Nature and Kinetic Analysis of Carbon−Carbon Bond Fragmentation Reactions of Cation Radicals Derived from SET-Oxidation of Lignin Model CompoundsClick to copy article linkArticle link copied!
- Dae Won Cho
- Ramakrishnan Parthasarathi
- Adam S. Pimentel
- Gabriel D. Maestas
- Hea Jung Park
- Ung Chan Yoon
- Debra Dunaway-Mariano
- S. Gnanakaran
- Paul Langan
- Patrick S. Mariano
Abstract

Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C−C bond cleavage reactions were determined. The results show that significant differences exist between the rates of cation radical C1−C2 bond cleavage reactions of 1,2-diaryl-(β-1) and 1-aryl-2-aryloxy-(β-O-4) propan-1,3-diol structural units found in lignins. Specifically, under all conditions C1−C2 bond cleavage reactions of cation radicals of the β-1 models take place more rapidly than those of the β-O-4 counterparts. The results of DFT calculations on cation radicals of the model compounds show that the C1−C2 bond dissociation energies of the β-1 lignin model compounds are significantly lower than those of the β-O-4 models, providing clear evidence for the source of the rate differences.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 88 publications.
- Trang Vu Thien Nguyen, Saerona Kim, Chang Geun Yoo, Joon Weon Choi, Gyu Leem, Yong Hwan Kim. Lignin Peroxidase-Catalyzed Selective Cleavage of C–C Bonds in Lignin at Room Temperature. ACS Catalysis 2024, 14
(15)
, 11733-11740. https://doi.org/10.1021/acscatal.4c03469
- Pengju Li, Rong Liu, Zijian Zhao, Weijian Yang, Fushuang Niu, Limei Tian, Ke Hu. Visible-Light-Driven Chlorine-Atom-Mediated Efficient and Selective Cleavage of C–C Bond in Lignin Models. ACS Sustainable Chemistry & Engineering 2024, 12
(1)
, 10-17. https://doi.org/10.1021/acssuschemeng.3c04448
- Chaofeng Zhang, Xiaojun Shen, Yongcan Jin, Jinlan Cheng, Cheng Cai, Feng Wang. Catalytic Strategies and Mechanism Analysis Orbiting the Center of Critical Intermediates in Lignin Depolymerization. Chemical Reviews 2023, 123
(8)
, 4510-4601. https://doi.org/10.1021/acs.chemrev.2c00664
- Shangzhi Tan, Xiangzhu Yu, Lina Zhu, Weiru Fu, Lianyue Wang. Heterogeneous Iron-Catalyzed Aerobic Oxidative Cleavage of C–C Bonds in Alcohols to Esters. ACS Sustainable Chemistry & Engineering 2022, 10
(50)
, 16527-16537. https://doi.org/10.1021/acssuschemeng.2c03355
- Suk Hyun Lim, Hannara Jang, Min-Ji Kim, Kyung-Ryang Wee, Dong Hyun Lim, Young-Il Kim, Dae Won Cho. Visible-Light-Induced Selective C–C Bond Cleavage Reactions of Dimeric β-O-4 and β-1 Lignin Model Substrates Utilizing Amine-Functionalized Fullerene. The Journal of Organic Chemistry 2022, 87
(5)
, 2289-2300. https://doi.org/10.1021/acs.joc.1c01991
- Douglas G. Montjoy, Harrison Hou, Joong Hwan Bahng, Aydin Eskafi, Ruiyu Jiang, Nicholas A. Kotov. Photocatalytic Hedgehog Particles for High Ionic Strength Environments. ACS Nano 2021, 15
(3)
, 4226-4234. https://doi.org/10.1021/acsnano.0c05992
- Lina Ma, Hua Zhou, Xianggui Kong, Zhenhua Li, Haohong Duan. An Electrocatalytic Strategy for C–C Bond Cleavage in Lignin Model Compounds and Lignin under Ambient Conditions. ACS Sustainable Chemistry & Engineering 2021, 9
(4)
, 1932-1940. https://doi.org/10.1021/acssuschemeng.0c08612
- Shuya Li Kayla Davis Gyu Leem . Electrocatalytic and Photocatalytic Approaches to Lignin Conversion. 2021, 97-121. https://doi.org/10.1021/bk-2021-1377.ch005
- Huifang Liu, Hongji Li, Nengchao Luo, Feng Wang. Visible-Light-Induced Oxidative Lignin C–C Bond Cleavage to Aldehydes Using Vanadium Catalysts. ACS Catalysis 2020, 10
(1)
, 632-643. https://doi.org/10.1021/acscatal.9b03768
- Suong T. Nguyen, Philip R. D. Murray, Robert R. Knowles. Light-Driven Depolymerization of Native Lignin Enabled by Proton-Coupled Electron Transfer. ACS Catalysis 2020, 10
(1)
, 800-805. https://doi.org/10.1021/acscatal.9b04813
- Gijs van Erven, Jianli Wang, Peicheng Sun, Pieter de Waard, Jacinta van der Putten, Guus E. Frissen, Richard J. A. Gosselink, Grigory Zinovyev, Antje Potthast, Willem J. H. van Berkel, Mirjam A. Kabel. Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus Ceriporiopsis subvermispora. ACS Sustainable Chemistry & Engineering 2019, 7
(24)
, 20032-20042. https://doi.org/10.1021/acssuschemeng.9b05780
- Xuhai Zhu, Takuya Akiyama, Tomoya Yokoyama, Yuji Matsumoto. Stereoselective Formation of β-O-4 Structures Mimicking Softwood Lignin Biosynthesis: Effects of Solvent and the Structures of Quinone Methide Lignin Models. Journal of Agricultural and Food Chemistry 2019, 67
(25)
, 6950-6961. https://doi.org/10.1021/acs.jafc.9b01968
- Xuhai Zhu, Takuya Akiyama, Tomoya Yokoyama, Yuji Matsumoto. Lignin-Biosynthetic Study: Reactivity of Quinone Methides in the Diastereopreferential Formation of p-Hydroxyphenyl- and Guaiacyl-Type β-O-4 Structures. Journal of Agricultural and Food Chemistry 2019, 67
(8)
, 2139-2147. https://doi.org/10.1021/acs.jafc.8b06465
- Goran A. Bogdanović, Bojana D. Ostojić, Sladjana B. Novaković. Short Intramolecular O···O Contact in Some o-Dialkoxybenzene Derivatives Generates Efficient Hydrogen Bonding Acceptor Area. Crystal Growth & Design 2018, 18
(3)
, 1303-1314. https://doi.org/10.1021/acs.cgd.7b00914
- Torsten Rinesch, Jakob Mottweiler, Marta Puche, Patricia Concepción, Avelino Corma, and Carsten Bolm . Mechanistic Investigation of the Catalyzed Cleavage for the Lignin β-O-4 Linkage: Implications for Vanillin and Vanillic Acid Formation. ACS Sustainable Chemistry & Engineering 2017, 5
(11)
, 9818-9825. https://doi.org/10.1021/acssuschemeng.7b01725
- Tingting Hou, Nengchao Luo, Hongji Li, Marc Heggen, Jianmin Lu, Yehong Wang, and Feng Wang . Yin and Yang Dual Characters of CuOx Clusters for C–C Bond Oxidation Driven by Visible Light. ACS Catalysis 2017, 7
(6)
, 3850-3859. https://doi.org/10.1021/acscatal.7b00629
- Kwang Ho Kim, Tanmoy Dutta, Eric D. Walter, Nancy G. Isern, John R. Cort, Blake A. Simmons, and Seema Singh . Chemoselective Methylation of Phenolic Hydroxyl Group Prevents Quinone Methide Formation and Repolymerization During Lignin Depolymerization. ACS Sustainable Chemistry & Engineering 2017, 5
(5)
, 3913-3919. https://doi.org/10.1021/acssuschemeng.6b03102
- Christian Díaz-Urrutia, Baburam Sedai, Kyle C. Leckett, R. Tom Baker, and Susan K. Hanson . Aerobic Oxidation of 2-Phenoxyethanol Lignin Model Compounds Using Vanadium and Copper Catalysts. ACS Sustainable Chemistry & Engineering 2016, 4
(11)
, 6244-6251. https://doi.org/10.1021/acssuschemeng.6b02420
- Nathan A. Romero and David A. Nicewicz . Organic Photoredox Catalysis. Chemical Reviews 2016, 116
(17)
, 10075-10166. https://doi.org/10.1021/acs.chemrev.6b00057
- Ariana Beste . ReaxFF Study of the Oxidation of Lignin Model Compounds for the Most Common Linkages in Softwood in View of Carbon Fiber Production. The Journal of Physical Chemistry A 2014, 118
(5)
, 803-814. https://doi.org/10.1021/jp410454q
- John D. Nguyen, Bryan S. Matsuura, and Corey R. J. Stephenson . A Photochemical Strategy for Lignin Degradation at Room Temperature. Journal of the American Chemical Society 2014, 136
(4)
, 1218-1221. https://doi.org/10.1021/ja4113462
- Baburam Sedai, Christian Díaz-Urrutia, R. Tom Baker, Ruilian Wu, L. A. “Pete” Silks, and Susan K. Hanson . Aerobic Oxidation of β-1 Lignin Model Compounds with Copper and Oxovanadium Catalysts. ACS Catalysis 2013, 3
(12)
, 3111-3122. https://doi.org/10.1021/cs400636k
- Suk Hyun Lim, Keepyung Nahm, Choon Sup Ra, Dae Won Cho, Ung Chan Yoon, John A. Latham, Debra Dunaway-Mariano, and Patrick S. Mariano . Effects of Alkoxy Groups on Arene Rings of Lignin β-O-4 Model Compounds on the Efficiencies of Single Electron Transfer-Promoted Photochemical and Enzymatic C–C Bond Cleavage Reactions. The Journal of Organic Chemistry 2013, 78
(18)
, 9431-9443. https://doi.org/10.1021/jo401680z
- Ariana Beste, A. C. Buchanan III. Computational Investigation of the Pyrolysis Product Selectivity for α-Hydroxy Phenethyl Phenyl Ether and Phenethyl Phenyl Ether: Analysis of Substituent Effects and Reactant Conformer Selection. The Journal of Physical Chemistry A 2013, 117
(15)
, 3235-3242. https://doi.org/10.1021/jp4015004
- Ariana Beste and A. C. Buchanan, III . Role of Carbon–Carbon Phenyl Migration in the Pyrolysis Mechanism of β-O-4 Lignin Model Compounds: Phenethyl Phenyl Ether and α-Hydroxy Phenethyl Phenyl Ether. The Journal of Physical Chemistry A 2012, 116
(50)
, 12242-12248. https://doi.org/10.1021/jp3104694
- Seonah Kim, Stephen C. Chmely, Mark R. Nimlos, Yannick J. Bomble, Thomas D. Foust, Robert S. Paton, and Gregg T. Beckham . Computational Study of Bond Dissociation Enthalpies for a Large Range of Native and Modified Lignins. The Journal of Physical Chemistry Letters 2011, 2
(22)
, 2846-2852. https://doi.org/10.1021/jz201182w
- R. Parthasarathi, Raymond A. Romero, Antonio Redondo, and S. Gnanakaran . Theoretical Study of the Remarkably Diverse Linkages in Lignin. The Journal of Physical Chemistry Letters 2011, 2
(20)
, 2660-2666. https://doi.org/10.1021/jz201201q
- Baburam Sedai, Christian Díaz-Urrutia, R. Tom Baker, Ruilian Wu, L. A. “Pete” Silks, and Susan K. Hanson . Comparison of Copper and Vanadium Homogeneous Catalysts for Aerobic Oxidation of Lignin Models. ACS Catalysis 2011, 1
(7)
, 794-804. https://doi.org/10.1021/cs200149v
- Dae Won Cho, John A. Latham, Hea Jung Park, Ung Chan Yoon, Paul Langan, Debra Dunaway-Mariano, and Patrick S. Mariano . Regioselectivity of Enzymatic and Photochemical Single Electron Transfer Promoted Carbon−Carbon Bond Fragmentation Reactions of Tetrameric Lignin Model Compounds. The Journal of Organic Chemistry 2011, 76
(8)
, 2840-2852. https://doi.org/10.1021/jo200253v
- Shibo Shao, Xiangzhou Wang, Wenbing Li, Yiming Zhang, Shi Liu, Weisheng Xiao, Zongyang Yue, Xu Lu, Xianfeng Fan. A mini review on photocatalytic lignin conversion into monomeric aromatic compounds. Catalysis Science & Technology 2025, 10 https://doi.org/10.1039/D4CY01187B
- Chad T. Palumbo, Erik T. Ouellette, Jie Zhu, Yuriy Román-Leshkov, Shannon S. Stahl, Gregg T. Beckham. Accessing monomers from lignin through carbon–carbon bond cleavage. Nature Reviews Chemistry 2024, 8
(11)
, 799-816. https://doi.org/10.1038/s41570-024-00652-9
- Xuejiao Wu, Shunji Xie, Ye Wang. Photocatalytic Conversion of Lignin. 2024, 265-293. https://doi.org/10.1002/9783527839865.ch10
- Yuting Liu, Huifang Liu, Ning Li, Feng Wang. Photoinduced organocatalytic lignin C–C bond cleavage in mixed binary solvents. Applied Catalysis B: Environmental 2023, 339 , 123137. https://doi.org/10.1016/j.apcatb.2023.123137
- Mo Zhang, Zheng Li, Yeqin Feng, Xing Xin, Guo-Yu Yang, Hongjin Lv. Highly selective hydrogenolysis of lignin β-O-4 models by a coupled polyoxometalate/CdS photocatalytic system. Green Chemistry 2023, 25
(23)
, 10091-10100. https://doi.org/10.1039/D3GC03468B
- Xinyuan Xu, Lei Shi, Shu Zhang, Zhimin Ao, Jinqiang Zhang, Shaobin Wang, Hongqi Sun. Photocatalytic reforming of lignocellulose: A review. Chemical Engineering Journal 2023, 469 , 143972. https://doi.org/10.1016/j.cej.2023.143972
- Matthew Y. Lui, Anthony F. Masters, Thomas Maschmeyer, Alexander K.L. Yuen. Molybdenum carbide, supercritical ethanol and base: Keys for unlocking renewable BTEX from lignin. Applied Catalysis B: Environmental 2023, 325 , 122351. https://doi.org/10.1016/j.apcatb.2022.122351
- Kejia Wu, Minglong Cao, Qiang Zeng, Xuehui Li. Radical and (photo)electron transfer induced mechanisms for lignin photo- and electro-catalytic depolymerization. Green Energy & Environment 2023, 8
(2)
, 383-405. https://doi.org/10.1016/j.gee.2022.02.011
- Shuya Li, Seongsu Park, Benjamin D. Sherman, Chang Geun Yoo, Gyu Leem. Photoelectrochemical approaches for the conversion of lignin at room temperature. Chemical Communications 2023, 59
(4)
, 401-413. https://doi.org/10.1039/D2CC05491D
- Yujie Qi, Xing Huang, Haoqi Zhai, Mengquan Shi, Yuxi Zhang, Yunlong Zhang, Yuxia Zhao. Synthesis and photoinitiation properties of lignin model compounds. Progress in Organic Coatings 2022, 173 , 107210. https://doi.org/10.1016/j.porgcoat.2022.107210
- . Scientific Questions for Lignin Conversion and a Brief Summary of Methods for Lignin Depolymerization. 2022, 79-130. https://doi.org/10.1002/9783527835034.ch4
- . Lignin
C
–
C
/
C
–
O
Bonds Cleavage via First Phenolic Hydroxyl Group Dehydrogenation or First Aromatic Rings Activation. 2022, 189-239. https://doi.org/10.1002/9783527835034.ch7
- Lai‐Hon Chung, Zhi‐Qing Lin, Jun He. Metal‐Free Carbon‐Based Nanomaterials: Fuel Cell Applications as Electrocatalysts. 2022, 73-139. https://doi.org/10.1002/9783527828562.ch3
- Shaik Gouse Peera, Chao Liu. Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coordination Chemistry Reviews 2022, 463 , 214554. https://doi.org/10.1016/j.ccr.2022.214554
- Zhipeng Huang, Nengchao Luo, Chaofeng Zhang, Feng Wang. Radical generation and fate control for photocatalytic biomass conversion. Nature Reviews Chemistry 2022, 6
(3)
, 197-214. https://doi.org/10.1038/s41570-022-00359-9
- Gabriel Magallanes, Markus D. Kärkäs, Corey R. J. Stephenson. Depolymerization of Lignin by Homogeneous Photocatalysis. 2022, 1537-1562. https://doi.org/10.1007/978-3-030-63713-2_52
- Miša Mojca Cajnko, Jošt Oblak, Miha Grilc, Blaž Likozar. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics. Bioresource Technology 2021, 340 , 125655. https://doi.org/10.1016/j.biortech.2021.125655
- Andrey Shatskiy, Markus D. Kärkäs. Biomass Processing via Photochemical Means. 2021, 265-288. https://doi.org/10.1002/9783527825028.ch9
- Yanbin Cui, Shannon L. Goes, Shannon S. Stahl. Sequential oxidation-depolymerization strategies for lignin conversion to low molecular weight aromatic chemicals. 2021, 99-136. https://doi.org/10.1016/bs.adioch.2021.02.003
- Huihui Luo, Lianyue Wang, Sensen Shang, Guosong Li, Ying Lv, Shuang Gao, Wen Dai. Cobalt Nanoparticles‐Catalyzed Widely Applicable Successive C−C Bond Cleavage in Alcohols to Access Esters. Angewandte Chemie 2020, 132
(43)
, 19430-19436. https://doi.org/10.1002/ange.202008261
- Huihui Luo, Lianyue Wang, Sensen Shang, Guosong Li, Ying Lv, Shuang Gao, Wen Dai. Cobalt Nanoparticles‐Catalyzed Widely Applicable Successive C−C Bond Cleavage in Alcohols to Access Esters. Angewandte Chemie International Edition 2020, 59
(43)
, 19268-19274. https://doi.org/10.1002/anie.202008261
- , Nataliya Demchenko, Svitlana Tkachenko, , Sergii Demchenko, . Synthesis, Antibacterial and Anti-Corrosive Activity of 2,3-Dihydroimidazo[1,2-a]Pyridinium Bromides. Chemistry & Chemical Technology 2020, 14
(3)
, 327-333. https://doi.org/10.23939/chcht14.03.327
- Xuejiao Wu, Nengchao Luo, Shunji Xie, Haikun Zhang, Qinghong Zhang, Feng Wang, Ye Wang. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews 2020, 49
(17)
, 6198-6223. https://doi.org/10.1039/D0CS00314J
- Yinling Wang, Yue Liu, Jianghua He, Yuetao Zhang. Redox-neutral photocatalytic strategy for selective C–C bond cleavage of lignin and lignin models via PCET process. Science Bulletin 2019, 64
(22)
, 1658-1666. https://doi.org/10.1016/j.scib.2019.09.003
- Xia Zhao, Yiying Yang, Rongxiu Zhu, Chengbu Liu, Dongju Zhang. Mechanistic picture of the redox-neutral C C bond cleavage in 1,3-dilignol lignin model compound catalyzed by [Ru(Cl)(H)(PPh3)3]/triphos. Molecular Catalysis 2019, 471 , 77-84. https://doi.org/10.1016/j.mcat.2019.04.020
- , Hanna Yeromina, Nataliya Demchenko, , Olga Kiz, , Zinaida Ieromina, , Sergiy Demchenko, . The Synthesis and Antimicrobial Properties of New 2-(R-Phenylimino)-1,3-thiazoline Derivatives Containing the N-Methylpiperazine Moiety. Chemistry & Chemical Technology 2019, 13
(2)
, 150-156. https://doi.org/10.23939/chcht13.02.150
- Samira Gharehkhani, Yiqian Zhang, Pedram Fatehi. Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science 2019, 72 , 59-89. https://doi.org/10.1016/j.pecs.2019.01.002
- Wang Zhou, Junki Nakahashi, Tomoya Miura, Masahiro Murakami. Light/Copper Relay for Aerobic Fragmentation of Lignin Model Compounds. Asian Journal of Organic Chemistry 2018, 7
(12)
, 2431-2434. https://doi.org/10.1002/ajoc.201800520
- H. Eemil P. Salonen, Carsten P. A. Mecke, Miika I. Karjomaa, Pekka M. Joensuu, Ari M. P. Koskinen. Copper Catalyzed Alcohol Oxidation and Cleavage of β‐O‐4 Lignin Model Systems: From Development to Mechanistic Examination. ChemistrySelect 2018, 3
(44)
, 12446-12454. https://doi.org/10.1002/slct.201802715
- Jian Zhang. Conversion of Lignin Models by Photoredox Catalysis. ChemSusChem 2018, 11
(18)
, 3071-3080. https://doi.org/10.1002/cssc.201801370
- Susana Guadix-Montero, Meenakshisundaram Sankar. Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation. Topics in Catalysis 2018, 61
(3-4)
, 183-198. https://doi.org/10.1007/s11244-018-0909-2
- Yinling Wang, Yiman Du, Jianghua He, Yuetao Zhang. Transformation of lignin model compounds to
N
-substituted aromatics
via
Beckmann rearrangement. Green Chemistry 2018, 20
(14)
, 3318-3326. https://doi.org/10.1039/C8GC00920A
- Jie Chen, Mao-Wen Xu, Jinggao Wu, Chang Ming Li. Center-iodized graphene as an advanced anode material to significantly boost the performance of lithium-ion batteries. Nanoscale 2018, 10
(19)
, 9115-9122. https://doi.org/10.1039/C8NR00061A
- Zhen Fang, Mark S. Meier. Toward the oxidative deconstruction of lignin: oxidation of β-1 and β-5 linkages. Organic & Biomolecular Chemistry 2018, 16
(13)
, 2330-2341. https://doi.org/10.1039/C8OB00409A
- Wei-Jing Gao, Chiu Marco Lam, Bao-Guo Sun, R. Daniel Little, Cheng-Chu Zeng. Selective electrochemical C O bond cleavage of β-O-4 lignin model compounds mediated by iodide ion. Tetrahedron 2017, 73
(17)
, 2447-2454. https://doi.org/10.1016/j.tet.2017.03.027
- Yinling Wang, Qianyi Wang, Jianghua He, Yuetao Zhang. Highly effective C–C bond cleavage of lignin model compounds. Green Chemistry 2017, 19
(13)
, 3135-3141. https://doi.org/10.1039/C7GC00844A
- Verónica Sáez-Jiménez, Jorge Rencoret, Miguel Angel Rodríguez-Carvajal, Ana Gutiérrez, Francisco Javier Ruiz-Dueñas, Angel T. Martínez. Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin. Biotechnology for Biofuels 2016, 9
(1)
https://doi.org/10.1186/s13068-016-0615-x
- Rui Zhu, Bing Wang, Minshu Cui, Jin Deng, Xinglong Li, Yingbo Ma, Yao Fu. Chemoselective oxidant-free dehydrogenation of alcohols in lignin using Cp*Ir catalysts. Green Chemistry 2016, 18
(7)
, 2029-2036. https://doi.org/10.1039/C5GC02347E
- Jian Shi, Sivakumar Pattathil, Ramakrishnan Parthasarathi, Nickolas A. Anderson, Jeong Im Kim, Sivasankari Venketachalam, Michael G. Hahn, Clint Chapple, Blake A. Simmons, Seema Singh. Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chemistry 2016, 18
(18)
, 4884-4895. https://doi.org/10.1039/C6GC01193D
- Jian Sun, Tanmoy Dutta, Ramakrishnan Parthasarathi, Kwang Ho Kim, Nikola Tolic, Rosalie K. Chu, Nancy G. Isern, John R. Cort, Blake A. Simmons, Seema Singh. Rapid room temperature solubilization and depolymerization of polymeric lignin at high loadings. Green Chemistry 2016, 18
(22)
, 6012-6020. https://doi.org/10.1039/C6GC02258H
- Jason S. Lupoi, Seema Singh, Ramakrishnan Parthasarathi, Blake A. Simmons, Robert J. Henry. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renewable and Sustainable Energy Reviews 2015, 49 , 871-906. https://doi.org/10.1016/j.rser.2015.04.091
- . Chemical Characterization and Modification of Lignins. 2015, 189-246. https://doi.org/10.1002/9781118682784.ch7
- Suk Hyun Lim, Woo Sol Lee, Young-Il Kim, Youngku Sohn, Dae Won Cho, Cheolhee Kim, Eunae Kim, John A. Latham, Debra Dunaway-Mariano, Patrick S. Mariano. Photochemical and enzymatic SET promoted C–C bond cleavage reactions of lignin β-1 model compounds containing varying number of methoxy substituents on their arene rings. Tetrahedron 2015, 71
(24)
, 4236-4247. https://doi.org/10.1016/j.tet.2015.04.077
- Thorsten vom Stein, Tim den Hartog, Julien Buendia, Spas Stoychev, Jakob Mottweiler, Carsten Bolm, Jürgen Klankermayer, Walter Leitner. Ruthenium‐Catalyzed CC Bond Cleavage in Lignin Model Substrates. Angewandte Chemie 2015, 127
(20)
, 5957-5961. https://doi.org/10.1002/ange.201410620
- Thorsten vom Stein, Tim den Hartog, Julien Buendia, Spas Stoychev, Jakob Mottweiler, Carsten Bolm, Jürgen Klankermayer, Walter Leitner. Ruthenium‐Catalyzed CC Bond Cleavage in Lignin Model Substrates. Angewandte Chemie International Edition 2015, 54
(20)
, 5859-5863. https://doi.org/10.1002/anie.201410620
- Adam Wu, Jean Michel Lauzon, Brian R. James. Hydrogenolysis of a γ-Acetylated Lignin Model Compound with a Ruthenium–Xantphos Catalyst. Catalysis Letters 2015, 145
(2)
, 511-518. https://doi.org/10.1007/s10562-014-1401-7
- Jakob Mottweiler, Julien Buendia, Erik Zuidema, Carsten Bolm. Cleavage and Diastereoselective Synthesis of Mono- and Dilignol β-O-4 Model Compounds. 2015, 105-116. https://doi.org/10.1007/978-3-662-45425-1_8
- Fei-Xian Luo, Tai-Gang Zhou, Xin Li, Yun-Lei Luo, Zhang-Jie Shi. Fragmentation of structural units of lignin promoted by persulfate through selective C–C cleavage under mild conditions. Organic Chemistry Frontiers 2015, 2
(9)
, 1066-1070. https://doi.org/10.1039/C5QO00116A
- Sarifuddin Gazi, Wilson Kwok Hung Ng, Rakesh Ganguly, Adhitya Mangala Putra Moeljadi, Hajime Hirao, Han Sen Soo. Selective photocatalytic C–C bond cleavage under ambient conditions with earth abundant vanadium complexes. Chemical Science 2015, 6
(12)
, 7130-7142. https://doi.org/10.1039/C5SC02923F
- Daniel J. Yelle, Alexander N. Kapich, Carl J. Houtman, Fachuang Lu, Vitaliy I. Timokhin, Raymond C. Fort, John Ralph, Kenneth E. Hammel, . A Highly Diastereoselective Oxidant Contributes to Ligninolysis by the White Rot Basidiomycete Ceriporiopsis subvermispora. Applied and Environmental Microbiology 2014, 80
(24)
, 7536-7544. https://doi.org/10.1128/AEM.02111-14
- Baburam Sedai, R. Tom Baker. Copper Catalysts for Selective CC Bond Cleavage of β‐O‐4 Lignin Model Compounds. Advanced Synthesis & Catalysis 2014, 356
(17)
, 3563-3574. https://doi.org/10.1002/adsc.201400463
- Benjamin G. Janesko. Acid-catalyzed hydrolysis of lignin β-O-4 linkages in ionic liquid solvents: a computational mechanistic study. Physical Chemistry Chemical Physics 2014, 16
(11)
, 5423. https://doi.org/10.1039/c3cp53836b
- In-Yup Jeon, Hyun-Jung Choi, Min Choi, Jeong-Min Seo, Sun-Min Jung, Min-Jung Kim, Sheng Zhang, Lipeng Zhang, Zhenhai Xia, Liming Dai, Noejung Park, Jong-Beom Baek. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports 2013, 3
(1)
https://doi.org/10.1038/srep01810
- In‐Yup Jeon, Sheng Zhang, Lipeng Zhang, Hyun‐Jung Choi, Jeong‐Min Seo, Zhenhai Xia, Liming Dai, Jong‐Beom Baek. Edge‐Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal‐Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Advanced Materials 2013, 25
(42)
, 6138-6145. https://doi.org/10.1002/adma.201302753
- Ariana Beste, A.C. Buchanan. Kinetic simulation of the thermal degradation of phenethyl phenyl ether, a model compound for the β-O-4 linkage in lignin. Chemical Physics Letters 2012, 550 , 19-24. https://doi.org/10.1016/j.cplett.2012.08.040
- Elena Fernández-Fueyo, Francisco J. Ruiz-Dueñas, Yuta Miki, María Jesús Martínez, Kenneth E. Hammel, Angel T. Martínez. Lignin-degrading Peroxidases from Genome of Selective Ligninolytic Fungus Ceriporiopsis subvermispora. Journal of Biological Chemistry 2012, 287
(20)
, 16903-16916. https://doi.org/10.1074/jbc.M112.356378
- Adam Wu, Brian O. Patrick, Enoch Chung, Brian R. James. Hydrogenolysis of β-O-4 lignin model dimers by a ruthenium-xantphos catalyst. Dalton Transactions 2012, 41
(36)
, 11093. https://doi.org/10.1039/c2dt31065a
- Julien Buendia, Jakob Mottweiler, Carsten Bolm. Preparation of Diastereomerically Pure Dilignol Model Compounds. Chemistry – A European Journal 2011, 17
(49)
, 13877-13882. https://doi.org/10.1002/chem.201101579
- Paul Langan, S. Gnanakaran, Kirk D. Rector, Norma Pawley, David T. Fox, Dae Won Cho, Kenneth E. Hammel. Exploring new strategies for cellulosic biofuels production. Energy & Environmental Science 2011, 4
(10)
, 3820. https://doi.org/10.1039/c1ee01268a
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.