ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Aerobic Oxidation of Benzyl Alcohols Catalyzed by Aryl Substituted N-Hydroxyphthalimides. Possible Involvement of a Charge-Transfer Complex

View Author Information
Dipartimento di Chimica, Università degli Studi di Roma “La Sapienza” and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, P.le A. Moro, 5 I-00185 Rome, Italy, and Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, via S. Donato 15, I-40127 Bologna, Italy
Cite this: J. Org. Chem. 2004, 69, 10, 3431–3438
Publication Date (Web):April 20, 2004
https://doi.org/10.1021/jo049887y
Copyright © 2004 American Chemical Society

    Article Views

    1819

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A series of aryl-substituted N-hydroxyphthalimides (X-NHPIs) containing either electron-withdrawing groups (4-CH3OCO, 3-F) or electron-donating groups (4-CH3, 4-CH3O, 3-CH3O, 3,6-(CH3O)2) have been used as catalysts in the aerobic oxidation of primary and secondary benzylic alcohols. The selective formation of aromatic aldehydes was observed in the oxidation of primary alcohols; aromatic ketones were the exclusive products in the oxidation of secondary alcohols. O−H bond dissociation enthalpies (BDEs) of X-NHPIs have been determined by using the EPR radical equilibration technique. BDEs increase with increasing the electron-withdrawing properties of the aryl substituent. Kinetic isotope effect studies and the increase of the substrate oxidation rate by increasing the electron-withdrawing power of the NHPI aryl substituent indicate a rate-determining benzylic hydrogen atom transfer (HAT) from the alcohol to the aryl-substituted phthalimide-N-oxyl radical (X-PINO). Besides enthalpic effects, polar effects also play a role in the HAT process, as shown by the negative ρ values of the Hammett correlation with σ+ and by the decrease of the ρ values (from −0.54 to −0.70) by increasing the electron-withdrawing properties of the NHPI aryl substituent. The relative reactivity of 3-CH3O-C6H4CH2OH and 3,4-(CH3O)2-C6H3CH2OH, which is higher than expected on the basis of the σ+ values, the small values of relative reactivity of primary vs secondary benzylic alcohols, and the decrease of the ρ values by increasing the electron-withdrawing properties of the NHPI aryl substituent, suggest that the HAT process takes place inside a charge-transfer (CT) complex formed by the X-PINO and the benzylic alcohol.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Università degli Studi di Roma “La Sapienza” and Istituto CNR di Metodologie Chimiche (IMC-CNR).

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Università di Bologna.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Instrumentation. Determination of relative rates in the competitive oxidation of substituted primary benzylic alcohols and in the competitive oxidation of primary vs secondary benzylic alcohols. Relative reactivities (kY/kH) in the competitive oxidation of substituted primary benzylic alcohols with the 1ag/Co(II)/MCBA/O2 systems. Hammett plots for the competitive oxidation of ring substituted benzylic alcohols with the 1bf/Co(II)/MCBA/O2 systems. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 97 publications.

    1. Thomas Grunshaw, Susanna H. Wood, Stephen Sproules, Andrew Parrott, Alison Nordon, Peter D. P. Shapland, Katherine M. P. Wheelhouse, Nicholas C. O. Tomkinson. A Mechanistic Investigation of the N-Hydroxyphthalimide Catalyzed Benzylic Oxidation Mediated by Sodium Chlorite. The Journal of Organic Chemistry 2024, Article ASAP.
    2. Cheng Yang, Luke A. Farmer, Derek A. Pratt, Stephen Maldonado, Corey R. J. Stephenson. Revisiting the Reactivity of the Dismissed Hydrogen Atom Transfer Catalyst Succinimide-N-oxyl. Journal of the American Chemical Society 2024, 146 (18) , 12511-12518. https://doi.org/10.1021/jacs.4c00688
    3. Albert Ong, Jerald Y. Q. Teo, Zixuan Feng, Tristan T. Y. Tan, Jason Y. C. Lim. Organocatalytic Aerobic Oxidative Degradation of Polystyrene to Aromatic Acids. ACS Sustainable Chemistry & Engineering 2023, 11 (34) , 12514-12522. https://doi.org/10.1021/acssuschemeng.3c01387
    4. Dirk Leifert, Armido Studer. Organic Synthesis Using Nitroxides. Chemical Reviews 2023, 123 (16) , 10302-10380. https://doi.org/10.1021/acs.chemrev.3c00212
    5. Celine W. S. Yeung, Mercy Halleluyah Periayah, Jerald Y. Q. Teo, Eunice Tze Leng Goh, Pei Lin Chee, Wei Wei Loh, Xian Jun Loh, Rajamani Lakshminarayanan, Jason Y. C. Lim. Transforming Polyethylene into Water-Soluble Antifungal Polymers. Macromolecules 2023, 56 (3) , 815-823. https://doi.org/10.1021/acs.macromol.2c01944
    6. Zhi-Xian Wu, Guan-Wen Hu, Yu-Xin Luan. Development of N-Hydroxy Catalysts for C–H Functionalization via Hydrogen Atom Transfer: Challenges and Opportunities. ACS Catalysis 2022, 12 (19) , 11716-11733. https://doi.org/10.1021/acscatal.2c03261
    7. Kai Kang, Daniel J. Weix. Nickel-Catalyzed C(sp3)–C(sp3) Cross-Electrophile Coupling of In Situ Generated NHP Esters with Unactivated Alkyl Bromides. Organic Letters 2022, 24 (15) , 2853-2857. https://doi.org/10.1021/acs.orglett.2c00805
    8. Chad E. Hatch, Maxwell I. Martin, Philip H. Gilmartin, Lu Xiong, Danielle J. Beam, Glenn P. A. Yap, Matthew J. Von Bargen, Joel Rosenthal, William J. Chain. Electrochemically Mediated Oxidation of Sensitive Propargylic Benzylic Alcohols. Organic Letters 2022, 24 (7) , 1423-1428. https://doi.org/10.1021/acs.orglett.1c03860
    9. Rishi G. Agarwal, Scott C. Coste, Benjamin D. Groff, Abigail M. Heuer, Hyunho Noh, Giovanny A. Parada, Catherine F. Wise, Eva M. Nichols, Jeffrey J. Warren, James M. Mayer. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chemical Reviews 2022, 122 (1) , 1-49. https://doi.org/10.1021/acs.chemrev.1c00521
    10. Marika Di Berto Mancini, Andrea Del Gelsomino, Stefano Di Stefano, Federico Frateloreto, Andrea Lapi, Osvaldo Lanzalunga, Giorgio Olivo, Stefano Sajeva. Change of Selectivity in C–H Functionalization Promoted by Nonheme Iron(IV)-oxo Complexes by the Effect of the N-hydroxyphthalimide HAT Mediator. ACS Omega 2021, 6 (40) , 26428-26438. https://doi.org/10.1021/acsomega.1c03679
    11. Teo Martin, Marco Galeotti, Michela Salamone, Fengjiao Liu, Yanmin Yu, Meng Duan, K. N. Houk, Massimo Bietti. Deciphering Reactivity and Selectivity Patterns in Aliphatic C–H Bond Oxygenation of Cyclopentane and Cyclohexane Derivatives. The Journal of Organic Chemistry 2021, 86 (15) , 9925-9937. https://doi.org/10.1021/acs.joc.1c00902
    12. Olga V. Kushch, Iryna O. Hordieieva, Mykhailo O. Kompanets, Olha O. Zosenko, Iosip A. Opeida, Alexander N. Shendrik. Hydrogen Atom Transfer from Benzyl Alcohols to N-Oxyl Radicals. Reactivity Parameters. The Journal of Organic Chemistry 2021, 86 (5) , 3792-3799. https://doi.org/10.1021/acs.joc.0c02595
    13. Olga Kushch, Iryna Hordieieva, Katerina Novikova, Yurii Litvinov, Mykhailo Kompanets, Alexander Shendrik, Iosip Opeida. Kinetics of N-oxyl Radicals’ Decay. The Journal of Organic Chemistry 2020, 85 (11) , 7112-7124. https://doi.org/10.1021/acs.joc.0c00506
    14. Alessia Barbieri, Osvaldo Lanzalunga, Andrea Lapi, Stefano Di Stefano. N-Hydroxyphthalimide: A Hydrogen Atom Transfer Mediator in Hydrocarbon Oxidations Promoted by Nonheme Iron(IV)–Oxo Complexes. The Journal of Organic Chemistry 2019, 84 (21) , 13549-13556. https://doi.org/10.1021/acs.joc.9b01813
    15. Runyuan Ma, Wei Chen, Liang Wang, Xianfeng Yi, Yao Xiao, Xinhua Gao, Jian Zhang, Xiaomin Tang, Chengguang Yang, Xiangju Meng, Anmin Zheng, Feng-Shou Xiao. N-Oxyl Radicals Trapped on Zeolite Surface Accelerate Photocatalysis. ACS Catalysis 2019, 9 (11) , 10448-10453. https://doi.org/10.1021/acscatal.9b03737
    16. Massimo Bietti, Erica Cucinotta, Gino A. DiLabio, Osvaldo Lanzalunga, Andrea Lapi, Marco Mazzonna, Eduardo Romero-Montalvo, Michela Salamone. Evaluation of Polar Effects in Hydrogen Atom Transfer Reactions from Activated Phenols. The Journal of Organic Chemistry 2019, 84 (4) , 1778-1786. https://doi.org/10.1021/acs.joc.8b02571
    17. Yohei Matsumoto, Masami Kuriyama, Kosuke Yamamoto, Koyo Nishida, Osamu Onomura. Metal-Free Synthesis of Adipic Acid via Organocatalytic Direct Oxidation of Cyclohexane under Ambient Temperature and Pressure. Organic Process Research & Development 2018, 22 (9) , 1312-1317. https://doi.org/10.1021/acs.oprd.8b00196
    18. Michela Salamone, Vanesa B. Ortega, Teo Martin, Massimo Bietti. Hydrogen Atom Transfer from Alkanols and Alkanediols to the Cumyloxyl Radical: Kinetic Evaluation of the Contribution of α-C–H Activation and β-C–H Deactivation. The Journal of Organic Chemistry 2018, 83 (10) , 5539-5545. https://doi.org/10.1021/acs.joc.8b00562
    19. Gino A. DiLabio, Paola Franchi, Osvaldo Lanzalunga, Andrea Lapi, Fiorella Lucarini, Marco Lucarini, Marco Mazzonna, Viki Kumar Prasad, and Barbara Ticconi . Hydrogen Atom Transfer (HAT) Processes Promoted by the Quinolinimide-N-oxyl Radical. A Kinetic and Theoretical Study. The Journal of Organic Chemistry 2017, 82 (12) , 6133-6141. https://doi.org/10.1021/acs.joc.7b00687
    20. Massimo Bietti, Osvaldo Lanzalunga, Andrea Lapi, Teo Martin, Marco Mazzonna, Mariangela Polin, and Michela Salamone . Aerobic Oxidation of 4-Alkyl-N,N-dimethylbenzylamines Catalyzed by N-Hydroxyphthalimide: Protonation-Driven Control over Regioselectivity. The Journal of Organic Chemistry 2017, 82 (11) , 5761-5768. https://doi.org/10.1021/acs.joc.7b00563
    21. Massimo Bietti, Veronica Forcina, Osvaldo Lanzalunga, Andrea Lapi, Teo Martin, Marco Mazzonna, and Michela Salamone . Kinetic Study of the Reaction of the Phthalimide-N-oxyl Radical with Amides: Structural and Medium Effects on the Hydrogen Atom Transfer Reactivity and Selectivity. The Journal of Organic Chemistry 2016, 81 (23) , 11924-11931. https://doi.org/10.1021/acs.joc.6b02482
    22. Igor B. Krylov, Mykhailo O. Kompanets, Katerina V. Novikova, Iosip O. Opeida, Olga V. Kushch, Boris N. Shelimov, Gennady I. Nikishin, Dmitri O. Levitsky, and Alexander O. Terent’ev . Well-Known Mediators of Selective Oxidation with Unknown Electronic Structure: Metal-Free Generation and EPR Study of Imide-N-oxyl Radicals. The Journal of Physical Chemistry A 2016, 120 (1) , 68-73. https://doi.org/10.1021/acs.jpca.5b10722
    23. Xiao-Feng Xia, Su-Li Zhu, Zhen Gu, Haijun Wang, Wei Li, Xiang Liu, and Yong-Min Liang . Catalyst-Controlled Dioxygenation of Olefins: An Approach to Peroxides, Alcohols, and Ketones. The Journal of Organic Chemistry 2015, 80 (11) , 5572-5580. https://doi.org/10.1021/acs.joc.5b00460
    24. Xiao-Feng Xia, Zhen Gu, Wentao Liu, Haijun Wang, Yongmei Xia, Haiyan Gao, Xiang Liu, and Yong-Min Liang . Metal-Free Three-Component Oxyazidation of Alkenes with Trimethylsilyl Azide and N-Hydroxyphthalimide. The Journal of Organic Chemistry 2015, 80 (1) , 290-295. https://doi.org/10.1021/jo502327r
    25. Maria Grazia Capraro, Paola Franchi, Osvaldo Lanzalunga, Andrea Lapi, and Marco Lucarini . Chiral N-Hydroxybenzamides as Potential Catalysts for Aerobic Asymmetric Oxidations. The Journal of Organic Chemistry 2014, 79 (14) , 6435-6443. https://doi.org/10.1021/jo500844c
    26. Marco Mazzonna, Massimo Bietti, Gino A. DiLabio, Osvaldo Lanzalunga, and Michela Salamone . Importance of π-Stacking Interactions in the Hydrogen Atom Transfer Reactions from Activated Phenols to Short-Lived N-Oxyl Radicals. The Journal of Organic Chemistry 2014, 79 (11) , 5209-5218. https://doi.org/10.1021/jo500789v
    27. Claudio D’Alfonso, Massimo Bietti, Gino A. DiLabio, Osvaldo Lanzalunga, and Michela Salamone . Reactions of the Phthalimide N-Oxyl Radical (PINO) with Activated Phenols: The Contribution of π-Stacking Interactions to Hydrogen Atom Transfer Rates. The Journal of Organic Chemistry 2013, 78 (3) , 1026-1037. https://doi.org/10.1021/jo302483s
    28. Jeffrey J. Warren, Tristan A. Tronic, and James M. Mayer. Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications. Chemical Reviews 2010, 110 (12) , 6961-7001. https://doi.org/10.1021/cr100085k
    29. Yong Sun, Wensong Zhang, Xingbang Hu and Haoran Li. Correlation Analysis of the Substituent Electronic Effects on the Allylic H-Abstraction in Cyclohexene by Phthalimide-N-oxyl Radicals: a DFT Study. The Journal of Physical Chemistry B 2010, 114 (14) , 4862-4869. https://doi.org/10.1021/jp100259v
    30. Enrico Baciocchi, Massimo Bietti, Osvaldo Lanzalunga, Andrea Lapi and Daniele Raponi . N-Demethylation of N,N-Dimethylanilines by the Benzotriazole N-Oxyl Radical: Evidence for a Two-Step Electron Transfer−Proton Transfer Mechanism. The Journal of Organic Chemistry 2010, 75 (5) , 1378-1385. https://doi.org/10.1021/jo100040y
    31. Enrico Baciocchi, Massimo Bietti, Massimo Di Fusco, Osvaldo Lanzalunga and Daniele Raponi . Electron-Transfer Properties of Short-Lived N-Oxyl Radicals. Kinetic Study of the Reactions of Benzotriazole-N-oxyl Radicals with Ferrocenes. Comparison with the Phthalimide-N-oxyl Radical. The Journal of Organic Chemistry 2009, 74 (15) , 5576-5583. https://doi.org/10.1021/jo900951c
    32. Ji Min Lee, Eun Ju Park, Seung Hwan Cho and Sukbok Chang. Cu-Facilitated C−O Bond Formation Using N-Hydroxyphthalimide: Efficient and Selective Functionalization of Benzyl and Allylic C−H Bonds. Journal of the American Chemical Society 2008, 130 (25) , 7824-7825. https://doi.org/10.1021/ja8031218
    33. Francesco Recupero and, Carlo Punta. Free Radical Functionalization of Organic Compounds Catalyzed by N-Hydroxyphthalimide. Chemical Reviews 2007, 107 (9) , 3800-3842. https://doi.org/10.1021/cr040170k
    34. Paolo Brandi,, Carlo Galli, and, Patrizia Gentili. Kinetic Study of the Hydrogen Abstraction Reaction of the Benzotriazole-N-oxyl Radical (BTNO) with H-Donor Substrates. The Journal of Organic Chemistry 2005, 70 (23) , 9521-9528. https://doi.org/10.1021/jo051615n
    35. Enrico Baciocchi,, Massimo Bietti,, Maria Francesca Gerini, and, Osvaldo Lanzalunga. Electron-Transfer Mechanism in the N-Demethylation of N,N-Dimethylanilines by the Phthalimide-N-oxyl Radical. The Journal of Organic Chemistry 2005, 70 (13) , 5144-5149. https://doi.org/10.1021/jo0503916
    36. Sergiu Coseri,, G. David Mendenhall, and, K. U. Ingold. Mechanisms of Reaction of Aminoxyl (Nitroxide), Iminoxyl, and Imidoxyl Radicals with Alkenes and Evidence that in the Presence of Lead Tetraacetate, N-Hydroxyphthalimide Reacts with Alkenes by Both Radical and Nonradical Mechanisms. The Journal of Organic Chemistry 2005, 70 (12) , 4629-4636. https://doi.org/10.1021/jo0504060
    37. Yang Cai,, Nobuyoshi Koshino,, Basudeb Saha, and, James H. Espenson. Kinetics of Self-Decomposition and Hydrogen Atom Transfer Reactions of Substituted Phthalimide N-Oxyl Radicals in Acetic Acid. The Journal of Organic Chemistry 2005, 70 (1) , 238-243. https://doi.org/10.1021/jo048418t
    38. Enrico Baciocchi,, Maria Francesca Gerini, and, Osvaldo Lanzalunga. Reactivity of Phthalimide N-Oxyl Radical (PINO) toward the Phenolic O−H Bond. A Kinetic Study. The Journal of Organic Chemistry 2004, 69 (25) , 8963-8966. https://doi.org/10.1021/jo048656o
    39. Cheng Yang, Sahil Arora, Stephen Maldonado, Derek A. Pratt, Corey R. J. Stephenson. The design of PINO-like hydrogen-atom-transfer catalysts. Nature Reviews Chemistry 2023, 7 (9) , 653-666. https://doi.org/10.1038/s41570-023-00511-z
    40. Marika Di Berto Mancini, Marianna Bernardini, Beniamin Emanuel Birzu, Arianna De Santis, Stefano Di Stefano, Federico Frateloreto, Daria Khaksar, Andrea Lapi, Giorgio Olivo, Osvaldo Lanzalunga. Kinetic and Product Study of the S‐oxidation vs HAT Chemoselectivity in Reactions Promoted by Nonheme Iron(IV)‐oxo Complex/NHPI Mediator System. European Journal of Organic Chemistry 2023, 26 (30) https://doi.org/10.1002/ejoc.202300360
    41. Takaya Kaneiwa, Kaito Yamada, Ryo Nakano, Makoto Yamashita. Lipophilic N ‐Hydroxyimide Derivatives: Design, Synthesis, and Application to Aerobic Alkane Oxidation Under Neat Conditions. ChemPlusChem 2023, 88 (4) https://doi.org/10.1002/cplu.202200380
    42. Qiyuan Sun, Jing Yang, Yongjie Fan, Kaicong Cai, Zhilei Lu, Zhenle He, Zeping Xu, Xingteng Lai, Yuyi Zheng, Changqing Liu, Feifeng Wang, Zhe Sun. The role of trace N-Oxyl compounds as redox mediator in enhancing antiviral ribavirin elimination in UV/Chlorine process. Applied Catalysis B: Environmental 2022, 317 , 121709. https://doi.org/10.1016/j.apcatb.2022.121709
    43. Eugeny Viktorovich Tretyakov, Victor Ivanovich Ovcharenko, Alexander Olegovich Terent'ev, Igor Borisovich Krylov, Tatiana Vladimirovna Magdesieva, Dmitrii Gennad'evich Mazhukin, Nina Pavlovna Gritsan. Conjugated nitroxides. Russian Chemical Reviews 2022, 91 (2) https://doi.org/10.1070/RCR5025
    44. Manfredi Caruso, Manuel Petroselli, Massimo Cametti. Design and Synthesis of Multipurpose Derivatives for N‐Hydroxyimide and NHPI‐based Catalysis Applications**. ChemistrySelect 2021, 6 (45) , 12975-12980. https://doi.org/10.1002/slct.202103792
    45. Keigo Takamatsu, Miku Kasai, Hinaru Nishizawa, Rio Suzuki, Hiroyuki Konno. Aerobic oxidation of aldehydes to acids with N-hydroxyphthalimide derivatives. Tetrahedron Letters 2021, 81 , 153320. https://doi.org/10.1016/j.tetlet.2021.153320
    46. Weidong Chen, Hao Tang, Weilin Wang, Qiang Fu, Junfei Luo. Catalytic Aerobic Dehydrogenatin of N ‐Heterocycles by N ‐Hydoxyphthalimide. Advanced Synthesis & Catalysis 2020, 362 (18) , 3905-3911. https://doi.org/10.1002/adsc.202000767
    47. Shengli Zuo, Jianjun Liu, Ang Zuo. N ‐Hydroxy ‐1,6‐methano[10]annulene‐3,4‐dicarboximide/Co( OAc ) 2 : A novel catalytic system for the aerobic oxidation of alkylarenes. Journal of Heterocyclic Chemistry 2020, 57 (6) , 2634-2639. https://doi.org/10.1002/jhet.3971
    48. Barbara Ticconi, Marco Mazzonna, Osvaldo Lanzalunga, Andrea Lapi. Oxidation of α-amino acids promoted by the phthalimide N-oxyl radical: A kinetic and product study. Tetrahedron 2019, 75 (26) , 3579-3585. https://doi.org/10.1016/j.tet.2019.05.026
    49. Rina Dao, Chenxuan Zhao, Jia Yao, Haoran Li. Distinguishing ionic and radical mechanisms of hydroxylamine mediated electrocatalytic alcohol oxidation using NO–H bond dissociation energies. Physical Chemistry Chemical Physics 2018, 20 (44) , 28249-28256. https://doi.org/10.1039/C8CP06134C
    50. Mark A. Buckingham, William Cunningham, Steven D. Bull, Antoine Buchard, Andrea Folli, Damien M. Murphy, Frank Marken. Electrochemically Driven C−H Hydrogen Abstraction Processes with the Tetrachloro‐Phthalimido‐N‐Oxyl (Cl 4 PINO) Catalyst. Electroanalysis 2018, 30 (8) , 1706-1713. https://doi.org/10.1002/elan.201800147
    51. Yan Wan, Jia-Qi Ma, Chao Hong, Mei-Chao Li, Li-Qun Jin, Xin-Quan Hu, Bao-Xiang Hu, Wei-Min Mo, Nan Sun, Zhen-Lu Shen. Direct synthesis of imines by 9-azabicyclo-[3,3,1]nonan-N-oxyl/KOH-catalyzed aerobic oxidative coupling of alcohols and amines. Chinese Chemical Letters 2018, 29 (8) , 1269-1272. https://doi.org/10.1016/j.cclet.2017.10.006
    52. Rina Dao, Xinyu Wang, Kexian Chen, Chenxuan Zhao, Jia Yao, Haoran Li. Landscape of the structure–O–H bond dissociation energy relationship of oximes and hydroxylamines. Physical Chemistry Chemical Physics 2017, 19 (33) , 22309-22320. https://doi.org/10.1039/C7CP03809G
    53. I. A. Opeida, Yu. E. Litvinov, O. V. Kushch, M. A. Kompanets, A. N. Shendrik, A. G. Matvienko, A. A. Novokhatko. Rate constants and isotope effects for the reaction of H-atom abstraction from RH substrates by PINO radicals. Russian Journal of Physical Chemistry A 2016, 90 (11) , 2142-2149. https://doi.org/10.1134/S0036024416110194
    54. Lucio Melone, Carlo Punta. N ‐Hydroxyphthalimide (NHPI)‐Organocatalyzed Aerobic Oxidations: Advantages, Limits, and Industrial Perspectives. 2016, 253-265. https://doi.org/10.1002/9783527690121.ch16
    55. Yongke Hu, Lei Chen, Bindong Li. NHPI/tert-butyl nitrite: A highly efficient metal-free catalytic system for aerobic oxidation of alcohols to carbonyl compounds using molecular oxygen as the terminal oxidant. Catalysis Communications 2016, 83 , 82-87. https://doi.org/10.1016/j.catcom.2016.05.017
    56. Kensuke Kiyokawa, Kenta Takemoto, Satoshi Minakata. Ritter-type amination of C–H bonds at tertiary carbon centers using iodic acid as an oxidant. Chemical Communications 2016, 52 (89) , 13082-13085. https://doi.org/10.1039/C6CC07164C
    57. Giorgio Olivo, Simone Giosia, Alessia Barbieri, Osvaldo Lanzalunga, Stefano Di Stefano. Alcohol oxidation with H 2 O 2 catalyzed by a cheap and promptly available imine based iron complex. Organic & Biomolecular Chemistry 2016, 14 (45) , 10630-10635. https://doi.org/10.1039/C6OB01984F
    58. Yunhe Lv, Xin Wang, Hao Cui, Kai Sun, Weiya Pu, Gang Li, Yingtao Wu, Jialin He, Xiaoran Ren. Selectfluor-mediated highly selective radical dioxygenation of alkenes. RSC Advances 2016, 6 (78) , 74917-74920. https://doi.org/10.1039/C6RA16266E
    59. Yunhe Lv, Kai Sun, Weiya Pu, Shukuan Mao, Gang Li, Jiejie Niu, Qian Chen, Tingting Wang. Metal-free intermolecular C–O cross-coupling reactions: synthesis of N-hydroxyimide esters. RSC Advances 2016, 6 (96) , 93486-93490. https://doi.org/10.1039/C6RA22653A
    60. Yoichi Kadoh, Kounosuke Oisaki, Motomu Kanai. Enhanced Structural Variety of Nonplanar N-Oxyl Radical Catalysts and Their Application to the Aerobic Oxidation of Benzylic C–H Bonds. CHEMICAL & PHARMACEUTICAL BULLETIN 2016, 64 (7) , 737-753. https://doi.org/10.1248/cpb.c16-00083
    61. Xiao-Feng Xia, Su-Li Zhu, Danting Zhang. Copper-catalyzed C–O coupling of styrenes with N-hydroxyphthalimide through dihydroxylamination reactions. Tetrahedron 2015, 71 (45) , 8517-8520. https://doi.org/10.1016/j.tet.2015.09.040
    62. Qiming Zhao, Kexian Chen, Wensong Zhang, Jia Yao, Haoran Li. Efficient metal-free oxidation of ethylbenzene with molecular oxygen utilizing the synergistic combination of NHPI analogues. Journal of Molecular Catalysis A: Chemical 2015, 402 , 79-82. https://doi.org/10.1016/j.molcata.2015.03.017
    63. Yunhe Lv, Kai Sun, Tingting Wang, Gang Li, Weiya Pu, Nannan Chai, Huihui Shen, Yingtao Wu. nBu 4 NI-catalyzed intermolecular C–O cross-coupling reactions: synthesis of alkyloxyamines. RSC Advances 2015, 5 (88) , 72142-72145. https://doi.org/10.1039/C5RA12691F
    64. M.O. Kompanets, O.V. Kushch, Yu.E. Litvinov, O.L. Pliekhov, K.V. Novikova, A.O. Novokhatko, A.N. Shendrik, A.V. Vasilyev, I.O. Opeida. Oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran with molecular oxygen in the presence of N-hydroxyphthalimide. Catalysis Communications 2014, 57 , 60-63. https://doi.org/10.1016/j.catcom.2014.08.005
    65. Hanqing Zhao, Wei Sun, Chengxia Miao, Quanyi Zhao. Aerobic oxidation of secondary alcohols using NHPI and iron salt as catalysts at room temperature. Journal of Molecular Catalysis A: Chemical 2014, 393 , 62-67. https://doi.org/10.1016/j.molcata.2014.06.007
    66. Kornela Kasperczyk, Beata Orlińska, Jan Zawadiak. Aerobic oxidation of cumene catalysed by 4-alkyloxycarbonyl-N-hydroxyphthalimide. Open Chemistry 2014, 12 (11) , 1176-1182. https://doi.org/10.2478/s11532-014-0565-8
    67. Manuel Petroselli, Paola Franchi, Marco Lucarini, Carlo Punta, Lucio Melone. Aerobic Oxidation of Alkylaromatics using a Lipophilic N ‐Hydroxyphthalimide: Overcoming the Industrial Limit of Catalyst Solubility. ChemSusChem 2014, 7 (9) , 2695-2703. https://doi.org/10.1002/cssc.201402132
    68. Claudio D'Alfonso, Osvaldo Lanzalunga, Andrea Lapi, Raffaella Vadalà. Comparing the catalytic efficiency of ring substituted 1-hydroxybenzotriazoles as laccase mediators. Tetrahedron 2014, 70 (18) , 3049-3055. https://doi.org/10.1016/j.tet.2014.02.068
    69. Sebastian Wertz, Armido Studer. Nitroxide-catalyzed transition-metal-free aerobic oxidation processes. Green Chemistry 2013, 15 (11) , 3116. https://doi.org/10.1039/c3gc41459k
    70. Lucio Melone, Simona Prosperini, Cristian Gambarotti, Nadia Pastori, Francesco Recupero, Carlo Punta. Selective catalytic aerobic oxidation of substituted ethylbenzenes under mild conditions. Journal of Molecular Catalysis A: Chemical 2012, 355 , 155-160. https://doi.org/10.1016/j.molcata.2011.12.009
    71. Chittreeya Tansakul, Rebecca Braslau. Nitroxides in Synthetic Radical Chemistry. 2012https://doi.org/10.1002/9781119953678.rad076
    72. Mahelet Aweke Tadesse, Carlo Galli, Patrizia Gentili. Hydrogen abstraction from H‐donor substrates by the 6‐CF 3 ‐benzotriazol‐ N ‐oxyl radical (TFNO). Journal of Physical Organic Chemistry 2011, 24 (7) , 529-538. https://doi.org/10.1002/poc.1783
    73. K. V. Novikova, M. O. Kompanets, O. V. Kushch, S. P. Kobzev, M. M. Khliestov, I. O. Opeida. Substituted N-hydroxyphthalimides as oxidation catalysts. Reaction Kinetics, Mechanisms and Catalysis 2011, 103 (1) , 31-40. https://doi.org/10.1007/s11144-011-0289-0
    74. Ludger Tebben, Armido Studer. Nitroxide: Anwendungen in der Synthese und in der Polymerchemie. Angewandte Chemie 2011, 123 (22) , 5138-5174. https://doi.org/10.1002/ange.201002547
    75. Ludger Tebben, Armido Studer. Nitroxides: Applications in Synthesis and in Polymer Chemistry. Angewandte Chemie International Edition 2011, 50 (22) , 5034-5068. https://doi.org/10.1002/anie.201002547
    76. Enrico Baciocchi, Massimo Bietti, Claudio D'Alfonso, Osvaldo Lanzalunga, Andrea Lapi, Michela Salamone. One-electron oxidation of ferrocenes by short-lived N-oxyl radicals. The role of structural effects on the intrinsic electron transfer reactivities. Organic & Biomolecular Chemistry 2011, 9 (11) , 4085. https://doi.org/10.1039/c0ob01257b
    77. Susanne Striegler, Natasha A. Dunaway, Moses G. Gichinga, Lisa K. Milton. Binuclear complexes for aerobic oxidation of primary alcohols and carbohydrates. Tetrahedron 2010, 66 (40) , 7927-7932. https://doi.org/10.1016/j.tet.2010.07.077
    78. Carlo Galli. Nitroxyl Radicals. 2010https://doi.org/10.1002/9780470682531.pat0467
    79. Carlo Punta, Cristian Gambarotti. N ‐Hydroxy Derivatives: Key Organocatalysts for the Selective Free Radical Aerobic Oxidation of Organic Compounds. 2010, 1-24. https://doi.org/10.1002/9783527630554.ch1
    80. Sergiu Coseri. Phthalimide‐ N ‐oxyl (PINO) Radical, a Powerful Catalytic Agent: Its Generation and Versatility Towards Various Organic Substrates. Catalysis Reviews 2009, 51 (2) , 218-292. https://doi.org/10.1080/01614940902743841
    81. Alessandra Coniglio, Carlo Galli, Patrizia Gentili, Raffaella Vadalà. Hydrogen atom abstraction from C–H bonds of benzylamides by the aminoxyl radical BTNO: A kinetic study. Org. Biomol. Chem. 2009, 7 (1) , 155-160. https://doi.org/10.1039/B815584D
    82. Carlo Galli, Patrizia Gentili, Osvaldo Lanzalunga. Wasserstoffabstraktion und Elektronentransfer mit Aminoxylradikalen: Synthesen und Mechanismen. Angewandte Chemie 2008, 120 (26) , 4868-4874. https://doi.org/10.1002/ange.200704292
    83. Carlo Galli, Patrizia Gentili, Osvaldo Lanzalunga. Hydrogen Abstraction and Electron Transfer with Aminoxyl Radicals: Synthetic and Mechanistic Issues. Angewandte Chemie International Edition 2008, 47 (26) , 4790-4796. https://doi.org/10.1002/anie.200704292
    84. Alessandra Coniglio, Carlo Galli, Patrizia Gentili, Raffaella Vadalà. Oxidation of amides by laccase-generated aminoxyl radicals. Journal of Molecular Catalysis B: Enzymatic 2008, 50 (1) , 40-49. https://doi.org/10.1016/j.molcatb.2007.09.022
    85. Juan Shen, Choon-Hong Tan. Anthrone-derived NHPI analogues as catalysts in reactions using oxygen as an oxidant. Organic & Biomolecular Chemistry 2008, 6 (22) , 4096. https://doi.org/10.1039/b812351a
    86. Yi Xu, Shi Lei Zhang, Wen Hu Duan. A new radical way to N,N-dimethylaniline hydroperoxide (DMAHP) and its application in organic synthesis. Chinese Chemical Letters 2007, 18 (7) , 807-810. https://doi.org/10.1016/j.cclet.2007.05.036
    87. P. J. Figiel, J. M. Sobczak. Aerobic oxidation of alcohols and alkylaromatics with dioxygen catalysed by N-hydroxyphthalimide with vanadium co-catalysts. New Journal of Chemistry 2007, 31 (9) , 1668. https://doi.org/10.1039/b702443f
    88. Saeid Farhadi, Abedien Zabardasti, Zaynab Babazadeh. Aerobic photocatalytic oxidation of activated benzylic and allylic alcohols to carbonyl compounds catalyzed by molecular iodine. Tetrahedron Letters 2006, 47 (50) , 8953-8957. https://doi.org/10.1016/j.tetlet.2006.10.036
    89. Paolo Brandi, Carlo Galli, Patrizia Gentili. Stereoelectronic effects in radical processes. Journal of Physical Organic Chemistry 2006, 19 (8-9) , 552-554. https://doi.org/10.1002/poc.1054
    90. Shin-ya Kishioka, Akifumi Yamada. Electro-oxidation of N-hydroxy imides for redox mediator in acetonitrile containing lutidine as a base. Electrochimica Acta 2006, 51 (22) , 4582-4588. https://doi.org/10.1016/j.electacta.2005.12.037
    91. Walt Partenheimer. The High Yield Synthesis of Benzaldehydes from Benzylic Alcohols using Homogeneously Catalyzed Aerobic Oxidation in Acetic Acid. Advanced Synthesis & Catalysis 2006, 348 (4-5) , 559-568. https://doi.org/10.1002/adsc.200505394
    92. Jia-Rui Wang, Lei Liu, Ye-Feng Wang, Ying Zhang, Wei Deng, Qing-Xiang Guo. Aerobic oxidation with N-hydroxyphthalimide catalysts in ionic liquid. Tetrahedron Letters 2005, 46 (27) , 4647-4651. https://doi.org/10.1016/j.tetlet.2005.04.136
    93. Shin-ya Kishioka, Akifumi Yamada. Kinetic study of the catalytic oxidation of benzyl alcohols by phthalimide-N-oxyl radical electrogenerated in acetonitrile using rotating disk electrode voltammetry. Journal of Electroanalytical Chemistry 2005, 578 (1) , 71-77. https://doi.org/10.1016/j.jelechem.2004.12.021
    94. Claudia Annunziatini, Paola Baiocco, Maria Francesca Gerini, Osvaldo Lanzalunga, Birger Sjögren. Aryl substituted N-hydroxyphthalimides as mediators in the laccase-catalysed oxidation of lignin model compounds and delignification of wood pulp. Journal of Molecular Catalysis B: Enzymatic 2005, 32 (3) , 89-96. https://doi.org/10.1016/j.molcatb.2004.11.002
    95. J. M. Tanko. 11  Reaction mechanisms : Part (i) Radical and radical ion reactions. Annual Reports Section "B" (Organic Chemistry) 2005, 101 , 235. https://doi.org/10.1039/b500189g
    96. Paola Astolfi, Paolo Brandi, Carlo Galli, Patrizia Gentili, Maria Francesca Gerini, Lucedio Greci, Osvaldo Lanzalunga. New mediators for the enzyme laccase: mechanistic features and selectivity in the oxidation of non-phenolic substrates. New Journal of Chemistry 2005, 29 (10) , 1308. https://doi.org/10.1039/b507657a
    97. Carlo Galli, Patrizia Gentili, Osvaldo Lanzalunga, Marco Lucarini, Gian Franco Pedulli. Spectrophotometric, EPR and kinetic characterisation of the >N–O• radical from 1-hydroxybenzotriazole, a key reactive species in mediated enzymatic oxidations. Chem. Commun. 2004, 346 (20) , 2356-2357. https://doi.org/10.1039/B407835G

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect