ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Synthesis and Structure−Activity Relationships of Phenylenebis(methylene)- Linked Bis-azamacrocycles That Inhibit HIV-1 and HIV-2 Replication by Antagonism of the Chemokine Receptor CXCR4

View Author Information
AnorMED Inc., 200-20353 64th Avenue, Langley, British Columbia V2Y 1N5, Canada, Johnson Matthey Pharmaceutical Research, 1401 King Road, West Chester, Pennsylvania 19380, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
Cite this: J. Med. Chem. 1999, 42, 19, 3971–3981
Publication Date (Web):August 26, 1999
https://doi.org/10.1021/jm990211i
Copyright © 1999 American Chemical Society

    Article Views

    1511

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (425 KB)

    Abstract

    Abstract Image

    Bis-tetraazamacrocycles such as the bicyclam AMD3100 are a class of potent and selective anti-HIV-1 and HIV-2 agents that inhibit virus replication by binding to the chemokine receptor CXCR4, the co-receptor for entry of X4 viruses. With the aim of optimizing the anti-HIV-1 and HIV-2 activity of bis-azamacrocycles, a series of analogues were synthesized which contain neutral heteroatom (oxygen, sulfur) or heteroaromatic (of lower pKa than a secondary amine) replacements for the amino groups of AMD3100. The introduction of one or more heteroatoms such as oxygen or sulfur into the macrocyclic ring of p-phenylenebis(methylene)-linked dimers (to give N3X or N2X2 bis-macrocycles) gave analogues with substantially reduced anti-HIV-1 (IIIB) and anti-HIV-2 (ROD) potency. In addition, the bis-sulfur analogue was also markedly more cytotoxic to MT-4 cells. However, bis-tetraazamacrocycles featuring a single pyridine group incorporated within the macrocyclic framework exhibited anti-HIV-1 and HIV-2 potency comparable to that of their saturated, aliphatic counterparts. The p-phenylenebis(methylene)-linked dimer of the py[14]aneN4 macrocycle inhibited HIV-1 replication at a 50% effective concentration (EC50) of 0.5 μM while remaining nontoxic to MT-4 cells at concentrations approaching 200 μM. A series of analogues containing macrocyclic heteroaromatic groups of varying pKa were also synthesized, and their ability to inhibit HIV replication was evaluated. Replacing the pyridine moiety of the py[14]aneN4 macrocyclic ring with pyrazine or pyridine groups substituted in the 4-position (with electron-withdrawing or -donating groups) either reduced antiviral potency or increased cytotoxicity to MT-4 cells. Finally, we synthesized a series of analogues in which the ring size of the bis-pyridyl macrocycles was varied between 12 and 16 members per ring including the py[iso-14]aneN4 ring system, an isomer of the py[14]aneN4 macrocycle. The p-phenylenebis(methylene)-linked dimer of the py[iso-14]aneN4 (AMD3329) displayed the highest antiviral activity of the bis-azamacrocyclic analogues reported to date, exhibiting EC50's against the cytopathic effects of HIV-1 and HIV-2 replication of 0.8 and 1.6 nM, respectively, that is, about 3−5-fold lower than the EC50 of AMD3100. AMD3329 also inhibited the binding of a specific CXCR4 mAb and the Ca2+ flux induced by SDF-1α, the natural ligand for CXCR4, more potently than AMD3100. Furthermore, AMD3329 also interfered with virus-induced syncytium formation at an EC50 of 12 nM.

    *

     To whom correspondence should be addressed. Tel:  (604)-532-4652. Fax:  (604)-530-0976. E-mail:  [email protected].

     AnorMED Inc.

     Johnson Matthey Pharmaceutical Research.

    §

     Rega Institute for Medical Research.

    Cited By

    This article is cited by 93 publications.

    1. Ian S. Taschner, Tia L. Walker, Hunter S. DeHaan, Briana R. Schrage, Christopher J. Ziegler, Michael J. Taschner. Synthesis, Characterization, and Copper(II) Chelates of 1,11-Dithia-4,8-diazacyclotetradecane. The Journal of Organic Chemistry 2019, 84 (17) , 11091-11102. https://doi.org/10.1021/acs.joc.9b01682
    2. Rameez Ali, Sreenivasa Anugu, Reena Chawla, Violeta G. Demillo, Florian Goulinet-Mateo, Sagar Gyawali, Sunil Hamal, Dylan E. Jones, Katrin Lamprecht, Truc Le, Liezel A. Lumangtad, Nicholas C. Pflug, Alekhya Sama, Emily D. Scarbrough, Thomas W. Bell. Tsuji–Trost Cyclization of Disulfonamides: Synthesis of 12-Membered, 11-Membered, and Pyridine-Fused Macrocyclic Triamines. ACS Omega 2019, 4 (1) , 1254-1264. https://doi.org/10.1021/acsomega.8b02555
    3. Arnaud S. Karaboga, Jesús M. Planesas, Florent Petronin, Jordi Teixidó, Michel Souchet, and Violeta I. Pérez-Nueno . Highly SpecIfic and Sensitive Pharmacophore Model for Identifying CXCR4 Antagonists. Comparison with Docking and Shape-Matching Virtual Screening Performance. Journal of Chemical Information and Modeling 2013, 53 (5) , 1043-1056. https://doi.org/10.1021/ci400037y
    4. Renato T. Skerlj, Gary J. Bridger, Al Kaller, Ernest J. McEachern, Jason B. Crawford, Yuanxi Zhou, Bem Atsma, Jonathon Langille, Susan Nan, Duane Veale, Trevor Wilson, Curtis Harwig, Sigrid Hatse, Katrien Princen, Erik De Clercq and Dominique Schols . Discovery of Novel Small Molecule Orally Bioavailable C−X−C Chemokine Receptor 4 Antagonists That Are Potent Inhibitors of T-Tropic (X4) HIV-1 Replication. Journal of Medicinal Chemistry 2010, 53 (8) , 3376-3388. https://doi.org/10.1021/jm100073m
    5. Gary J. Bridger, Renato T. Skerlj, Pedro E. Hernandez-Abad, David E. Bogucki, Zhongren Wang, Yuanxi Zhou, Susan Nan, Eva M. Boehringer, Trevor Wilson, Jason Crawford, Markus Metz, Sigrid Hatse, Katrien Princen, Erik De Clercq and Dominique Schols . Synthesis and Structure−Activity Relationships of Azamacrocyclic C-X-C Chemokine Receptor 4 Antagonists: Analogues Containing a Single Azamacrocyclic Ring are Potent Inhibitors of T-Cell Tropic (X4) HIV-1 Replication. Journal of Medicinal Chemistry 2010, 53 (3) , 1250-1260. https://doi.org/10.1021/jm901530b
    6. Violeta I. Pérez-Nueno, Sofia Pettersson, David W. Ritchie, José I. Borrell and Jordi Teixidó . Discovery of Novel HIV Entry Inhibitors for the CXCR4 Receptor by Prospective Virtual Screening. Journal of Chemical Information and Modeling 2009, 49 (4) , 810-823. https://doi.org/10.1021/ci800468q
    7. Gebhard Thoma, Markus B. Streiff, Jiri Kovarik, Fraser Glickman, Trixie Wagner, Christian Beerli and Hans-Günter Zerwes. Orally Bioavailable Isothioureas Block Function of the Chemokine Receptor CXCR4 In Vitro and In Vivo. Journal of Medicinal Chemistry 2008, 51 (24) , 7915-7920. https://doi.org/10.1021/jm801065q
    8. Violeta I. Pérez-Nueno, David W. Ritchie, Jose I. Borrell and Jordi Teixidó . Clustering and Classifying Diverse HIV Entry Inhibitors Using a Novel Consensus Shape-Based Virtual Screening Approach: Further Evidence for Multiple Binding Sites within the CCR5 Extracellular Pocket. Journal of Chemical Information and Modeling 2008, 48 (11) , 2146-2165. https://doi.org/10.1021/ci800257x
    9. Violeta I. Pérez-Nueno,, David W. Ritchie,, Obdulia Rabal,, Rosalia Pascual,, Jose I. Borrell, and, Jordi Teixidó. Comparison of Ligand-Based and Receptor-Based Virtual Screening of HIV Entry Inhibitors for the CXCR4 and CCR5 Receptors Using 3D Ligand Shape Matching and Ligand−Receptor Docking. Journal of Chemical Information and Modeling 2008, 48 (3) , 509-533. https://doi.org/10.1021/ci700415g
    10. Abel Tamayo,, Jaume Casabó,, Lluis Escriche,, Carlos Lodeiro,, Berta Covelo,, Carlos D. Brondino,, Raikko Kivekäs, and, Reijo Sillampää. Color Tuning of a Nickel Complex with a Novel N2S2 Pyridine-Containing Macrocyclic Ligand. Inorganic Chemistry 2006, 45 (3) , 1140-1149. https://doi.org/10.1021/ic051574d
    11. Takeharu Haino,, Youko Matsumoto, and, Yoshimasa Fukazawa. Supramolecular Nano Networks Formed by Molecular-Recognition-Directed Self-Assembly of Ditopic Calix[5]arene and Dumbbell [60]Fullerene. Journal of the American Chemical Society 2005, 127 (25) , 8936-8937. https://doi.org/10.1021/ja0524088
    12. Shin Aoki, , Eiichi Kimura. Zinc−Nucleic Acid Interaction. Chemical Reviews 2004, 104 (2) , 769-788. https://doi.org/10.1021/cr020617u
    13. Massimiliano Arca,, Andrea Bencini,, Emanuela Berni,, Claudia Caltagirone,, Francesco A. Devillanova,, Francesco Isaia,, Alessandra Garau,, Claudia Giorgi,, Vito Lippolis,, Alessandro Perra,, Lorenzo Tei, and, Barbara Valtancoli. Coordination Properties of New Bis(1,4,7-triazacyclononane) Ligands:  A Highly Active Dizinc Complex in Phosphate Diester Hydrolysis. Inorganic Chemistry 2003, 42 (21) , 6929-6939. https://doi.org/10.1021/ic034050r
    14. Zhongli Gao and, William A. Metz. Unraveling the Chemistry of Chemokine Receptor Ligands. Chemical Reviews 2003, 103 (9) , 3733-3752. https://doi.org/10.1021/cr020474b
    15. Louis S. Hegedus,, Michael J. Sundermann, and, Peter K. Dorhout. Synthesis, Complexation, and Coordination Oligomerization of 1,8-Pyrazine-Capped 5,12-Dioxocyclams. Inorganic Chemistry 2003, 42 (14) , 4346-4354. https://doi.org/10.1021/ic030090j
    16. Lars Ole Gerlach,, Janus S. Jakobsen,, Kasper P. Jensen,, Mette R. Rosenkilde,, Renato T. Skerlj,, Ulf Ryde,, Gary J. Bridger, and, Thue W. Schwartz. Metal Ion Enhanced Binding of AMD3100 to Asp262 in the CXCR4 Receptor. Biochemistry 2003, 42 (3) , 710-717. https://doi.org/10.1021/bi0264770
    17. Xiangyang Liang,, John A. Parkinson,, Michael Weishäupl,, Robert O. Gould,, Stephen J. Paisey,, Hye-seo Park,, Tina M. Hunter,, Claudia A. Blindauer,, Simon Parsons, and, Peter J. Sadler. Structure and Dynamics of Metallomacrocycles:  Recognition of Zinc Xylyl-Bicyclam by an HIV Coreceptor. Journal of the American Chemical Society 2002, 124 (31) , 9105-9112. https://doi.org/10.1021/ja0260723
    18. Renato T. Skerlj,, Yuanxi Zhou,, Trevor Wilson, and, Gary J. Bridger. Palladium(0)-Catalyzed Coupling of Organozinc Iodide Reagents with Bromopyridines:  Synthesis of Selectively Protected Pyridine-Containing Azamacrocycles. The Journal of Organic Chemistry 2002, 67 (4) , 1407-1410. https://doi.org/10.1021/jo0109523
    19. David J. Fox,, Jill Reckless,, Stuart G. Warren, and, David J. Grainger. Design, Synthesis, and Preliminary Pharmacological Evaluation of N-Acyl-3-aminoglutarimides as Broad-Spectrum Chemokine Inhibitors in Vitro and Anti-inflammatory Agents in Vivo. Journal of Medicinal Chemistry 2002, 45 (2) , 360-370. https://doi.org/10.1021/jm010984i
    20. Emiko Kikuta,, Shin Aoki, and, Eiichi Kimura. A New Type of Potent Inhibitors of HIV-1 TAR RNA−Tat Peptide Binding by Zinc(II)−Macrocyclic Tetraamine Complexes. Journal of the American Chemical Society 2001, 123 (32) , 7911-7912. https://doi.org/10.1021/ja0108335
    21. Shin Aoki and, Eiichi Kimura. Highly Selective Recognition of Thymidine Mono- and Diphosphate Nucleotides in Aqueous Solution by Ditopic Receptors Zinc(II)−Bis(cyclen) Complexes (Cyclen = 1,4,7,10-Tetraazacyclododecane). Journal of the American Chemical Society 2000, 122 (19) , 4542-4548. https://doi.org/10.1021/ja994537s
    22. Liezel A. Lumangtad, Elisa Claeys, Sunil Hamal, Amarawan Intasiri, Courtney Basrai, Expedite Yen-Pon, Davison Beenfeldt, Kurt Vermeire, Thomas W. Bell. Syntheses and anti-HIV and human cluster of differentiation 4 (CD4) down-modulating potencies of pyridine-fused cyclotriazadisulfonamide (CADA) compounds. Bioorganic & Medicinal Chemistry 2020, 28 (24) , 115816. https://doi.org/10.1016/j.bmc.2020.115816
    23. Yoon Hyeun Oum, Steven A. Kell, Younghyoun Yoon, Zhongxing Liang, Pieter Burger, Hyunsuk Shim. Discovery of novel aminopiperidinyl amide CXCR4 modulators through virtual screening and rational drug design. European Journal of Medicinal Chemistry 2020, 201 , 112479. https://doi.org/10.1016/j.ejmech.2020.112479
    24. Anastasia D. Zubenko, Olga A. Fedorova. Aromatic and heteroaromatic azacrown compounds: advantages and disadvantages of rigid macrocyclic ligands. Russian Chemical Reviews 2020, 89 (7) , 750-786. https://doi.org/10.1070/RCR4913
    25. Pauline Lejault, Katerina Duskova, Claire Bernhard, Ibai E. Valverde, Anthony Romieu, David Monchaud. The Scope of Application of Macrocyclic Polyamines Beyond Metal Chelation. European Journal of Organic Chemistry 2019, 2019 (36) , 6146-6157. https://doi.org/10.1002/ejoc.201900870
    26. Lun Kelvin Tsou, Ying‐Huey Huang, Jen‐Shin Song, Yi‐Yu Ke, Jing‐Kai Huang, Kak‐Shan Shia. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Medicinal Research Reviews 2018, 38 (4) , 1188-1234. https://doi.org/10.1002/med.21464
    27. Fatemeh Ghasemi, Khaled Ghasemi, Ali Reza Rezvani, Ardeshir Shokrollahi, Masoud Refahi, Santiago García-Granda, Rafael Mendoza-Meroño. A novel salt of antidiabetic drug metformin resulting from a proton transfer reaction: Synthesis, characterization, crystal structure and solution studies. Journal of Molecular Structure 2017, 1131 , 30-35. https://doi.org/10.1016/j.molstruc.2016.11.011
    28. Hatice Vural, İbrahim Uçar. A mixed experimental and theoretical study on chelidamate copper(II) complex with 4-methylpyrimidine. Journal of Coordination Chemistry 2016, 69 (20) , 3010-3020. https://doi.org/10.1080/00958972.2016.1225042
    29. Heng Zhang, Dongwei Kang, Boshi Huang, Na Liu, Fabao Zhao, Peng Zhan, Xinyong Liu. Discovery of non-peptide small molecular CXCR4 antagonists as anti-HIV agents: Recent advances and future opportunities. European Journal of Medicinal Chemistry 2016, 114 , 65-78. https://doi.org/10.1016/j.ejmech.2016.02.051
    30. Roxana-Maria Amarandi, Gertrud Malene Hjortø, Mette Marie Rosenkilde, Stefanie Karlshøj. Probing Biased Signaling in Chemokine Receptors. 2016, 155-186. https://doi.org/10.1016/bs.mie.2015.09.001
    31. Fatemeh Ghasemi, Khaled Ghasemi, Ali Reza Rezvani, Claudia Graiff. Piperazine as counter ion for insulin-enhancing anions [VO2(dipic-OH)]−: Synthesis, characterization and X-ray crystal structure. Journal of Molecular Structure 2016, 1103 , 20-24. https://doi.org/10.1016/j.molstruc.2015.09.005
    32. H. Vural, İ. Uçar, M.S. Soylu. Combined experimental–theoretical characterization of chelidamate nickel complex with 4-methylpyrimidine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2016, 152 , 584-590. https://doi.org/10.1016/j.saa.2014.12.118
    33. İbrahim Uçar, Hatice Vural, Ebru Küçük. Two new chelidamate complexes with the 4-methoxypyridine: A combined theoretical and experimental study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 151 , 667-672. https://doi.org/10.1016/j.saa.2015.07.023
    34. Sophie Poty, Pauline Désogère, Christine Goze, Frédéric Boschetti, Thomas D‘huys, Dominique Schols, Christopher Cawthorne, Stephen J. Archibald, Helmut R. Maëcke, Franck Denat. New AMD3100 derivatives for CXCR4 chemokine receptor targeted molecular imaging studies: synthesis, anti-HIV-1 evaluation and binding affinities. Dalton Transactions 2015, 44 (11) , 5004-5016. https://doi.org/10.1039/C4DT02972K
    35. Anne Steen, Olav Larsen, Stefanie Thiele, Mette M. Rosenkilde. Biased and G Protein-Independent Signaling of Chemokine Receptors. Frontiers in Immunology 2014, 5 https://doi.org/10.3389/fimmu.2014.00277
    36. Fangfang Deng, Meihong Xie, Xiaoyun Zhang, Peizhen Li, Yueli Tian, Honglin Zhai, Yang Li. Combined molecular docking, molecular dynamics simulation and quantitative structure–activity relationship study of pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives as potent anti-HIV drugs. Journal of Molecular Structure 2014, 1067 , 1-13. https://doi.org/10.1016/j.molstruc.2014.03.008
    37. Zahra Kalantari Khoramdareh, Seyed Abolfazl Hosseini-Yazdi, Bernhard Spingler, Ali Akbar Khandar. Copper(II) and zinc(II) complexes of mono- and tri-linked azacrown macrocycles: Synthesis, characterization, X-ray structure, phosphodiester hydrolysis and DNA cleavage. Inorganica Chimica Acta 2014, 415 , 7-13. https://doi.org/10.1016/j.ica.2014.02.022
    38. Hatice Vural, İbrahim Uçar, M. Serkan Soylu. An experimental and theoretical approach of spectroscopic and structural properties of a new chelidamate copper (II) complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 122 , 758-766. https://doi.org/10.1016/j.saa.2013.12.027
    39. Paul Ghattas, Joseph W. Carlin, Steven L. Murkli, Danielle L. Jacobs. Solvent-Free Microwave-Assisted Preparation of N -(2-(Pyridin-2-yl)-ethyl)sulfonamides. Synthetic Communications 2014, 44 (4) , 520-529. https://doi.org/10.1080/00397911.2013.819437
    40. Hossein Eshtiagh-Hosseini, Masoud Mirzaei, Sara Zarghami, Antonio Bauzá, Antonio Frontera, Joel T. Mague, Morteza Habibi, Mojtaba Shamsipur. Crystal engineering with coordination compounds of 2,6-dicarboxy-4-hydroxypyridine and 9-aminoacridine fragments driven by different nature of the face-to-face π⋯π stacking. CrystEngComm 2014, 16 (7) , 1359-1377. https://doi.org/10.1039/C3CE41730A
    41. Simon P Fricker, Markus Metz. Chemokine receptor modeling: an interdisciplinary approach to drug design. Future Medicinal Chemistry 2014, 6 (1) , 91-114. https://doi.org/10.4155/fmc.13.194
    42. Carla Cruz, Elisa Cairrão, Olga Lourenço, Paulo Almeida, Ignacio Verde, João A. Queiroz. Polyazamacrocycles as Potential Antitumor Agents for Human Prostate Cancer Cells. Chemical Biology & Drug Design 2013, 81 (4) , 517-526. https://doi.org/10.1111/cbdd.12098
    43. Nicholas A. Meanwell, Stanley V. D'Andrea, Christopher W. Cianci, Ira B. Dicker, Kap‐Sun Yeung, Makonen Belema, Mark Krystal. Antiviral Drug Discovery. 2013, 439-515. https://doi.org/10.1002/9781118354483.ch11
    44. Simon P. Fricker. Physiology and Pharmacology of Plerixafor. Transfusion Medicine and Hemotherapy 2013, 40 (4) , 237-245. https://doi.org/10.1159/000354132
    45. Tia L. Walker, Wilhelm Malasi, Swaranjali Bhide, Thomas Parker, Dan Zhang, Abegel Freedman, Jody M. Modarelli, James T. Engle, Christopher J. Ziegler, Paul Custer, Wiley J. Youngs, Michael J. Taschner. Synthesis and characterization of 1,8-dithia-4,11-diazacyclotetradecane. Tetrahedron Letters 2012, 53 (48) , 6548-6551. https://doi.org/10.1016/j.tetlet.2012.09.088
    46. Francisco C. A. Lima, Rommel B. Viana, José W. M. Carneiro, Moacyr Comar, Albérico B. F. da Silva. Metal binding selectivity of oxa-aza macrocyclic ligand: a DFT study of first- and second-row transition metal for four coordination systems. Structural Chemistry 2012, 23 (5) , 1539-1545. https://doi.org/10.1007/s11224-012-9950-0
    47. Jesús M. Planesas, Violeta I. Pérez-Nueno, José I. Borrell, Jordi Teixidó. Impact of the CXCR4 structure on docking-based virtual screening of HIV entry inhibitors. Journal of Molecular Graphics and Modelling 2012, 38 , 123-136. https://doi.org/10.1016/j.jmgm.2012.06.010
    48. Francisco C. A. Lima, Rommel B. Viana, Thais T. da Silva, Solange M. S. V. Wardell, Armando P. Nascimento do Filho, José Walkimar M. Carneiro, Moacyr Comar, Albérico B. F. da Silva. First- and second-row transition metal oxa-aza macrocyclic complexes: a DFT study of an octahedral conformation. Journal of Molecular Modeling 2012, 18 (7) , 3243-3253. https://doi.org/10.1007/s00894-011-1323-x
    49. Amnon Peled, Ori Wald, Jan Burger. Development of novel CXCR4-based therapeutics. Expert Opinion on Investigational Drugs 2012, 21 (3) , 341-353. https://doi.org/10.1517/13543784.2012.656197
    50. Ido D. Weiss, Orit Jacobson, Dale O. Kiesewetter, John P. Jacobus, Lawrence P. Szajek, Xiaoyuan Chen, Joshua M. Farber. Positron Emission Tomography Imaging of Tumors Expressing the Human Chemokine Receptor CXCR4 in Mice with the Use of 64Cu-AMD3100. Molecular Imaging and Biology 2012, 14 (1) , 106-114. https://doi.org/10.1007/s11307-010-0466-y
    51. Thangavel Sathiya Kamatchi, Nataraj Chitrapriya, Hyosun Lee, Chris F. Fronczek, Frank R. Fronczek, Karuppannan Natarajan. Ruthenium(II)/(III) complexes of 4-hydroxy-pyridine-2,6-dicarboxylic acid with PPh3/AsPh3 as co-ligand: Impact of oxidation state and co-ligands on anticancer activity in vitro. Dalton Trans. 2012, 41 (7) , 2066-2077. https://doi.org/10.1039/C1DT11273B
    52. Jacky Pouessel, Carla Bazzicalupi, Andrea Bencini, Hélène Bernard, Claudia Giorgi, Henri Handel, Irene Matera, Nathalie Le Bris, Raphaël Tripier, Barbara Valtancoli. Exploring New Molecular Architectures for Anion Recognition: Synthesis and ATP Binding Properties of New Cyclam‐Based Ditopic Polyammonium Receptors.. Chemistry – An Asian Journal 2011, 6 (6) , 1582-1594. https://doi.org/10.1002/asia.201100046
    53. Violeta I. Pérez‐Nueno, David W. Ritchie. Applying in silico tools to the discovery of novel CXCR4 inhibitors. Drug Development Research 2011, 72 (1) , 95-111. https://doi.org/10.1002/ddr.20406
    54. Nicola J. Farrer, Peter J. Sadler. Medicinal Inorganic Chemistry: State of the Art, New Trends, and a Vision of the Future. 2011, 1-47. https://doi.org/10.1002/9783527633104.ch1
    55. Marco A. C. Neves, Sérgio Simões, M. Luisa Sá e Melo. Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach. Journal of Computer-Aided Molecular Design 2010, 24 (12) , 1023-1033. https://doi.org/10.1007/s10822-010-9393-x
    56. Zohreh Derikvand, Gholam Reza Talei, Hossein Aghabozorg, Marilyn M. Olmstead, Azadeh Azadbakht, Andya Nemati, Jafar Attar Gharamaleki. Synthesis, Crystal Structure, Spectroscopic, Electrochemical and Antimicrobial Properties of Cu(II) Complex with the Mixed Ligands of 2,9‐Dimethyl‐1,10‐phenanthroline and 4‐Hydroxypyridine‐2,6‐dicarboxylic Acid. Chinese Journal of Chemistry 2010, 28 (11) , 2167-2173. https://doi.org/10.1002/cjoc.201090358
    57. Jonathan Toma, Jeannette M Whitcomb, Christos J Petropoulos, Wei Huang. Dual-tropic HIV type 1 isolates vary dramatically in their utilization of CCR5 and CXCR4 coreceptors. AIDS 2010, 24 (14) , 2181-2186. https://doi.org/10.1097/QAD.0b013e32833c543f
    58. Erik De Clercq, Piet Herdewijn. Strategies in the Design of Antiviral Drugs. 2010, 1-56. https://doi.org/10.1002/9780470571224.pse026
    59. Orit Jacobson, Ido D. Weiss, Lawrence Szajek, Joshua M. Farber, Dale O. Kiesewetter. 64Cu-AMD3100—A novel imaging agent for targeting chemokine receptor CXCR4. Bioorganic & Medicinal Chemistry 2009, 17 (4) , 1486-1493. https://doi.org/10.1016/j.bmc.2009.01.014
    60. Jian-Ping Zou, Guo-Wei Zhou, Xing Zhang, Ming-Sheng Wang, Ying-Bing Lu, Wei-Wei Zhou, Zhang-Jing Zhang, Guo-Cong Guo, Jin-Shun Huang. A novel heterometal–organic coordination polymer with chelidamic acid: nonlinear optical and magnetic properties,. CrystEngComm 2009, 11 (6) , 972. https://doi.org/10.1039/b900727j
    61. Cara A Mosley, Lawrence J Wilson, John M Wiseman, Jason W Skudlarek, Dennis C Liotta. Recent patents regarding the discovery of small molecule CXCR 4 antagonists. Expert Opinion on Therapeutic Patents 2009, 19 (1) , 23-38. https://doi.org/10.1517/13543770802553483
    62. Signe Fransen, Gary Bridger, Jeannette M. Whitcomb, Jonathan Toma, Eric Stawiski, Neil Parkin, Christos J. Petropoulos, Wei Huang. Suppression of Dualtropic Human Immunodeficiency Virus Type 1 by the CXCR4 Antagonist AMD3100 Is Associated with Efficiency of CXCR4 Use and Baseline Virus Composition. Antimicrobial Agents and Chemotherapy 2008, 52 (7) , 2608-2615. https://doi.org/10.1128/AAC.01226-07
    63. Sean P. Troth, Alan D. Dean, Edward A. Hoover. In vivo CXCR4 expression, lymphoid cell phenotype, and feline immunodeficiency virus infection. Veterinary Immunology and Immunopathology 2008, 123 (1-2) , 97-105. https://doi.org/10.1016/j.vetimm.2008.01.015
    64. P. Hermann, J. Kotek. Ten-membered Rings or Larger with One or More Nitrogen Atoms. 2008, 613-666. https://doi.org/10.1016/B978-008044992-0.01228-1
    65. Mette M. Rosenkilde, Lars-Ole Gerlach, Sigrid Hatse, Renato T. Skerlj, Dominique Schols, Gary J. Bridger, Thue W. Schwartz. Molecular Mechanism of Action of Monocyclam Versus Bicyclam Non-peptide Antagonists in the CXCR4 Chemokine Receptor. Journal of Biological Chemistry 2007, 282 (37) , 27354-27365. https://doi.org/10.1074/jbc.M704739200
    66. Lihua Yang, Erin Jackson, B. Mark Woerner, Arie Perry, David Piwnica-Worms, Joshua B. Rubin. Blocking CXCR4-Mediated Cyclic AMP Suppression Inhibits Brain Tumor Growth In vivo. Cancer Research 2007, 67 (2) , 651-658. https://doi.org/10.1158/0008-5472.CAN-06-2762
    67. Dominique Schols. HIV co-receptor inhibitors as novel class of anti-HIV drugs. Antiviral Research 2006, 71 (2-3) , 216-226. https://doi.org/10.1016/j.antiviral.2006.04.009
    68. Dominique Schols. HIV coreceptor CXCR4 antagonists. Current Opinion in HIV and AIDS 2006, 1 (5) , 361-366. https://doi.org/10.1097/01.COH.0000239847.13205.ce
    69. Guo-Wei Zhou, You-Zhao Lan, Fa-Kun Zheng, Xin Zhang, Meng-Hai Lin, Guo-Cong Guo, Jin-Shun Huang. [Zn(C7H3O5N)]n·nH2O: A third-order NLO Zn coordination polymer with spiroconjugated structure. Chemical Physics Letters 2006, 426 (4-6) , 341-344. https://doi.org/10.1016/j.cplett.2006.06.034
    70. Sigrid Hatse, Katrien Princen, Erik De Clercq, Mette M. Rosenkilde, Thue W. Schwartz, Pedro E. Hernandez-Abad, Renato T. Skerlj, Gary J. Bridger, Dominique Schols. AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor. Biochemical Pharmacology 2005, 70 (5) , 752-761. https://doi.org/10.1016/j.bcp.2005.05.035
    71. Martalena Rami, Ying Dong, Leonard F. Lindoy, Suzanne V. Smith, J.Gerald Wilson. Synthesis of one-, two- and three-ring macrocyclic, bifunctional compounds for use in radiolabelling monoclonal antibodies. Journal of Heterocyclic Chemistry 2005, 42 (1) , 77-83. https://doi.org/10.1002/jhet.5570420111
    72. L.I. Belen'kii. Alkylnitrogen Compounds: Compounds with NN, NP, NAs, NSb, NBi, NSi, NGe, NB, and NMetal Functional Groups. 2005, 343-381. https://doi.org/10.1016/B0-08-044655-8/00029-5
    73. Katrien Princen, Sigrid Hatse, Kurt Vermeire, Stefano Aquaro, Erik De Clercq, Lars-Ole Gerlach, Mette Rosenkilde, Thue W. Schwartz, Renato Skerlj, Gary Bridger, Dominique Schols. Inhibition of Human Immunodeficiency Virus Replication by a Dual CCR5/CXCR4 Antagonist. Journal of Virology 2004, 78 (23) , 12996-13006. https://doi.org/10.1128/JVI.78.23.12996-13006.2004
    74. Qian Zhao, Yuxian He, Gabriel Alespeiti, Asim Kumar Debnath. A novel assay to identify entry inhibitors that block binding of HIV-1 gp120 to CCR5. Virology 2004, 326 (2) , 299-309. https://doi.org/10.1016/j.virol.2004.06.022
    75. . 3-D Hydrogen-Bonded Frameworks of Two Metal Complexes with Chelidamic Acid: Syntheses, Structures and Magnetism. Bulletin of the Korean Chemical Society 2004, 676-680. https://doi.org/10.5012/bkcs.2004.25.5.676
    76. David J. Grainger, Jill Reckless. Broad-spectrum chemokine inhibitors (BSCIs) and their anti-inflammatory effects in vivo. Biochemical Pharmacology 2003, 65 (7) , 1027-1034. https://doi.org/10.1016/S0006-2952(02)01626-X
    77. Jian Gao, Joseph H Reibenspies, Arthur E Martell. Synthesis and DNA binding properties of a cationic 2,2′:6′,2″-terpyridine cobalt(II) complex containing an oligopeptide. Journal of Inorganic Biochemistry 2003, 94 (3) , 272-278. https://doi.org/10.1016/S0162-0134(03)00008-4
    78. Maria Elena Fuentes, Tara Mirzadegan, Robert S. Wilhelm. Chemokine and Cytokine Modulators. 2003, 119-192. https://doi.org/10.1002/0471266949.bmc062
    79. Jean-Marie Contreras, Jean-Jacques Bourguignon. IDENTICAL AND NON-IDENTICAL TWIN DRUGS. 2003, 251-273. https://doi.org/10.1016/B978-012744481-9/50020-9
    80. Erik De Clercq. New Anti-HIV Agents in Preclinical or Clinical Development. 2003, 1-62. https://doi.org/10.1016/S1075-8593(03)04001-2
    81. Erik De Clercq. New anti‐HIV agents and targets. Medicinal Research Reviews 2002, 22 (6) , 531-565. https://doi.org/10.1002/med.10021
    82. Sherry M. Owen, Donna Rudolph, Dominique Schols, Nobutaka Fujii, Naoki Yamamoto, Renu B. Lal. Susceptibility of diverse primary HIV isolates with varying co‐receptor specificity's to CXCR4 antagonistic compounds. Journal of Medical Virology 2002, 68 (2) , 147-155. https://doi.org/10.1002/jmv.10191
    83. Renato T. Skerlj, Siqiao Nan, Yuanxi Zhou, Gary J. Bridger. Facile synthesis of a selectively protected triazamacrocycle. Tetrahedron Letters 2002, 43 (42) , 7569-7571. https://doi.org/10.1016/S0040-4039(02)01756-2
    84. Livia Pedroza-Martins, W. John Boscardin, Deborah J. Anisman-Posner, Dominique Schols, Yvonne J. Bryson, Christel H. Uittenbogaart. Impact of Cytokines on Replication in the Thymus of Primary Human Immunodeficiency Virus Type 1 Isolates from Infants. Journal of Virology 2002, 76 (14) , 6929-6943. https://doi.org/10.1128/JVI.76.14.6929-6943.2002
    85. Venu Gangur, Neil P. Birmingham, Sirinart Thanesvorakul. Chemokines in health and disease. Veterinary Immunology and Immunopathology 2002, 86 (3-4) , 127-136. https://doi.org/10.1016/S0165-2427(02)00018-1
    86. Erik De Clercq. New developments in anti-HIV chemotherapy. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2002, 1587 (2-3) , 258-275. https://doi.org/10.1016/S0925-4439(02)00089-3
    87. Matthias K. Schwarz, Timothy N. C. Wells. New therapeutics that modulate chemokine networks. Nature Reviews Drug Discovery 2002, 1 (5) , 347-358. https://doi.org/10.1038/nrd795
    88. Shin Aoki, Eiichi Kimura. Recent progress in artificial receptors for phosphate anions in aqueous solution. Reviews in Molecular Biotechnology 2002, 90 (2) , 129-155. https://doi.org/10.1016/S1389-0352(01)00070-8
    89. Jill Reckless, Lauren M. Tatalick, David J. Grainger. The pan‐chemokine inhibitor NR58‐3.14.3 abolishes tumour necrosis factor‐α accumulation and leucocyte recruitment induced by lipopolysaccharide in vivo. Immunology 2001, 103 (2) , 244-254. https://doi.org/10.1046/j.1365-2567.2001.01228.x
    90. Lokesh Agrawal, Ghalib Alkhatib. Chemokine receptors: emerging opportunities for new anti-HIV therapies. Expert Opinion on Therapeutic Targets 2001, 5 (3) , 303-326. https://doi.org/10.1517/14728222.5.3.303
    91. Erik De Clercq. New developments in anti-HIV chemotherapy. Il Farmaco 2001, 56 (1-2) , 3-12. https://doi.org/10.1016/S0014-827X(01)01007-2
    92. David H. McDermott, Philip M. Murphy. Chemokines and their receptors in infectious disease. Springer Seminars in Immunopathology 2000, 22 (4) , 393-415. https://doi.org/10.1007/s002810000052
    93. Jim A Turpin, OM Zack Howard. Inhibitors of HIV cellular fusion. Expert Opinion on Therapeutic Patents 2000, 10 (12) , 1899-1909. https://doi.org/10.1517/13543776.10.12.1899

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect