ACS Publications. Most Trusted. Most Cited. Most Read
Nucleophilic Iron Catalysis in Transesterifications: Scope and Limitations
My Activity

    Article

    Nucleophilic Iron Catalysis in Transesterifications: Scope and Limitations
    Click to copy article linkArticle link copied!

    View Author Information
    Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
    Other Access OptionsSupporting Information (1)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2010, 75, 11, 3715–3721
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo1004636
    Published May 12, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The ester bond is one of the most common structural motifs found in nature. Apart from the condensation between an acid and an alcohol, transesterifications represent another mechanistic alternative for the preparation of this compound class. The present paper summarizes our most recent investigations in this field, using nucleophilic iron complexes as catalysts for transesterifications under neutral conditions. This new type of metal catalyst complements the existing methodologies, which rely on Lewis acidic metal complexes. Investigations on scope and limitations, stereochemical course, and chemoselectivities will be presented.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Copies of 1H NMR spectra and spectral data for all esters. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 53 publications.

    1. Yue-Cheng Wu, Guang-Sen Xu, Hui-Jing Li, Yan-Chao Wu. Stereoselective Synthesis of Xylodonin A and 22-Hydroxyxylodonin A and Discovery of Analogues with Cytotoxic Activity. Journal of Natural Products 2024, 87 (4) , 884-892. https://doi.org/10.1021/acs.jnatprod.3c01150
    2. Kevin Lee, Dante Gilberti, Clairissa Yom, Jacob Meza, Jamere Stewart, Michael Lee, Justin Alvarez, Abigail Hart, Justin Zheng, Yalan Xing. Synthetic Electrochemistry Enabled Esterification via Oxidative Mesolytic Cleavage of Alkoxyamines. The Journal of Organic Chemistry 2023, 88 (13) , 9523-9529. https://doi.org/10.1021/acs.joc.3c00617
    3. Bin Pan, Hao-Tian Sun, Shan-Shan Zhang, Shang Wang, Yong-Qi Yang, Guang-Zhao Xu, Xian-Bin Su. Solvent-Controlled Regioselective Reaction of 2-Methyleneaziridines with Acrylic/Propargylic Acids: Synthesis of Carboxylate Aziridine/Acetone Esters. Organic Letters 2022, 24 (41) , 7492-7496. https://doi.org/10.1021/acs.orglett.2c02589
    4. Nivedita S. Mahajani, Rowan I. L. Meador, Tomas J. Smith, Sarah E. Canarelli, Arijit A. Adhikari, Jigisha P. Shah, Christopher M. Russo, Daniel R. Wallach, Kyle T. Howard, Alexandra M. Millimaci, John D. Chisholm. Ester Formation via Symbiotic Activation Utilizing Trichloroacetimidate Electrophiles. The Journal of Organic Chemistry 2019, 84 (12) , 7871-7882. https://doi.org/10.1021/acs.joc.9b00745
    5. Pavel Ryabchuk, Jonathon P. Matheny, Marina Rubina, and Michael Rubin . Templated Assembly of Chiral Medium-Sized Cyclic Ethers via 8-endo-trig Nucleophilic Cyclization of Cyclopropenes. Organic Letters 2016, 18 (24) , 6272-6275. https://doi.org/10.1021/acs.orglett.6b03068
    6. Richard A. Squitieri, Galen P. Shearn-Nance, Jason E. Hein, and Jared T. Shaw . Synthesis of Esters by in Situ Formation and Trapping of Diazoalkanes. The Journal of Organic Chemistry 2016, 81 (13) , 5278-5284. https://doi.org/10.1021/acs.joc.6b00408
    7. Ingmar Bauer and Hans-Joachim Knölker . Iron Catalysis in Organic Synthesis. Chemical Reviews 2015, 115 (9) , 3170-3387. https://doi.org/10.1021/cr500425u
    8. Johannes E. M. N. Klein, Susanne Rommel, and Bernd Plietker . Fe-Catalyzed Nucleophilic Activation of C–Si versus Allylic C–O Bonds: Catalytic Trifluoromethylation of Carbonyl Groups versus Tandem Trifluormethylation–Allylation of Olefins. Organometallics 2014, 33 (20) , 5802-5810. https://doi.org/10.1021/om5005012
    9. Yukiko Hayashi, Stefano Santoro, Yuki Azuma, Fahmi Himo, Takashi Ohshima, and Kazushi Mashima . Enzyme-Like Catalysis via Ternary Complex Mechanism: Alkoxy-Bridged Dinuclear Cobalt Complex Mediates Chemoselective O-Esterification over N-Amidation. Journal of the American Chemical Society 2013, 135 (16) , 6192-6199. https://doi.org/10.1021/ja400367h
    10. André P. Dieskau and Bernd Plietker . A Mild Ligand-Free Iron-Catalyzed Liberation of Alcohols from Allylcarbonates. Organic Letters 2011, 13 (20) , 5544-5547. https://doi.org/10.1021/ol202270g
    11. Biswajit Maji, Seenuvasan Vedachalan, Xin Ge, Shuting Cai, and Xue-Wei Liu . N-Heterocyclic Carbene-Mediated Oxidative Esterification of Aldehydes: Ester Formation and Mechanistic Studies. The Journal of Organic Chemistry 2011, 76 (9) , 3016-3023. https://doi.org/10.1021/jo200275c
    12. Grace R. M. O'Donohue, Sharon Chow, Sevan D. Houston, Thoa T. L. Nguyen, G. Paul Savage, Heather E. Smyth, Craig M. Williams. Fragrances of Cage Bicyclic Benzene Bioisosteres. Chemistry – A European Journal 2025, 31 (22) https://doi.org/10.1002/chem.202404716
    13. Dongxu Zuo, Chenglong Li, Qiang Wu, Qun Wang, Tianzeng Huang, Long Liu, Tieqiao Chen. Acid/halide co-mediated transesterification of unactivated carboxylic esters with O–H nucleophiles. Organic & Biomolecular Chemistry 2025, 23 (10) , 2424-2431. https://doi.org/10.1039/D4OB02027H
    14. Alana R. Ferreira, Yunierkis P. Castillo, Ana C. M. Andrade, Diego F. Nóbrega, João Paulo G. de Oliveira, Tamires C. Lima, Ricardo D. de Castro, Damião P. de Sousa, . 3‐Methyl‐4‐Nitrobenzoate Derivates as Antifungal Drug Candidates: Biological and In Silico Evaluation. Journal of Chemistry 2025, 2025 (1) https://doi.org/10.1155/joch/5566662
    15. So Hyeon Kwon, Sunwoo Lee, Jacopo Tessarolo, Haeri Lee. Stimuli-responsive Zn( ii ) complexes showing the structural conversion and on/off switching of catalytic properties. RSC Advances 2024, 14 (44) , 32655-32660. https://doi.org/10.1039/D4RA06058J
    16. Anjaneyulu Bendi, G.B. Dharma Rao. Applications of Transesterification in the Synthesis of Commercial and Noncommercial β -Ketoesters/Esters, Medicinally Important Heterocycles and Production of Biodiesel. Current Organic Chemistry 2022, 26 (16) , 1530-1551. https://doi.org/10.2174/1385272827666221124105730
    17. Taito Kato, Shin-ya Akebi, Haruki Nagae, Koji Yonehara, Tomoharu Oku, Kazushi Mashima. Runge–Kutta analysis for optimizing the Zn-catalyzed transesterification conditions of MA and MMA with diols to maximize monoesterified products. Catalysis Science & Technology 2021, 11 (21) , 6975-6986. https://doi.org/10.1039/D1CY01180D
    18. Gullapalli. B. Dharma Rao, Bendi Anjaneyulu, Mahabir. P. Kaushik, Mailavaram. R. Prasad. β‐Ketoesters: An Overview and It's Applications via Transesterification. ChemistrySelect 2021, 6 (40) , 11060-11075. https://doi.org/10.1002/slct.202102949
    19. Massimo Melchiorre, Raffaele Amendola, Vincenzo Benessere, Maria E. Cucciolito, Francesco Ruffo, Roberto Esposito. Solvent-free transesterification of methyl levulinate and esterification of levulinic acid catalyzed by a homogeneous iron(III) dimer complex. Molecular Catalysis 2020, 483 , 110777. https://doi.org/10.1016/j.mcat.2020.110777
    20. Chunyan Zhang, Guoying Zhang, Shizhong Luo, Chunfu Wang, Huiping Li. Base-catalyzed selective esterification of alcohols with unactivated esters. Organic & Biomolecular Chemistry 2018, 16 (44) , 8467-8471. https://doi.org/10.1039/C8OB02411A
    21. Richard C. Larock, Roman Rozhkov. Inverconversion of Nitriles, Carboxylic Acids, and Derivatives. 2018, 1-81. https://doi.org/10.1002/9781118662083.cot09-009
    22. Manabu Hatano, Yuji Tabata, Yurika Yoshida, Kohei Toh, Kenji Yamashita, Yoshihiro Ogura, Kazuaki Ishihara. Metal-free transesterification catalyzed by tetramethylammonium methyl carbonate. Green Chemistry 2018, 20 (6) , 1193-1198. https://doi.org/10.1039/C7GC03858E
    23. Takashi Ohshima. Tetranuclear Zinc Cluster-Catalyzed Transesterification. 2017, 65-87. https://doi.org/10.1007/978-981-10-3421-3_6
    24. Nasser Iranpoor, Habib Firouzabadi, Asma Riazi, Keyvan Pedrood. Regioselective hydrocarbonylation of phenylacetylene to α,β-unsaturated esters and thioesters with Fe(CO)5 and Mo(CO)6. Journal of Organometallic Chemistry 2016, 822 , 67-73. https://doi.org/10.1016/j.jorganchem.2016.01.025
    25. Kazushi Agura, Yukiko Hayashi, Mari Wada, Daiki Nakatake, Kazushi Mashima, Takashi Ohshima. Studies of the Electronic Effects of Zinc Cluster Catalysts and Their Application to the Transesterification of β‐Keto Esters. Chemistry – An Asian Journal 2016, 11 (10) , 1548-1554. https://doi.org/10.1002/asia.201600062
    26. Daiki Nakatake, Yuki Yokote, Yoshimasa Matsushima, Ryo Yazaki, Takashi Ohshima. A highly stable but highly reactive zinc catalyst for transesterification supported by a bis(imidazole) ligand. Green Chemistry 2016, 18 (6) , 1524-1530. https://doi.org/10.1039/C5GC02056E
    27. Bassam K. Alnasleh, Marina Rubina, Michael Rubin. Templated assembly of medium cyclic ethers via exo-trig nucleophilic cyclization of cyclopropenes. Chemical Communications 2016, 52 (47) , 7494-7496. https://doi.org/10.1039/C6CC02178F
    28. Takashi Ohshima. Development of Tetranuclear Zinc Cluster-Catalyzed Environmentally Friendly Reactions and Mechanistic Studies. CHEMICAL & PHARMACEUTICAL BULLETIN 2016, 64 (6) , 523-539. https://doi.org/10.1248/cpb.c16-00028
    29. Kohei Yamada, Saki Yoshida, Hikaru Fujita, Masanori Kitamura, Munetaka Kunishima. O ‐Benzylation of Carboxylic Acids Using 2,4,6‐Tris(benzyloxy)‐1,3,5‐triazine (TriBOT) under Acidic or Thermal Conditions. European Journal of Organic Chemistry 2015, 2015 (36) , 7997-8002. https://doi.org/10.1002/ejoc.201501172
    30. B. Stadelmann, J. Bender, D. Förster, W. Frey, M. Nieger, D. Gudat. An anionic phosphenium complex as an ambident nucleophile. Dalton Transactions 2015, 44 (13) , 6023-6031. https://doi.org/10.1039/C5DT00008D
    31. Kosei Sugahara, Naoto Satake, Keigo Kamata, Takahito Nakajima, Noritaka Mizuno. A Basic Germanodecatungstate with a −7 Charge: Efficient Chemoselective Acylation of Primary Alcohols. Angewandte Chemie 2014, 126 (48) , 13464-13468. https://doi.org/10.1002/ange.201405212
    32. Kosei Sugahara, Naoto Satake, Keigo Kamata, Takahito Nakajima, Noritaka Mizuno. A Basic Germanodecatungstate with a −7 Charge: Efficient Chemoselective Acylation of Primary Alcohols. Angewandte Chemie International Edition 2014, 53 (48) , 13248-13252. https://doi.org/10.1002/anie.201405212
    33. . Protection for the Carboxyl Group. 2014, 686-836. https://doi.org/10.1002/9781118905074.ch05
    34. Johannes E. M. N. Klein, Gerald Knizia, Burkhard Miehlich, Johannes Kästner, Bernd Plietker. Fe or FeNO Catalysis? A Quantum Chemical Investigation of the [Fe(CO) 3 (NO)] − ‐Catalyzed Cloke–Wilson Rearrangement. Chemistry – A European Journal 2014, 20 (24) , 7254-7257. https://doi.org/10.1002/chem.201402716
    35. Samik Jhulki, Saona Seth, Manas Mondal, Jarugu Narasimha Moorthy. Facile organocatalytic domino oxidation of diols to lactones by in situ-generated TetMe-IBX. Tetrahedron 2014, 70 (13) , 2286-2293. https://doi.org/10.1016/j.tet.2014.01.034
    36. Johannes E. M. N. Klein, Burkhard Miehlich, Michael S. Holzwarth, Matthias Bauer, Magdalena Milek, Marat M. Khusniyarov, Gerald Knizia, Hans‐Joachim Werner, Bernd Plietker. Der elektronische Grundzustand von [Fe(CO) 3 (NO)] − : eine spektroskopische und theoretische Studie. Angewandte Chemie 2014, 126 (7) , 1820-1824. https://doi.org/10.1002/ange.201309767
    37. Johannes E. M. N. Klein, Burkhard Miehlich, Michael S. Holzwarth, Matthias Bauer, Magdalena Milek, Marat M. Khusniyarov, Gerald Knizia, Hans‐Joachim Werner, Bernd Plietker. The Electronic Ground State of [Fe(CO) 3 (NO)] − : A Spectroscopic and Theoretical Study. Angewandte Chemie International Edition 2014, 53 (7) , 1790-1794. https://doi.org/10.1002/anie.201309767
    38. Michael S. Holzwarth, Bernd Plietker. Biorelevant Metals in Sustainable Metal Catalysis—A Survey. ChemCatChem 2013, 5 (7) , 1650-1679. https://doi.org/10.1002/cctc.201200592
    39. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Iron Pentacarbonyl. 2013, 296-296. https://doi.org/10.1002/9780471264194.fos11422.pub3
    40. Hans‐Joachim Knölker. Organoiron Chemistry. 2013, 545-776. https://doi.org/10.1002/9781118484722.ch4
    41. Susanne Rommel, André P. Dieskau, Bernd Plietker. The Fe‐Catalysed Phosphono‐Allylation of Activated Olefins. European Journal of Organic Chemistry 2013, 2013 (9) , 1790-1795. https://doi.org/10.1002/ejoc.201201563
    42. Yanfeng Jiang, Heinz Berke. Nitrosyl Complexes in Homogeneous Catalysis. 2013, 167-228. https://doi.org/10.1007/430_2013_97
    43. Neil J. Baldwin, Anna N. Nord, Brendan D. O’Donnell, Ram S. Mohan. Iron(III) tosylate catalyzed acylation of alcohols, phenols, and aldehydes. Tetrahedron Letters 2012, 53 (51) , 6946-6949. https://doi.org/10.1016/j.tetlet.2012.10.033
    44. Tanmay Chatterjee, Debasree Saha, Brindaban C. Ranu. Solvent-free transesterification in a ball-mill over alumina surface. Tetrahedron Letters 2012, 53 (32) , 4142-4144. https://doi.org/10.1016/j.tetlet.2012.05.127
    45. Batool Akhlaghinia, Hossein Ebrahimabadi, Elaheh K. Goharshadi, Sara Samiee, Soodabeh Rezazadeh. Ceria nanoparticles as an efficient catalyst for oxidation of benzylic CH bonds. Journal of Molecular Catalysis A: Chemical 2012, 357 , 67-72. https://doi.org/10.1016/j.molcata.2012.01.020
    46. Reiko Jennerjahn, Ralf Jackstell, Irene Piras, Robert Franke, Haijun Jiao, Matthias Bauer, Matthias Beller. Benign Catalysis with Iron: Unique Selectivity in Catalytic Isomerization Reactions of Olefins. ChemSusChem 2012, 5 (4) , 734-739. https://doi.org/10.1002/cssc.201100404
    47. Markus Jegelka, Bernd Plietker. Dual Catalysis: Vinyl Sulfones through Tandem Iron‐Catalyzed Allylic Sulfonation Amine‐Catalyzed Isomerization. ChemCatChem 2012, 4 (3) , 329-332. https://doi.org/10.1002/cctc.201100465
    48. Rima Das, Debashis Chakraborty. AgOTf‐catalyzed transesterification of β ‐keto esters. Applied Organometallic Chemistry 2012, 26 (3) , 140-144. https://doi.org/10.1002/aoc.2826
    49. Logan Audiger, Kevin Watts, Simon C. Elmore, Richard I. Robinson, Thomas Wirth. Ritter Reactions in Flow. ChemSusChem 2012, 5 (2) , 257-260. https://doi.org/10.1002/cssc.201100372
    50. André P. Dieskau, Jeanne‐Marie Begouin, Bernd Plietker. Bu 4 N[Fe(CO) 3 (NO)]‐Catalyzed Hydrosilylation of Aldehydes and Ketones. European Journal of Organic Chemistry 2011, 2011 (27) , 5291-5296. https://doi.org/10.1002/ejoc.201100717
    51. Silja Magens, Bernd Plietker. Fe‐Catalyzed Thioesterification of Carboxylic Esters. Chemistry – A European Journal 2011, 17 (32) , 8807-8809. https://doi.org/10.1002/chem.201101073
    52. Michael S. Holzwarth, Wolfang Frey, Bernd Plietker. Binuclear Fe-complexes as catalysts for the ligand-free regioselective allylic sulfenylation. Chemical Communications 2011, 47 (39) , 11113. https://doi.org/10.1039/c1cc14599a
    53. Silja Magens, Bernd Plietker. ChemInform Abstract: Nucleophilic Iron Catalysis in Transesterifications: Scope and Limitations.. ChemInform 2010, 41 (40) https://doi.org/10.1002/chin.201040047

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2010, 75, 11, 3715–3721
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo1004636
    Published May 12, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    3238

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.