Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Protease-Mediated Fragmentation of p-Amidobenzyl Ethers:  A New Strategy for the Activation of Anticancer Prodrugs

View Author Information
Seattle Genetics, 21823 30th Drive SE, Bothell, Washington 98021
Cite this: J. Org. Chem. 2002, 67, 6, 1866–1872
Publication Date (Web):February 12, 2002
https://doi.org/10.1021/jo016187+
Copyright © 2002 American Chemical Society

    Article Views

    3559

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    A new anticancer prodrug activation strategy based on the 1,6-elimination reaction of p-aminobenzyl ethers is described. Model studies were undertaken with the N-protected peptide benzyloxycarbonyl-valine-citrulline (Z-val-cit), which was attached to the amino groups of p-aminobenzyl ether derivatives of 1-naphthol and N-acetylnorephedrine. The amide bond that formed was designed for hydrolysis by cathepsin B, a protease associated with rapidly growing and metastatic carcinomas. Upon treatment with the enzyme, the Z-val-cit-p-amidobenzyl ether of 1-naphthol (2) underwent peptide bond hydrolysis with the rapid release of 1-naphthol. The aliphatic Z-val-cit-p-amidobenzyl ether of N-acetylnorephedrine (5) also underwent amide bond hydrolysis, but without the ensuing elimination of N-acetylnorephedrine. On the basis of these results, the phenolic anticancer drugs etoposide (6) and combretastatin A-4 (7) were attached to the Z-val-cit-p-amidobenzyl alcohol through ether linkages, forming the peptide-drug derivatives 8 and 9, respectively. Both compounds were stable in aqueous buffers and serum and underwent ether fragmentation upon treatment with cathepsin B, resulting in the release of the parent drugs in chemically unmodified forms. The released drugs were 13−50 times more potent than were the prodrug precursors on a panel of cancer cell lines. In contrast, the corresponding carbonate derivative of combretastatin A-4 (13) was unstable in aqueous environments and was as cytotoxic as combretastatin A-4. This result extends the use of the self-immolative p-aminobenzyl group for the fragmentation of aromatic ethers and provides a new strategy for anticancer prodrug development.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author.

    Cited By

    This article is cited by 64 publications.

    1. Katharina Dodt, Marc D. Driessen, Stephanie Lamer, Andreas Schlosser, Tessa Lühmann, Lorenz Meinel. A Complete and Versatile Protocol: Decoration of Cell-Derived Matrices with Mass-Encoded Peptides for Multiplexed Protease Activity Detection. ACS Biomaterials Science & Engineering 2020, 6 (12) , 6598-6617. https://doi.org/10.1021/acsbiomaterials.0c01134
    2. Zhonghua Pei, Chunjiao Chen, Jinhua Chen, Josefa dela Cruz-Chuh, Reginald Delarosa, Yuzhong Deng, Aimee Fourie-O’Donohue, Isabel Figueroa, Jun Guo, Weiwei Jin, S. Cyrus Khojasteh, Katherine R. Kozak, Brandon Latifi, James Lee, Guangmin Li, Eva Lin, Liling Liu, Jiawei Lu, Scott Martin, Carl Ng, Trung Nguyen, Rachana Ohri, Gail Lewis Phillips, Thomas H. Pillow, Rebecca K. Rowntree, Nicola J. Stagg, David Stokoe, Sheila Ulufatu, Vishal A. Verma, John Wai, Jing Wang, Keyang Xu, Zijin Xu, Hui Yao, Shang-Fan Yu, Donglu Zhang, Peter S. Dragovich. Exploration of Pyrrolobenzodiazepine (PBD)-Dimers Containing Disulfide-Based Prodrugs as Payloads for Antibody–Drug Conjugates. Molecular Pharmaceutics 2018, 15 (9) , 3979-3996. https://doi.org/10.1021/acs.molpharmaceut.8b00431
    3. Donglu Zhang, Hoa Le, Josefa dela Cruz-Chuh, Sudheer Bobba, Jun Guo, Leanna Staben, Chenghong Zhang, Yong Ma, Katherine R. Kozak, Gail D. Lewis Phillips, Breanna S. Vollmar, Jack D. Sadowsky, Richard Vandlen, BinQing Wei, Dian Su, Peter Fan, Peter S. Dragovich, S. Cyrus Khojasteh, Cornelis E. C. A. Hop, and Thomas H. Pillow . Immolation of p-Aminobenzyl Ether Linker and Payload Potency and Stability Determine the Cell-Killing Activity of Antibody–Drug Conjugates with Phenol-Containing Payloads. Bioconjugate Chemistry 2018, 29 (2) , 267-274. https://doi.org/10.1021/acs.bioconjchem.7b00576
    4. Siddharth S. Matikonda, Jessica M. Fairhall, Joel D. A. Tyndall, Sarah Hook, and Allan B. Gamble . Stability, Kinetic, and Mechanistic Investigation of 1,8-Self-Immolative Cinnamyl Ether Spacers for Controlled Release of Phenols and Generation of Resonance and Inductively Stabilized Methides. Organic Letters 2017, 19 (3) , 528-531. https://doi.org/10.1021/acs.orglett.6b03695
    5. Magdalena Dorywalska, Pavel Strop, Jody A. Melton-Witt, Adela Hasa-Moreno, Santiago E. Farias, Meritxell Galindo Casas, Kathy Delaria, Victor Lui, Kris Poulsen, Carole Loo, Stellanie Krimm, Gary Bolton, Ludivine Moine, Russell Dushin, Thomas-Toan Tran, Shu-Hui Liu, Mathias Rickert, Davide Foletti, David L. Shelton, Jaume Pons, and Arvind Rajpal . Effect of Attachment Site on Stability of Cleavable Antibody Drug Conjugates. Bioconjugate Chemistry 2015, 26 (4) , 650-659. https://doi.org/10.1021/bc5005747
    6. George Badescu, Penny Bryant, Matthew Bird, Korinna Henseleit, Julia Swierkosz, Vimal Parekh, Rita Tommasi, Estera Pawlisz, Kosma Jurlewicz, Monika Farys, Nicolas Camper, XiaoBo Sheng, Martin Fisher, Ruslan Grygorash, Andrew Kyle, Amrita Abhilash, Mark Frigerio, Jeff Edwards, and Antony Godwin . Bridging Disulfides for Stable and Defined Antibody Drug Conjugates. Bioconjugate Chemistry 2014, 25 (6) , 1124-1136. https://doi.org/10.1021/bc500148x
    7. Kyle M. Schmid, Lasse Jensen, and Scott T. Phillips . A Self-Immolative Spacer That Enables Tunable Controlled Release of Phenols under Neutral Conditions. The Journal of Organic Chemistry 2012, 77 (9) , 4363-4374. https://doi.org/10.1021/jo300400q
    8. Sean A. Nuñez, Kimy Yeung, Nicole S. Fox, and Scott T. Phillips . A Structurally Simple Self-Immolative Reagent That Provides Three Distinct, Simultaneous Responses per Detection Event. The Journal of Organic Chemistry 2011, 76 (24) , 10099-10113. https://doi.org/10.1021/jo2018763
    9. Laurent Ducry and Bernhard Stump. Antibody−Drug Conjugates: Linking Cytotoxic Payloads to Monoclonal Antibodies. Bioconjugate Chemistry 2010, 21 (1) , 5-13. https://doi.org/10.1021/bc9002019
    10. Martha Sibrian-Vazquez, Timothy J. Jensen and M. Graça H. Vicente. Synthesis, Characterization, and Metabolic Stability of Porphyrin−Peptide Conjugates Bearing Bifunctional Signaling Sequences. Journal of Medicinal Chemistry 2008, 51 (10) , 2915-2923. https://doi.org/10.1021/jm701050j
    11. Yu-Ling Leu, Chien-Shu Chen, Yih-Jang Wu and Ji-Wang Chern. Benzyl Ether-Linked Glucuronide Derivative of 10-Hydroxycamptothecin Designed for Selective Camptothecin-Based Anticancer Therapy. Journal of Medicinal Chemistry 2008, 51 (6) , 1740-1746. https://doi.org/10.1021/jm701151c
    12. Scott C. Jeffrey,, Jamie B. Andreyka,, Starr X. Bernhardt,, Kim M. Kissler,, Toni Kline,, Joel S. Lenox,, Ruth F. Moser,, Minh T. Nguyen,, Nicole M. Okeley,, Ivan J. Stone,, Xinqun Zhang, and, Peter D. Senter. Development and Properties of β-Glucuronide Linkers for Monoclonal Antibody−Drug Conjugates. Bioconjugate Chemistry 2006, 17 (3) , 831-840. https://doi.org/10.1021/bc0600214
    13. Scott C. Jeffrey,, Michael Y. Torgov,, Jamie B. Andreyka,, Laura Boddington,, Charles G. Cerveny,, William A. Denny,, Kristine A. Gordon,, Darin Gustin,, Jennifer Haugen,, Toni Kline,, Minh T. Nguyen, and, Peter D. Senter. Design, Synthesis, and in Vitro Evaluation of Dipeptide-Based Antibody Minor Groove Binder Conjugates. Journal of Medicinal Chemistry 2005, 48 (5) , 1344-1358. https://doi.org/10.1021/jm040137q
    14. George R. Pettit,, Noeleen Melody, and, Delbert L. Herald. Antineoplastic Agents. 511. Direct Phosphorylation of Phenpanstatin and Pancratistatin. Journal of Natural Products 2004, 67 (3) , 322-327. https://doi.org/10.1021/np030299+
    15. Yifan Zhang, Mengyuan Ding, Lei Wang, Sicheng Yin, Liang Zhang, Xuemei Cao, Zhiyang Chen, Weinan Li, Qingsong Guo, Shulei Zhu, Wei Lu, Tong Yang, . Synthesis and biological evaluation of novel quaternary ammonium antibody drug conjugates based on camptothecin derivatives. PLOS ONE 2023, 18 (12) , e0292871. https://doi.org/10.1371/journal.pone.0292871
    16. Ding Wei, Yurong Mao, Huihui Wang, Siqi Qu, Jiakang Chen, Jiusheng Li, Biao Jiang, Hongli Chen. A mild phenoxysilyl linker for self-immolative release of antibody-drug conjugates. Chinese Chemical Letters 2023, 34 (5) , 108091. https://doi.org/10.1016/j.cclet.2022.108091
    17. Valmiki Aruna, V. Chandrakala, Gangadhara Angajala, E.R. Nagarajan. Proteases: An overview on its recent industrial developments and current scenario in the revolution of biocatalysis. Materials Today: Proceedings 2023, 92 , 565-573. https://doi.org/10.1016/j.matpr.2023.03.806
    18. Kerong Guo, Xin Ma, Jian Li, Chong Zhang, Liqiang Wu. Recent advances in combretastatin A-4 codrugs for cancer therapy. European Journal of Medicinal Chemistry 2022, 241 , 114660. https://doi.org/10.1016/j.ejmech.2022.114660
    19. Alexander G. Gavriel, Mark R. Sambrook, Andrew T. Russell, Wayne Hayes. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polymer Chemistry 2022, 13 (22) , 3188-3269. https://doi.org/10.1039/D2PY00414C
    20. Markus Walles, Michael Berna, Wenying Jian, Simon Hauri, Shawna Hengel, Lloyd King, John C. Tran, Cong Wei, Keyang Xu, Xiaochun Zhu. A Cross Company Perspective on the Assessment of Therapeutic Protein Biotransformation. Drug Metabolism and Disposition 2022, 50 (6) , 846-857. https://doi.org/10.1124/dmd.121.000462
    21. Shu Chen, Ka-Yan Ng, Qiyuan Zhou, Houzong Yao, Zhiqin Deng, Man-Kit Tse, Guangyu Zhu. The influence of different carbonate ligands on the hydrolytic stability and reduction of platinum( iv ) prodrugs. Dalton Transactions 2022, 51 (3) , 885-897. https://doi.org/10.1039/D1DT03959H
    22. Yoshikatsu Koga, Ryo Tsumura, Yasuhiro Matsumura. Preclinical Studies of ADC Therapy for Solid Tumors. 2019, 125-154. https://doi.org/10.1007/978-4-431-56880-3_6
    23. Hatice Mutlu, Christina M. Geiselhart, Christopher Barner-Kowollik. Untapped potential for debonding on demand: the wonderful world of azo-compounds. Materials Horizons 2018, 5 (2) , 162-183. https://doi.org/10.1039/C7MH00920H
    24. Raoul Walther, Jarkko Rautio, Alexander N. Zelikin. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Advanced Drug Delivery Reviews 2017, 118 , 65-77. https://doi.org/10.1016/j.addr.2017.06.013
    25. Yu-Jie Wang, Yu-Yan Li, Xiao-Yu Liu, Xiao-Ling Lu, Xin Cao, Bing-Hua Jiao. Marine Antibody–Drug Conjugates: Design Strategies and Research Progress. Marine Drugs 2017, 15 (1) , 18. https://doi.org/10.3390/md15010018
    26. Jiyuan Yang, Jindřich Kopeček. Design of smart HPMA copolymer-based nanomedicines. Journal of Controlled Release 2016, 240 , 9-23. https://doi.org/10.1016/j.jconrel.2015.10.003
    27. Tessa Lühmann, Lorenz Meinel. Nanotransporters for drug delivery. Current Opinion in Biotechnology 2016, 39 , 35-40. https://doi.org/10.1016/j.copbio.2015.12.013
    28. Houzong Yao, Feng Jiang, Aiping Lu, Ge Zhang. Methods to Design and Synthesize Antibody-Drug Conjugates (ADCs). International Journal of Molecular Sciences 2016, 17 (2) , 194. https://doi.org/10.3390/ijms17020194
    29. Muhammad Sajid Hamid Akash, Kanwal Rehman, Amna Parveen, Muhammad Ibrahim. Antibody-drug conjugates as drug carrier systems for bioactive agents. International Journal of Polymeric Materials and Polymeric Biomaterials 2016, 65 (1) , 1-10. https://doi.org/10.1080/00914037.2015.1038818
    30. Rong Huang, Yu Sun, Xiang-yang Zhang, Bai-wang Sun, Qiu-cui Wang, Jin Zhu. Biological evaluation of a novel Herceptin-platinum (II) conjugate for efficient and cancer cell specific delivery. Biomedicine & Pharmacotherapy 2015, 73 , 116-122. https://doi.org/10.1016/j.biopha.2015.05.013
    31. Roger R. Beerli, Tamara Hell, Anna S. Merkel, Ulf Grawunder, . Sortase Enzyme-Mediated Generation of Site-Specifically Conjugated Antibody Drug Conjugates with High In Vitro and In Vivo Potency. PLOS ONE 2015, 10 (7) , e0131177. https://doi.org/10.1371/journal.pone.0131177
    32. Chetana Rao, Vangipuram S Rangan, Shrikant Deshpande. Challenges in antibody–drug conjugate discovery: a bioconjugation and analytical perspective. Bioanalysis 2015, 7 (13) , 1561-1564. https://doi.org/10.4155/bio.15.81
    33. Gadi G. Bornstein. Antibody Drug Conjugates: Preclinical Considerations. The AAPS Journal 2015, 17 (3) , 525-534. https://doi.org/10.1208/s12248-015-9738-4
    34. Imran Vhora, Sushilkumar Patil, Priyanka Bhatt, Ambikanandan Misra. Protein– and Peptide–Drug Conjugates. 2015, 1-55. https://doi.org/10.1016/bs.apcsb.2014.11.001
    35. Jiyuan Yang, Jindřich Kopeček. Macromolecular therapeutics. Journal of Controlled Release 2014, 190 , 288-303. https://doi.org/10.1016/j.jconrel.2014.04.013
    36. Mark S. Butler, Avril A. B. Robertson, Matthew A. Cooper. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014, 31 (11) , 1612-1661. https://doi.org/10.1039/C4NP00064A
    37. Birte Nolting. Linker Technologies for Antibody–Drug Conjugates. 2013, 71-100. https://doi.org/10.1007/978-1-62703-541-5_5
    38. Qingzhi Zhang, Agnieszka Kulczynska, David J. Webb, Ian L. Megson, Nigel P. Botting. A new class of NO-donor pro-drugs triggered by γ-glutamyl transpeptidase with potential for reno-selective vasodilatation. Chemical Communications 2013, 49 (14) , 1389. https://doi.org/10.1039/c2cc38382a
    39. Dana Litvak-Greenfeld, Itai Benhar. Risks and untoward toxicities of antibody-based immunoconjugates. Advanced Drug Delivery Reviews 2012, 64 (15) , 1782-1799. https://doi.org/10.1016/j.addr.2012.05.013
    40. Stewart A. Low, Jindřich Kopeček. Targeting polymer therapeutics to bone. Advanced Drug Delivery Reviews 2012, 64 (12) , 1189-1204. https://doi.org/10.1016/j.addr.2012.01.012
    41. Andrew D. Wong, Matthew A. DeWit, Elizabeth R. Gillies. Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers. Advanced Drug Delivery Reviews 2012, 64 (11) , 1031-1045. https://doi.org/10.1016/j.addr.2011.09.012
    42. Giulio Casi, Dario Neri. Antibody–drug conjugates: Basic concepts, examples and future perspectives. Journal of Controlled Release 2012, 161 (2) , 422-428. https://doi.org/10.1016/j.jconrel.2012.01.026
    43. Mohammad Tabrizi, Gadi Gazit Bornstein. Strategies for Development of Next Generation Antibody-Based Therapeutics. 2012, 375-390. https://doi.org/10.1007/978-1-4419-5955-3_16
    44. Christopher A. Blencowe, Andrew T. Russell, Francesca Greco, Wayne Hayes, David W. Thornthwaite. Self-immolative linkers in polymeric delivery systems. Polym. Chem. 2011, 2 (4) , 773-790. https://doi.org/10.1039/C0PY00324G
    45. Matthew A. DeWit, Elizabeth R. Gillies. Design, synthesis, and cyclization of 4-aminobutyric acid derivatives: potential candidates as self-immolative spacers. Organic & Biomolecular Chemistry 2011, 9 (6) , 1846. https://doi.org/10.1039/c0ob00890g
    46. José A. Sáez, Beatriu Escuder, Juan F. Miravet. Supramolecular hydrogels for enzymatically triggered self-immolative drug delivery. Tetrahedron 2010, 66 (14) , 2614-2618. https://doi.org/10.1016/j.tet.2010.02.033
    47. Patrick J. Burke, Brian E. Toki, David W. Meyer, Jamie B. Miyamoto, Kim M. Kissler, Martha Anderson, Peter D. Senter, Scott C. Jeffrey. Novel immunoconjugates comprised of streptonigrin and 17-amino-geldanamycin attached via a dipeptide-p-aminobenzyl-amine linker system. Bioorganic & Medicinal Chemistry Letters 2009, 19 (10) , 2650-2653. https://doi.org/10.1016/j.bmcl.2009.03.145
    48. Hans-Peter Gerber, May Kung-Sutherland, Ivan Stone, Carol Morris-Tilden, Jamie Miyamoto, Renee McCormick, Stephen C. Alley, Nicole Okeley, Brad Hayes, Francisco J. Hernandez-Ilizaliturri, Charlotte F. McDonagh, Paul J. Carter, Dennis Benjamin, Iqbal S. Grewal. Potent antitumor activity of the anti-CD19 auristatin antibody drug conjugate hBU12-vcMMAE against rituximab-sensitive and -resistant lymphomas. Blood 2009, 113 (18) , 4352-4361. https://doi.org/10.1182/blood-2008-09-179143
    49. Yoshiyuki Yoneda, Sebastian C.J. Steiniger, Kateřina Čapková, Jenny M. Mee, Ying Liu, Gunnar F. Kaufmann, Kim D. Janda. A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. Bioorganic & Medicinal Chemistry Letters 2008, 18 (5) , 1632-1636. https://doi.org/10.1016/j.bmcl.2008.01.060
    50. Huaizhong Pan, Jindrich Kopecek. Multifunctional Water-Soluble Polymers for Drug Delivery. 2008, 81-142. https://doi.org/10.1007/978-0-387-76554-9_4
    51. Mark S. Butler. Natural products to drugs: natural product-derived compounds in clinical trials. Natural Product Reports 2008, 25 (3) , 475. https://doi.org/10.1039/b514294f
    52. Marta Roldo, Eugen Barbu, James F Brown, David W Laight, John D Smart, John Tsibouklis. Azo compounds in colon-specific drug delivery. Expert Opinion on Drug Delivery 2007, 4 (5) , 547-560. https://doi.org/10.1517/17425247.4.5.547
    53. Vincent de Groot. Targeting - Cancer — Small Molecules. 2007, 447-506. https://doi.org/10.1007/978-0-387-49785-3_13
    54. Wei Shao, Shan Zhao, Zhaofei Liu, Jianzhong Zhang, Shujun Ma, J. Denry Sato, Peng Zhang, Mei Tong, Jiping Han, Yan Wang, Dongmei Bai, Fan Wang, Le Sun. Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C. Biochemical and Biophysical Research Communications 2006, 349 (2) , 816-824. https://doi.org/10.1016/j.bbrc.2006.08.114
    55. Donald T Elmore. Peptide Synthesis. 2006, 74-128. https://doi.org/10.1039/9781847555250-00074
    56. Song-Qi Gao, Zheng-Rong Lu, Boris Petri, Pavla Kopečková, Jindřich Kopeček. Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer. Journal of Controlled Release 2006, 110 (2) , 323-331. https://doi.org/10.1016/j.jconrel.2005.10.004
    57. Huaizhong Pan, Pavla Kopečková, Dong Wang, Jiyuan Yang, Scott Miller, JindŘich Kopeček. Water-soluble HPMA copolymer—prostaglandin E 1 conjugates containing a cathepsin K sensitive spacer. Journal of Drug Targeting 2006, 14 (6) , 425-435. https://doi.org/10.1080/10611860600834219
    58. Gregory J. Wirth, Kathrin Schandelmaier, Victoria Smith, Angelika M. Burger, Heinz-Herbert Fiebig. Microarrays of 41 Human Tumor Cell Lines for the Characterization of New Molecular Targets: Expression Patterns of Cathepsin B and the Transferrin Receptor. Oncology 2006, 71 (1-2) , 86-94. https://doi.org/10.1159/000100476
    59. Dong Wang, Dieter Brömme. Drug delivery strategies for cathepsin inhibitors in joint diseases. Expert Opinion on Drug Delivery 2005, 2 (6) , 1015-1028. https://doi.org/10.1517/17425247.2.6.1015
    60. Philip R Hamann. Monoclonal antibody–drug conjugates. Expert Opinion on Therapeutic Patents 2005, 15 (9) , 1087-1103. https://doi.org/10.1517/13543776.15.9.1087
    61. Mark S. Butler. Natural products to drugs: natural product derived compounds in clinical trials. Natural Product Reports 2005, 22 (2) , 162. https://doi.org/10.1039/b402985m
    62. Svetlana O Doronina, Brian E Toki, Michael Y Torgov, Brian A Mendelsohn, Charles G Cerveny, Dana F Chace, Ron L DeBlanc, R Patrick Gearing, Tim D Bovee, Clay B Siegall, Joseph A Francisco, Alan F Wahl, Damon L Meyer, Peter D Senter. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotechnology 2003, 21 (7) , 778-784. https://doi.org/10.1038/nbt832
    63. Joachim Gullbo, Malin Wickström, Marcus Tullberg, Hans Ehrsson, Rolf Lewensohn, Peter Nygren, Kristina Luthman, Rolf Larsson. Activity of Hydrolytic Enzymes in Tumour Cells is a Determinant for Anti-tumour Efficacy of the Melphalan Containing Prodrug J1. Journal of Drug Targeting 2003, 11 (6) , 355-363. https://doi.org/10.1080/10611860310001647140
    64. Sundeep S. Dhareshwar, Valentino J. Stella. Prodrugs of Alcohols and Phenols. , 731-799. https://doi.org/10.1007/978-0-387-49785-3_21