguru. The Orthoester Johnson–Claisen Rearrangement in the Synthesis of Bioactive Molecules, Natural Products, and Synthetic Intermediates – Recent Advances. European Journal of Organic Chemistry 2014, 2014 (14) , 2833-2871. https://doi.org/10.1002/ejoc.201301033
    81. Nikolaos Pitsikas. The metabotropic glutamate receptors: Potential drug targets for the treatment of anxiety disorders?. European Journal of Pharmacology 2014, 723 , 181-184. https://doi.org/10.1016/j.ejphar.2013.12.019
    82. Catherine Trepanier, Gang Lei, Yu-Feng Xie, John F. MacDonald. Group II metabotropic glutamate receptors modify N-methyl-D-aspartate receptors via Src kinase. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep00926
    83. Javad Safari, Soheila Gandomi-Ravandi, Leila Javadian. Microwave-Promoted Facile and Rapid Synthesis Procedure for the Efficient Synthesis of 5,5-Disubstituted Hydantoins. Synthetic Communications 2013, 43 (23) , 3115-3120. https://doi.org/10.1080/00397911.2012.730647
    84. Stephen P.H. Alexander, Helen E. Benson, Elena Faccenda, Adam J. Pawson, Joanna L. Sharman, Michael Spedding, John A. Peters, Anthony J. Harmar, . The Concise Guide to PHARMACOLOGY 2013/14: G Protein‐Coupled Receptors. British Journal of Pharmacology 2013, 170 (8) , 1459-1581. https://doi.org/10.1111/bph.12445
    85. M. M. Menezes, M. A. Santini, M. J. Benvenga, G. J. Marek, K. M. Merchant, J. D. Mikkelsen, K. A. Svensson. The mGlu2/3 Receptor Agonists LY354740 and LY379268 Differentially Regulate Restraint-Stress-Induced Expression of c-Fos in Rat Cerebral Cortex. Neuroscience Journal 2013, 2013 , 1-8. https://doi.org/10.1155/2013/736439
    86. Vishu Mehra, Vipan Kumar. Facile diastereoselective synthesis of functionally enriched hydantoins via base-promoted intramolecular amidolysis of C-3 functionalized azetidin-2-ones. Tetrahedron Letters 2013, 54 (45) , 6041-6044. https://doi.org/10.1016/j.tetlet.2013.08.101
    87. Martijn Risseeuw, Mark Overhand, George W. J. Fleet, Michela I. Simone. A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues. Amino Acids 2013, 45 (4) , 613-689. https://doi.org/10.1007/s00726-013-1521-1
    88. Jordan T. Crawford, David C.S. Roberts, Thomas J.R. Beveridge. The group II metabotropic glutamate receptor agonist, LY379268, decreases methamphetamine self-administration in rats. Drug and Alcohol Dependence 2013, 132 (3) , 414-419. https://doi.org/10.1016/j.drugalcdep.2013.07.024
    89. Christopher L. Cioffi. Modulation of NMDA receptor function as a treatment for schizophrenia. Bioorganic & Medicinal Chemistry Letters 2013, 23 (18) , 5034-5044. https://doi.org/10.1016/j.bmcl.2013.07.019
    90. Vasilios Grivas, Athina Markou, Nikolaos Pitsikas. The metabotropic glutamate 2/3 receptor agonist LY379268 induces anxiety-like behavior at the highest dose tested in two rat models of anxiety. European Journal of Pharmacology 2013, 715 (1-3) , 105-110. https://doi.org/10.1016/j.ejphar.2013.05.048
    91. Joanna M. Wierońska, Francine C. Acher, Anna Sławińska, Piotr Gruca, Magdalena Łasoń-Tyburkiewicz, Mariusz Papp, Andrzej Pilc. The antipsychotic-like effects of the mGlu group III orthosteric agonist, LSP1-2111, involves 5-HT1A signalling. Psychopharmacology 2013, 227 (4) , 711-725. https://doi.org/10.1007/s00213-013-3005-0
    92. Scott A. Schobel, Nashid H. Chaudhury, Usman A. Khan, Beatriz Paniagua, Martin A. Styner, Iris Asllani, Benjamin P. Inbar, Cheryl M. Corcoran, Jeffrey A. Lieberman, Holly Moore, Scott A. Small. Imaging Patients with Psychosis and a Mouse Model Establishes a Spreading Pattern of Hippocampal Dysfunction and Implicates Glutamate as a Driver. Neuron 2013, 78 (1) , 81-93. https://doi.org/10.1016/j.neuron.2013.02.011
    93. Rebecca A. Wright, Bryan G. Johnson, Ce Zhang, Craig Salhoff, Ann E. Kingston, David O. Calligaro, James A. Monn, Darryle D. Schoepp, Gerard J. Marek. CNS distribution of metabotropic glutamate 2 and 3 receptors: Transgenic mice and [3H]LY459477 autoradiography. Neuropharmacology 2013, 66 , 89-98. https://doi.org/10.1016/j.neuropharm.2012.01.019
    94. Lydia Hanna, Laura Ceolin, Sarah Lucas, James Monn, Bryan Johnson, Graham Collingridge, Zuner Bortolotto, David Lodge. Differentiating the roles of mGlu2 and mGlu3 receptors using LY541850, an mGlu2 agonist/mGlu3 antagonist. Neuropharmacology 2013, 66 , 114-121. https://doi.org/10.1016/j.neuropharm.2012.02.023
    95. Daniela Durand, Lila Carniglia, Carla Caruso, Mercedes Lasaga. mGlu3 receptor and astrocytes: Partners in neuroprotection. Neuropharmacology 2013, 66 , 1-11. https://doi.org/10.1016/j.neuropharm.2012.04.009
    96. Xia Li, Amanda Higley, Rui Song, Zheng-Xiong Xi. Effects of metabotropic glutamate receptor ligands on male sexual behavior in rats. Neuropharmacology 2013, 66 , 373-381. https://doi.org/10.1016/j.neuropharm.2012.08.006
    97. Karolina J. Janczura, Rafal T. Olszewski, Tomasz Bzdega, Dean J. Bacich, Warren D. Heston, Joseph H. Neale. NAAG peptidase inhibitors and deletion of NAAG peptidase gene enhance memory in novel object recognition test. European Journal of Pharmacology 2013, 701 (1-3) , 27-32. https://doi.org/10.1016/j.ejphar.2012.11.027
    98. Yuji Odagaki, Masakazu Kinoshita, Ryoichi Toyoshima. Group II metabotropic glutamate receptor-mediated activation of G-proteins in rat hippocampal and striatal membranes. Neuroscience Letters 2013, 539 , 22-26. https://doi.org/10.1016/j.neulet.2013.01.033
    99. Sophie J. Bradley, R.A. John Challiss. G protein-coupled receptor signalling in astrocytes in health and disease: A focus on metabotropic glutamate receptors. Biochemical Pharmacology 2012, 84 (3) , 249-259. https://doi.org/10.1016/j.bcp.2012.04.009
    100. Erin R. Hascup, Kevin N. Hascup, Francois Pomerleau, Peter Huettl, Eva Hajos‐Korcsok, Jan Kehr, Greg A. Gerhardt. An allosteric modulator of metabotropic glutamate receptors (mGluR 2 ), (+)‐TFMPIP, inhibits restraint stress‐induced phasic glutamate release in rat prefrontal cortex. Journal of Neurochemistry 2012, 122 (3) , 619-627. https://doi.org/10.1111/j.1471-4159.2012.07784.x
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect