ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Reverse Aromatic Cope Rearrangement of 2-Allyl-3-alkylideneindolines Driven by Olefination of 2-Allylindolin-3-ones:  Synthesis of α-Allyl-3-indole Acetate Derivatives

View Author Information
Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8688, Japan, and Kissei Pharmaceutical Co., Ltd., Discovery Research, R & D, 4365-1, Kashiwabara, Hotaka, Minamiazumi, Nagano 399-8304, Japan
Cite this: J. Org. Chem. 2001, 66, 4, 1200–1204
Publication Date (Web):January 30, 2001
https://doi.org/10.1021/jo0014921
Copyright © 2001 American Chemical Society

    Article Views

    988

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (70 KB)
    Supporting Info (3)»

    Abstract

    Abstract Image

    The reverse aromatic Cope rearrangement of 2-allyl-3-alkylideneindolines obtained by Horner−Wadsworth−Emmons olefination of 2-allylindolin-3-ones was performed. When 2-allylindolin-3-ones were treated with phosphonium ylides in refluxing toluene, domino Wittig reaction and reverse aromatic Cope rearrangement took place to give α-allyl-3-indole acetate derivatives in good yields. The aromatization as a new driving force in the Cope rearrangement is preferable to the conjugation with the carbonyl and cyano groups and also to the alkyl substitution pattern, which are well-known driving forces.

    *

     To whom correspondences should be addressed. Tel.:  +81-424-95-8764. Fax:  +81-424-95-8763.

     Meiji Pharmaceutical University.

     Kissei Pharmaceutical Co., Ltd.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    The force field parameters for computations of the reverse aromatic Cope rearrangement 7a9a to 11a13a (Table 2), the full Experimental Section, and 1H NMR spectra for compounds Z-7a, E-7a, E,Z-mixtures of 8a, 9a,b, and 17, 10a, 11ae, 12a,b, 12e,f, 15, a mixture of 13b and 15, and 13a,b. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 21 publications.

    1. Xuerong Yu, Fan Su, Chang Liu, Haosen Yuan, Shan Zhao, Zhiyao Zhou, Tianfei Quan, and Tuoping Luo . Enantioselective Total Syntheses of Various Amphilectane and Serrulatane Diterpenoids via Cope Rearrangements. Journal of the American Chemical Society 2016, 138 (19) , 6261-6270. https://doi.org/10.1021/jacs.6b02624
    2. N. N. Bhuvan Kumar, M. Nagarjuna Reddy and K. C. Kumara Swamy. Reactivity of Allenylphosphonates toward Salicylaldehydes and Activated Phenols: Facile Synthesis of Chromenes and Substituted Butadienes. The Journal of Organic Chemistry 2009, 74 (15) , 5395-5404. https://doi.org/10.1021/jo900896v
    3. Jose Barluenga,, Fernando Aznar,, Ignacio Gutiérrez, and, J. Alfredo Martín. Cyclopropanation with Fischer Acyloxycarbene Complexes:  Preparation of Cyclopropane and Cycloheptane-Fused γ-Lactones. Organic Letters 2002, 4 (16) , 2719-2722. https://doi.org/10.1021/ol026225r
    4. Alexander V. Samet, Victor V. Semenov. Preparation of Nitro‐Substituted 3‐Benzylindoles via 3‐Benzylideneindolines. ChemistrySelect 2023, 8 (34) https://doi.org/10.1002/slct.202302764
    5. Breanna M. Tomiczek, Alexander J. Grenning. Aromatic Cope rearrangements. Organic & Biomolecular Chemistry 2021, 19 (11) , 2385-2398. https://doi.org/10.1039/D1OB00094B
    6. . Indolines from Oxindoles, Isatins, and Indoxyls. 2016, 558-572. https://doi.org/10.1002/9781118695692.ch68
    7. Jungmin Kwon, Jooyoung Chung, Sangmoon Byun, B. Moon Kim. Efficient Synthesis of Indole Derivatives via Tandem Cyclization Catalyzed by Magnetically Recoverable Palladium/Magnetite (Pd‐Fe 3 O 4 ) Nanocrystals. Asian Journal of Organic Chemistry 2016, 5 (4) , 470-476. https://doi.org/10.1002/ajoc.201500536
    8. Amanda C. Jones, Jeremy A. May, Richmond Sarpong, Brian M. Stoltz. Bis hin zu einer Symphonie der Reaktivität: Kaskaden mit Katalysen und sigmatropen Umlagerungen. Angewandte Chemie 2014, 126 (10) , 2590-2628. https://doi.org/10.1002/ange.201302572
    9. Amanda C. Jones, Jeremy A. May, Richmond Sarpong, Brian M. Stoltz. Toward a Symphony of Reactivity: Cascades Involving Catalysis and Sigmatropic Rearrangements. Angewandte Chemie International Edition 2014, 53 (10) , 2556-2591. https://doi.org/10.1002/anie.201302572
    10. Vikram Bhat, James A. MacKay, Viresh H. Rawal. Lessons learned while traversing the welwitindolinone alkaloids obstacle course. Tetrahedron 2011, 67 (52) , 10097-10104. https://doi.org/10.1016/j.tet.2011.09.088
    11. José Barluenga, Carlos Valdés. Five‐Membered Heterocycles: Indole and Related Systems. 2011, 377-531. https://doi.org/10.1002/9783527637737.ch5
    12. . Cope Rearrangement. 2010, 702-708. https://doi.org/10.1002/9780470638859.conrr154
    13. . Horner‐Wadsworth‐Emmons Olefination. 2010, 1484-1490. https://doi.org/10.1002/9780470638859.conrr332
    14. Alexander V. Samet, Alexei N. Yamskov, Yuri A. Strelenko, Victor V. Semenov. Preparation of peri-annulated indoles from polynitro compounds. Tetrahedron 2009, 65 (34) , 6868-6872. https://doi.org/10.1016/j.tet.2009.06.074
    15. Tomomi Kawasaki. Stereoselective Reaction for Construction of Quaternary Carbon Center and its Application to the Syntheses of Pyrrolidino[2,3-b]indoline Natural Products. Journal of Synthetic Organic Chemistry, Japan 2009, 67 (10) , 1012-1024. https://doi.org/10.5059/yukigoseikyokaishi.67.1012
    16. Tomomi Kawasaki, Atsuyo Ogawa, Romi Terashima, Toshiko Saheki, Naoko Ban, Hiroko Sekiguchi, Ken-ei Sakaguchi, Masanori Sakamoto. Synthesis of Diversely Functionalized Hexahydropyrrolo[2,3- b ]indoles Using Domino Reactions, Olefination, Isomerization and Claisen Rearrangement Followed by Reductive Cyclization. The Journal of Organic Chemistry 2005, 70 (8) , 2957-2966. https://doi.org/10.1021/jo040289t
    17. P. Savignac, B. Iorga, M. Savignac. One or More CC Bond(s) Formed by Condensation: Condensation of P, As, Sb, Bi, Si, Ge, B, or Metal Functions. 2005, 723-759. https://doi.org/10.1016/B0-08-044655-8/00016-7
    18. M.T. Molina, J.L. Marco-Contelles. One or More CH, CC, and/or CC Bond(s) Formed by Rearrangement. 2005, 797-888. https://doi.org/10.1016/B0-08-044655-8/00018-0
    19. M. North. Nitriles: General Methods and Aliphatic Nitriles. 2005, 621-655. https://doi.org/10.1016/B0-08-044655-8/00063-5
    20. Masanori SAKAMOTO, Tomomi KAWASAKI, Keitaro ISHII, Osamu TAMURA. The Chemistry of Pericyclic Reactions and Their Application to Syntheses of Heterocyclic Compounds. YAKUGAKU ZASSHI 2003, 123 (9) , 717-759. https://doi.org/10.1248/yakushi.123.717
    21. Tomomi Kawasaki, Yoshinori Nonaka, Kazuaki Watanabe, Atsuyo Ogawa, Kazuhiro Higuchi, Romi Terashima, Kouhei Masuda, Masanori Sakamoto. ChemInform Abstract: Reverse Aromatic Cope Rearrangement of 2-Allyl-3-alkylideneindolines Driven by Olefination of 2-Allylindolin-3-ones: Synthesis of α-Allyl-3-indole Acetate Derivatives.. ChemInform 2001, 32 (25) , no-no. https://doi.org/10.1002/chin.200125114

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect