ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Mechanistic Studies on the Nucleophilic Reaction of Porphyrins with Organolithium Reagents

View Author Information
Institut für Chemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
Cite this: J. Org. Chem. 2001, 66, 26, 8693–8700
Publication Date (Web):October 4, 2001
https://doi.org/10.1021/jo010559x
Copyright © 2001 American Chemical Society

    Article Views

    839

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (180 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Porphyrins react readily with organolithium reagents under substitution of free meso positions. As this method has proven to be very versatile for the preparation of a wide range of meso substituted porphyrins, a mechanistic study of the reaction was undertaken using 5,15-diaryl- and dialkyl substituted porphyrins, 2,3,7,8,12,13,17,18-octaethylporphyrin, and the respective nickel(II) complexes. A combination of deuteration experiments, electronic absorption spectroscopy of the reactive intermediates, trapping of intermediates with organic electrophiles, and reaction at different pH values showed significant differences in the reaction pathways of free base porphyrins and metalloporphyrins. In both cases the reaction proceeds initially under formation of phlorin like intermediates which are stable in water. For the Ni(II)phlorins a mesomeric carbanionic form with a highly distorted structure exists that can react as a nucleophile with electrophiles such as RI, H+, or D+. In the latter case a protonation-deprotonation equilibrium involving porphodimethen intermediates has to be assumed. Free base phlorins do not react as nucleophiles but can undergo H/D exchange reactions in strongly acidic media.

    *

     To whom correspondence should be sent. Fax:  (int)-49-30-838-55163.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    1H NMR spectra of 9, 10, 11, 14, 15, 18, 19, 20, and 22. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 42 publications.

    1. Satoru Hiroto, Yoshihiro Miyake, and Hiroshi Shinokubo . Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chemical Reviews 2017, 117 (4) , 2910-3043. https://doi.org/10.1021/acs.chemrev.6b00427
    2. Toshikatsu Takanami,, Mikiko Hayashi,, Hiroshi Chijimatsu,, Wakaba Inoue, and, Kohji Suda. Palladium-Catalyzed Cyanation of Porphyrins Utilizing Cyanoethylzinc Bromide as an Efficient Cyanide Ion Source. Organic Letters 2005, 7 (18) , 3937-3940. https://doi.org/10.1021/ol0514294
    3. Regan D. Hartnell and, Dennis P. Arnold. Peripherally η1-Platinated Organometallic Porphyrins as Building Blocks for Multiporphyrin Arrays. Organometallics 2004, 23 (3) , 391-399. https://doi.org/10.1021/om0305869
    4. Arno Wiehe,, Claudia Ryppa, and, Mathias O. Senge. A Practical Synthesis of Meso-monosubstituted, β-Unsubstituted Porphyrins. Organic Letters 2002, 4 (22) , 3807-3809. https://doi.org/10.1021/ol0265867
    5. Jonathan Trouvé, Rafael Gramage‐Doria. Destabilizing Predictive Copper‐Catalyzed Click Reactions by Remote Interactions with a Zinc‐Porphyrin Backbone. Helvetica Chimica Acta 2023, 106 (3) https://doi.org/10.1002/hlca.202200191
    6. Mathias O. Senge, Alina Meindl. Organic Synthesis and Reactivity of Porphyrins. 2022, 37-140. https://doi.org/10.1002/9781119129301.ch3
    7. Christian Brückner, Nisansala Hewage. Oxidation and Reduction of Porphyrins. 2022, 303-347. https://doi.org/10.1002/9781119129301.ch6
    8. Mathias O. Senge, Natalia N. Sergeeva, Karl J. Hale. Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chemical Society Reviews 2021, 50 (7) , 4730-4789. https://doi.org/10.1039/C7CS00719A
    9. Runju Wang, Ying Yin, Kui Xu, Lamei Wu, Zhengxi Huang, Hsien-Yi Hsu, Jonathan L. Sessler, Zhan Zhang. Doubly N-confused phlorin and phlorinone analogue. Chemical Communications 2021, 57 (22) , 2772-2775. https://doi.org/10.1039/D1CC00216C
    10. Mingfei Zhang, Lulu Fu, Jun Ye, Mark G. Humphrey, Huan Liu, Bing Yan, Long Zhang, Jianda Shao, Chi Zhang. Covalent-linked porphyrin/single-walled carbon nanotube nanohybrids: synthesis and influence of porphyrin substituents on nonlinear optical performance. Carbon 2017, 124 , 618-629. https://doi.org/10.1016/j.carbon.2017.08.060
    11. Alina Meindl, Shane Plunkett, Aoife A. Ryan, Keith J. Flanagan, Susan Callaghan, Mathias O. Senge. Comparative Synthetic Strategies for the Generation of 5,10- and 5,15-Substituted Push-Pull Porphyrins. European Journal of Organic Chemistry 2017, 2017 (25) , 3565-3583. https://doi.org/10.1002/ejoc.201700093
    12. Yuto Tamura, Daiki Kuzuhara, Mitsuharu Suzuki, Hironobu Hayashi, Naoki Aratani, Hiroko Yamada. Fullerene-linked tetrabenzoporphyrins for solution-processed organic photovoltaics: flexible vs. rigid linkers. Journal of Materials Chemistry A 2016, 4 (40) , 15333-15342. https://doi.org/10.1039/C6TA06599F
    13. I S Kovalev, D S Kopchuk, G V Zyryanov, V L Rusinov, O N Chupakhin, V N Charushin. Organolithium compounds in the nucleophilic substitution of hydrogen in arenes and hetarenes. Russian Chemical Reviews 2015, 84 (12) , 1191-1225. https://doi.org/10.1070/RCR4462
    14. Aoife A. Ryan, Shane Plunkett, Aoife Casey, Thomas McCabe, Mathias O. Senge. From thioether substituted porphyrins to sulfur linked porphyrin dimers: an unusual S N Ar via thiolate displacement?. Chem. Commun. 2014, 50 (3) , 353-355. https://doi.org/10.1039/C3CC46828C
    15. M. Hassan Beyzavi, Dieter Lentz, Hans-Ulrich Reissig, Arno Wiehe. Synthesis of Functionalized, Sterically Congested Calix[4]phyrin Macrocycles Using Donor-Acceptor-Substituted Cyclopropanes - First Example of a Mono- meso -spirolactone Incorporated into a Calix[4]phyrin. European Journal of Organic Chemistry 2013, 2013 (2) , 269-282. https://doi.org/10.1002/ejoc.201201295
    16. Sara Nardis. Synthetic Routes to Unsymmetrical Porphyrins. 2013, 203-229. https://doi.org/10.1007/7081_2013_109
    17. Jun-ichiro Setsune, Kyohei Yamato. Highly reactive meso-like positions of dipyrihexaphyrin. Chemical Communications 2012, 48 (37) , 4447. https://doi.org/10.1039/c2cc30981e
    18. Mathias O. Senge, Claudia Ryppa, Marijana Fazekas, Monika Zawadzka, Katja Dahms. 5,10-A2B2-Type meso-Substituted Porphyrins-A Unique Class of Porphyrins with a Realigned Dipole Moment. Chemistry - A European Journal 2011, 17 (48) , 13562-13573. https://doi.org/10.1002/chem.201101934
    19. Aoife Ryan, Andreas Gehrold, Romain Perusitti, Monica Pintea, Marijana Fazekas, Oliver B. Locos, Frances Blaikie, Mathias O. Senge. Porphyrin Dimers and Arrays. European Journal of Organic Chemistry 2011, 2011 (29) , 5817-5844. https://doi.org/10.1002/ejoc.201100642
    20. Mathias O. Senge. Stirring the porphyrin alphabet soup—functionalization reactions for porphyrins. Chemical Communications 2011, 47 (7) , 1943. https://doi.org/10.1039/c0cc03984e
    21. Mathias O. Senge, Mia Davis. Porphyrin (porphine) — A neglected parent compound with potential. Journal of Porphyrins and Phthalocyanines 2010, 14 (07) , 557-567. https://doi.org/10.1142/S1088424610002495
    22. Mathias O. Senge, Julia Richter, Ines Bischoff, Aoife Ryan. Highly substituted 2,3,7,8,12,13,17,18-octaethylporphyrins with meso aryl residues. Tetrahedron 2010, 66 (19) , 3508-3524. https://doi.org/10.1016/j.tet.2010.03.008
    23. Mathias O. Senge, Yasser M. Shaker, Monica Pintea, Claudia Ryppa, Sabine S. Hatscher, Aoife Ryan, Yulia Sergeeva. Synthesis of meso ‐Substituted ABCD‐Type Porphyrins by Functionalization Reactions. European Journal of Organic Chemistry 2010, 2010 (2) , 237-258. https://doi.org/10.1002/ejoc.200901113
    24. Mohd Bakri Bakar, Michael Oelgemöller, Mathias O. Senge. Lead structures for applications in photodynamic therapy. Part 2: Synthetic studies for photo-triggered release systems of bioconjugate porphyrin photosensitizers. Tetrahedron 2009, 65 (34) , 7064-7078. https://doi.org/10.1016/j.tet.2009.06.037
    25. Milan Balaz, Hazel A. Collins, Emma Dahlstedt, Harry L. Anderson. Synthesis of hydrophilic conjugated porphyrin dimers for one-photon and two-photon photodynamic therapy at NIR wavelengths. Organic & Biomolecular Chemistry 2009, 7 (5) , 874. https://doi.org/10.1039/b814789b
    26. Sabine Horn, Katja Dahms, Mathias O. Senge. Synthetic transformations of porphyrins – Advances 2004-2007. Journal of Porphyrins and Phthalocyanines 2008, 12 (10) , 1053-1077. https://doi.org/10.1142/S108842460800042X
    27. Takahiko Kojima, Kakeru Hanabusa, Kei Ohkubo, Motoo Shiro, Shunichi Fukuzumi. Formation of dodecaphenylporphodimethene via facile protonation of saddle-distorted dodecaphenylporphyrin. Chemical Communications 2008, 303 (48) , 6513. https://doi.org/10.1039/b816063e
    28. Natalia N. Sergeeva, Yasser M. Shaker, Eimear M. Finnigan, Thomas McCabe, Mathias O. Senge. Synthesis of hydroporphyrins based on comparative studies of palladium-catalyzed and non-catalyzed approaches. Tetrahedron 2007, 63 (50) , 12454-12464. https://doi.org/10.1016/j.tet.2007.09.030
    29. M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, E. M. Ni Mhuircheartaigh. Nonlinear Optical Properties of Porphyrins. Advanced Materials 2007, 19 (19) , 2737-2774. https://doi.org/10.1002/adma.200601850
    30. Martin Bröring, Stephan Link, Meike Cordes, Carsten D. Brandt. Oxidative Pyrrole Exchange andmeso Pyrrylation – Unexpected Reactions of Open-Chain Tetrapyrrolic 2,2′-Bidipyrrins. Zeitschrift für anorganische und allgemeine Chemie 2007, 633 (2) , 211-218. https://doi.org/10.1002/zaac.200600268
    31. Natalia N. Sergeeva, Mathias O. Senge. Palladium-catalyzed reactions for the synthesis of chlorins and 5,10-porphodimethenes. Tetrahedron Letters 2006, 47 (35) , 6169-6172. https://doi.org/10.1016/j.tetlet.2006.06.166
    32. Mathias O. Senge. Exercises in molecular gymnastics—bending, stretching and twisting porphyrins. Chem. Commun. 2006, 8 (3) , 243-256. https://doi.org/10.1039/B511389J
    33. Timothy D. LeSaulnier, Brad W. Graham, G. Richard Geier. Enhancement of phlorin stability by the incorporation of meso-mesityl substituents. Tetrahedron Letters 2005, 46 (34) , 5633-5637. https://doi.org/10.1016/j.tetlet.2005.06.103
    34. Arno Wiehe, Yasser M. Shaker, Johan C. Brandt, Stefan Mebs, Mathias O. Senge. Lead structures for applications in photodynamic therapy. Part 1: Synthesis and variation of m-THPC (Temoporfin) related amphiphilic A2BC-type porphyrins. Tetrahedron 2005, 61 (23) , 5535-5564. https://doi.org/10.1016/j.tet.2005.03.086
    35. Claudia Ryppa, Mathias O. Senge, Sabine S. Hatscher, Erich Kleinpeter, Philipp Wacker, Uwe Schilde, Arno Wiehe. Synthesis of Mono- and Disubstituted Porphyrins: A- and 5,10-A2-Type Systems. Chemistry - A European Journal 2005, 11 (11) , 3427-3442. https://doi.org/10.1002/chem.200500001
    36. Mathias O. Senge, Julia Richter. Synthetic transformations of porphyrins – Advances 2002-2004. Journal of Porphyrins and Phthalocyanines 2004, 08 (07) , 934-953. https://doi.org/10.1142/S1088424604000313
    37. Sokkalingam Punidha, Neeraj Agarwal, Ritwik Burai, Mangalampalli Ravikanth. Synthesis of N 3 S, N 3 O, N 2 S 2 , N 2 O 2 , N 2 SO and N 2 OS Porphyrins with One meso ‐Unsubstituted Carbon. European Journal of Organic Chemistry 2004, 2004 (10) , 2223-2230. https://doi.org/10.1002/ejoc.200300697
    38. Regan D. Hartnell, Dennis P. Arnold. Peripherally Metallated Porphyrins: the First Examples of meso ‐η 1 ‐Palladio( II ) and ‐Platinio( II ) Complexes with Chelating Diamine Ligands. European Journal of Inorganic Chemistry 2004, 2004 (6) , 1262-1269. https://doi.org/10.1002/ejic.200300600
    39. Mathias O. Senge, Ines Bischoff. SNAr reactions of β-substituted porphyrins and the synthesis of meso substituted tetrabenzoporphyrins. Tetrahedron Letters 2004, 45 (8) , 1647-1650. https://doi.org/10.1016/j.tetlet.2003.12.121
    40. Osamu Yamane, Ken-ichi Sugiura, Hitoshi Miyasaka, Kazuya Nakamura, Tatsuhiko Fujimoto, Kazuki Nakamura, Takahiro Kaneda, Yoshiteru Sakata, Masahiro Yamashita. Pyrene-Fused Porphyrins: Annulation Reactions of meso -Pyrenylporphyrins. Chemistry Letters 2004, 33 (1) , 40-41. https://doi.org/10.1246/cl.2004.40
    41. Neeraj Agarwal, C.‐H. Hung, M. Ravikanth. Thiaporphyrins with One, Two and Four Unsubstituted meso ‐Carbons: Synthesis and Functionalization. European Journal of Organic Chemistry 2003, 2003 (19) , 3730-3734. https://doi.org/10.1002/ejoc.200300333
    42. Sabine Hatscher, Mathias O. Senge. Synthetic access to 5,10-disubstituted porphyrins. Tetrahedron Letters 2003, 44 (1) , 157-160. https://doi.org/10.1016/S0040-4039(02)02475-9

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect