ACS Publications. Most Trusted. Most Cited. Most Read
Nature and Kinetic Analysis of Carbon−Carbon Bond Fragmentation Reactions of Cation Radicals Derived from SET-Oxidation of Lignin Model Compounds
My Activity
    Article

    Nature and Kinetic Analysis of Carbon−Carbon Bond Fragmentation Reactions of Cation Radicals Derived from SET-Oxidation of Lignin Model Compounds
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131
    Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
    § Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
    Other Access OptionsSupporting Information (2)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2010, 75, 19, 6549–6562
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo1012509
    Published September 10, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C−C bond cleavage reactions were determined. The results show that significant differences exist between the rates of cation radical C1−C2 bond cleavage reactions of 1,2-diaryl-(β-1) and 1-aryl-2-aryloxy-(β-O-4) propan-1,3-diol structural units found in lignins. Specifically, under all conditions C1−C2 bond cleavage reactions of cation radicals of the β-1 models take place more rapidly than those of the β-O-4 counterparts. The results of DFT calculations on cation radicals of the model compounds show that the C1−C2 bond dissociation energies of the β-1 lignin model compounds are significantly lower than those of the β-O-4 models, providing clear evidence for the source of the rate differences.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental information, 1H and 13C NMR spectra of all previously unidentified compounds, and X-ray crystallographic data in CIF form. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 88 publications.

    1. Trang Vu Thien Nguyen, Saerona Kim, Chang Geun Yoo, Joon Weon Choi, Gyu Leem, Yong Hwan Kim. Lignin Peroxidase-Catalyzed Selective Cleavage of C–C Bonds in Lignin at Room Temperature. ACS Catalysis 2024, 14 (15) , 11733-11740. https://doi.org/10.1021/acscatal.4c03469
    2. Pengju Li, Rong Liu, Zijian Zhao, Weijian Yang, Fushuang Niu, Limei Tian, Ke Hu. Visible-Light-Driven Chlorine-Atom-Mediated Efficient and Selective Cleavage of C–C Bond in Lignin Models. ACS Sustainable Chemistry & Engineering 2024, 12 (1) , 10-17. https://doi.org/10.1021/acssuschemeng.3c04448
    3. Chaofeng Zhang, Xiaojun Shen, Yongcan Jin, Jinlan Cheng, Cheng Cai, Feng Wang. Catalytic Strategies and Mechanism Analysis Orbiting the Center of Critical Intermediates in Lignin Depolymerization. Chemical Reviews 2023, 123 (8) , 4510-4601. https://doi.org/10.1021/acs.chemrev.2c00664
    4. Shangzhi Tan, Xiangzhu Yu, Lina Zhu, Weiru Fu, Lianyue Wang. Heterogeneous Iron-Catalyzed Aerobic Oxidative Cleavage of C–C Bonds in Alcohols to Esters. ACS Sustainable Chemistry & Engineering 2022, 10 (50) , 16527-16537. https://doi.org/10.1021/acssuschemeng.2c03355
    5. Suk Hyun Lim, Hannara Jang, Min-Ji Kim, Kyung-Ryang Wee, Dong Hyun Lim, Young-Il Kim, Dae Won Cho. Visible-Light-Induced Selective C–C Bond Cleavage Reactions of Dimeric β-O-4 and β-1 Lignin Model Substrates Utilizing Amine-Functionalized Fullerene. The Journal of Organic Chemistry 2022, 87 (5) , 2289-2300. https://doi.org/10.1021/acs.joc.1c01991
    6. Douglas G. Montjoy, Harrison Hou, Joong Hwan Bahng, Aydin Eskafi, Ruiyu Jiang, Nicholas A. Kotov. Photocatalytic Hedgehog Particles for High Ionic Strength Environments. ACS Nano 2021, 15 (3) , 4226-4234. https://doi.org/10.1021/acsnano.0c05992
    7. Lina Ma, Hua Zhou, Xianggui Kong, Zhenhua Li, Haohong Duan. An Electrocatalytic Strategy for C–C Bond Cleavage in Lignin Model Compounds and Lignin under Ambient Conditions. ACS Sustainable Chemistry & Engineering 2021, 9 (4) , 1932-1940. https://doi.org/10.1021/acssuschemeng.0c08612
    8. Shuya Li Kayla Davis Gyu Leem . Electrocatalytic and Photocatalytic Approaches to Lignin Conversion. 2021, 97-121. https://doi.org/10.1021/bk-2021-1377.ch005
    9. Huifang Liu, Hongji Li, Nengchao Luo, Feng Wang. Visible-Light-Induced Oxidative Lignin C–C Bond Cleavage to Aldehydes Using Vanadium Catalysts. ACS Catalysis 2020, 10 (1) , 632-643. https://doi.org/10.1021/acscatal.9b03768
    10. Suong T. Nguyen, Philip R. D. Murray, Robert R. Knowles. Light-Driven Depolymerization of Native Lignin Enabled by Proton-Coupled Electron Transfer. ACS Catalysis 2020, 10 (1) , 800-805. https://doi.org/10.1021/acscatal.9b04813
    11. Gijs van Erven, Jianli Wang, Peicheng Sun, Pieter de Waard, Jacinta van der Putten, Guus E. Frissen, Richard J. A. Gosselink, Grigory Zinovyev, Antje Potthast, Willem J. H. van Berkel, Mirjam A. Kabel. Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus Ceriporiopsis subvermispora. ACS Sustainable Chemistry & Engineering 2019, 7 (24) , 20032-20042. https://doi.org/10.1021/acssuschemeng.9b05780
    12. Xuhai Zhu, Takuya Akiyama, Tomoya Yokoyama, Yuji Matsumoto. Stereoselective Formation of β-O-4 Structures Mimicking Softwood Lignin Biosynthesis: Effects of Solvent and the Structures of Quinone Methide Lignin Models. Journal of Agricultural and Food Chemistry 2019, 67 (25) , 6950-6961. https://doi.org/10.1021/acs.jafc.9b01968
    13. Xuhai Zhu, Takuya Akiyama, Tomoya Yokoyama, Yuji Matsumoto. Lignin-Biosynthetic Study: Reactivity of Quinone Methides in the Diastereopreferential Formation of p-Hydroxyphenyl- and Guaiacyl-Type β-O-4 Structures. Journal of Agricultural and Food Chemistry 2019, 67 (8) , 2139-2147. https://doi.org/10.1021/acs.jafc.8b06465
    14. Goran A. Bogdanović, Bojana D. Ostojić, Sladjana B. Novaković. Short Intramolecular O···O Contact in Some o-Dialkoxybenzene Derivatives Generates Efficient Hydrogen Bonding Acceptor Area. Crystal Growth & Design 2018, 18 (3) , 1303-1314. https://doi.org/10.1021/acs.cgd.7b00914
    15. Torsten Rinesch, Jakob Mottweiler, Marta Puche, Patricia Concepción, Avelino Corma, and Carsten Bolm . Mechanistic Investigation of the Catalyzed Cleavage for the Lignin β-O-4 Linkage: Implications for Vanillin and Vanillic Acid Formation. ACS Sustainable Chemistry & Engineering 2017, 5 (11) , 9818-9825. https://doi.org/10.1021/acssuschemeng.7b01725
    16. Tingting Hou, Nengchao Luo, Hongji Li, Marc Heggen, Jianmin Lu, Yehong Wang, and Feng Wang . Yin and Yang Dual Characters of CuOx Clusters for C–C Bond Oxidation Driven by Visible Light. ACS Catalysis 2017, 7 (6) , 3850-3859. https://doi.org/10.1021/acscatal.7b00629
    17. Kwang Ho Kim, Tanmoy Dutta, Eric D. Walter, Nancy G. Isern, John R. Cort, Blake A. Simmons, and Seema Singh . Chemoselective Methylation of Phenolic Hydroxyl Group Prevents Quinone Methide Formation and Repolymerization During Lignin Depolymerization. ACS Sustainable Chemistry & Engineering 2017, 5 (5) , 3913-3919. https://doi.org/10.1021/acssuschemeng.6b03102
    18. Christian Díaz-Urrutia, Baburam Sedai, Kyle C. Leckett, R. Tom Baker, and Susan K. Hanson . Aerobic Oxidation of 2-Phenoxyethanol Lignin Model Compounds Using Vanadium and Copper Catalysts. ACS Sustainable Chemistry & Engineering 2016, 4 (11) , 6244-6251. https://doi.org/10.1021/acssuschemeng.6b02420
    19. Nathan A. Romero and David A. Nicewicz . Organic Photoredox Catalysis. Chemical Reviews 2016, 116 (17) , 10075-10166. https://doi.org/10.1021/acs.chemrev.6b00057
    20. Ariana Beste . ReaxFF Study of the Oxidation of Lignin Model Compounds for the Most Common Linkages in Softwood in View of Carbon Fiber Production. The Journal of Physical Chemistry A 2014, 118 (5) , 803-814. https://doi.org/10.1021/jp410454q
    21. John D. Nguyen, Bryan S. Matsuura, and Corey R. J. Stephenson . A Photochemical Strategy for Lignin Degradation at Room Temperature. Journal of the American Chemical Society 2014, 136 (4) , 1218-1221. https://doi.org/10.1021/ja4113462
    22. Baburam Sedai, Christian Díaz-Urrutia, R. Tom Baker, Ruilian Wu, L. A. “Pete” Silks, and Susan K. Hanson . Aerobic Oxidation of β-1 Lignin Model Compounds with Copper and Oxovanadium Catalysts. ACS Catalysis 2013, 3 (12) , 3111-3122. https://doi.org/10.1021/cs400636k
    23. Suk Hyun Lim, Keepyung Nahm, Choon Sup Ra, Dae Won Cho, Ung Chan Yoon, John A. Latham, Debra Dunaway-Mariano, and Patrick S. Mariano . Effects of Alkoxy Groups on Arene Rings of Lignin β-O-4 Model Compounds on the Efficiencies of Single Electron Transfer-Promoted Photochemical and Enzymatic C–C Bond Cleavage Reactions. The Journal of Organic Chemistry 2013, 78 (18) , 9431-9443. https://doi.org/10.1021/jo401680z
    24. Ariana Beste, A. C. Buchanan III. Computational Investigation of the Pyrolysis Product Selectivity for α-Hydroxy Phenethyl Phenyl Ether and Phenethyl Phenyl Ether: Analysis of Substituent Effects and Reactant Conformer Selection. The Journal of Physical Chemistry A 2013, 117 (15) , 3235-3242. https://doi.org/10.1021/jp4015004
    25. Ariana Beste and A. C. Buchanan, III . Role of Carbon–Carbon Phenyl Migration in the Pyrolysis Mechanism of β-O-4 Lignin Model Compounds: Phenethyl Phenyl Ether and α-Hydroxy Phenethyl Phenyl Ether. The Journal of Physical Chemistry A 2012, 116 (50) , 12242-12248. https://doi.org/10.1021/jp3104694
    26. Seonah Kim, Stephen C. Chmely, Mark R. Nimlos, Yannick J. Bomble, Thomas D. Foust, Robert S. Paton, and Gregg T. Beckham . Computational Study of Bond Dissociation Enthalpies for a Large Range of Native and Modified Lignins. The Journal of Physical Chemistry Letters 2011, 2 (22) , 2846-2852. https://doi.org/10.1021/jz201182w
    27. R. Parthasarathi, Raymond A. Romero, Antonio Redondo, and S. Gnanakaran . Theoretical Study of the Remarkably Diverse Linkages in Lignin. The Journal of Physical Chemistry Letters 2011, 2 (20) , 2660-2666. https://doi.org/10.1021/jz201201q
    28. Baburam Sedai, Christian Díaz-Urrutia, R. Tom Baker, Ruilian Wu, L. A. “Pete” Silks, and Susan K. Hanson . Comparison of Copper and Vanadium Homogeneous Catalysts for Aerobic Oxidation of Lignin Models. ACS Catalysis 2011, 1 (7) , 794-804. https://doi.org/10.1021/cs200149v
    29. Dae Won Cho, John A. Latham, Hea Jung Park, Ung Chan Yoon, Paul Langan, Debra Dunaway-Mariano, and Patrick S. Mariano . Regioselectivity of Enzymatic and Photochemical Single Electron Transfer Promoted Carbon−Carbon Bond Fragmentation Reactions of Tetrameric Lignin Model Compounds. The Journal of Organic Chemistry 2011, 76 (8) , 2840-2852. https://doi.org/10.1021/jo200253v
    30. Shibo Shao, Xiangzhou Wang, Wenbing Li, Yiming Zhang, Shi Liu, Weisheng Xiao, Zongyang Yue, Xu Lu, Xianfeng Fan. A mini review on photocatalytic lignin conversion into monomeric aromatic compounds. Catalysis Science & Technology 2025, 10 https://doi.org/10.1039/D4CY01187B
    31. Chad T. Palumbo, Erik T. Ouellette, Jie Zhu, Yuriy Román-Leshkov, Shannon S. Stahl, Gregg T. Beckham. Accessing monomers from lignin through carbon–carbon bond cleavage. Nature Reviews Chemistry 2024, 8 (11) , 799-816. https://doi.org/10.1038/s41570-024-00652-9
    32. Xuejiao Wu, Shunji Xie, Ye Wang. Photocatalytic Conversion of Lignin. 2024, 265-293. https://doi.org/10.1002/9783527839865.ch10
    33. Yuting Liu, Huifang Liu, Ning Li, Feng Wang. Photoinduced organocatalytic lignin C–C bond cleavage in mixed binary solvents. Applied Catalysis B: Environmental 2023, 339 , 123137. https://doi.org/10.1016/j.apcatb.2023.123137
    34. Mo Zhang, Zheng Li, Yeqin Feng, Xing Xin, Guo-Yu Yang, Hongjin Lv. Highly selective hydrogenolysis of lignin β-O-4 models by a coupled polyoxometalate/CdS photocatalytic system. Green Chemistry 2023, 25 (23) , 10091-10100. https://doi.org/10.1039/D3GC03468B
    35. Xinyuan Xu, Lei Shi, Shu Zhang, Zhimin Ao, Jinqiang Zhang, Shaobin Wang, Hongqi Sun. Photocatalytic reforming of lignocellulose: A review. Chemical Engineering Journal 2023, 469 , 143972. https://doi.org/10.1016/j.cej.2023.143972
    36. Matthew Y. Lui, Anthony F. Masters, Thomas Maschmeyer, Alexander K.L. Yuen. Molybdenum carbide, supercritical ethanol and base: Keys for unlocking renewable BTEX from lignin. Applied Catalysis B: Environmental 2023, 325 , 122351. https://doi.org/10.1016/j.apcatb.2022.122351
    37. Kejia Wu, Minglong Cao, Qiang Zeng, Xuehui Li. Radical and (photo)electron transfer induced mechanisms for lignin photo- and electro-catalytic depolymerization. Green Energy & Environment 2023, 8 (2) , 383-405. https://doi.org/10.1016/j.gee.2022.02.011
    38. Shuya Li, Seongsu Park, Benjamin D. Sherman, Chang Geun Yoo, Gyu Leem. Photoelectrochemical approaches for the conversion of lignin at room temperature. Chemical Communications 2023, 59 (4) , 401-413. https://doi.org/10.1039/D2CC05491D
    39. Yujie Qi, Xing Huang, Haoqi Zhai, Mengquan Shi, Yuxi Zhang, Yunlong Zhang, Yuxia Zhao. Synthesis and photoinitiation properties of lignin model compounds. Progress in Organic Coatings 2022, 173 , 107210. https://doi.org/10.1016/j.porgcoat.2022.107210
    40. . Scientific Questions for Lignin Conversion and a Brief Summary of Methods for Lignin Depolymerization. 2022, 79-130. https://doi.org/10.1002/9783527835034.ch4
    41. . Lignin C – C / C – O Bonds Cleavage via First Phenolic Hydroxyl Group Dehydrogenation or First Aromatic Rings Activation. 2022, 189-239. https://doi.org/10.1002/9783527835034.ch7
    42. Lai‐Hon Chung, Zhi‐Qing Lin, Jun He. Metal‐Free Carbon‐Based Nanomaterials: Fuel Cell Applications as Electrocatalysts. 2022, 73-139. https://doi.org/10.1002/9783527828562.ch3
    43. Shaik Gouse Peera, Chao Liu. Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coordination Chemistry Reviews 2022, 463 , 214554. https://doi.org/10.1016/j.ccr.2022.214554
    44. Zhipeng Huang, Nengchao Luo, Chaofeng Zhang, Feng Wang. Radical generation and fate control for photocatalytic biomass conversion. Nature Reviews Chemistry 2022, 6 (3) , 197-214. https://doi.org/10.1038/s41570-022-00359-9
    45. Gabriel Magallanes, Markus D. Kärkäs, Corey R. J. Stephenson. Depolymerization of Lignin by Homogeneous Photocatalysis. 2022, 1537-1562. https://doi.org/10.1007/978-3-030-63713-2_52
    46. Miša Mojca Cajnko, Jošt Oblak, Miha Grilc, Blaž Likozar. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics. Bioresource Technology 2021, 340 , 125655. https://doi.org/10.1016/j.biortech.2021.125655
    47. Andrey Shatskiy, Markus D. Kärkäs. Biomass Processing via Photochemical Means. 2021, 265-288. https://doi.org/10.1002/9783527825028.ch9
    48. Yanbin Cui, Shannon L. Goes, Shannon S. Stahl. Sequential oxidation-depolymerization strategies for lignin conversion to low molecular weight aromatic chemicals. 2021, 99-136. https://doi.org/10.1016/bs.adioch.2021.02.003
    49. Huihui Luo, Lianyue Wang, Sensen Shang, Guosong Li, Ying Lv, Shuang Gao, Wen Dai. Cobalt Nanoparticles‐Catalyzed Widely Applicable Successive C−C Bond Cleavage in Alcohols to Access Esters. Angewandte Chemie 2020, 132 (43) , 19430-19436. https://doi.org/10.1002/ange.202008261
    50. Huihui Luo, Lianyue Wang, Sensen Shang, Guosong Li, Ying Lv, Shuang Gao, Wen Dai. Cobalt Nanoparticles‐Catalyzed Widely Applicable Successive C−C Bond Cleavage in Alcohols to Access Esters. Angewandte Chemie International Edition 2020, 59 (43) , 19268-19274. https://doi.org/10.1002/anie.202008261
    51. , Nataliya Demchenko, Svitlana Tkachenko, , Sergii Demchenko, . Synthesis, Antibacterial and Anti-Corrosive Activity of 2,3-Dihydroimidazo[1,2-a]Pyridinium Bromides. Chemistry & Chemical Technology 2020, 14 (3) , 327-333. https://doi.org/10.23939/chcht14.03.327
    52. Xuejiao Wu, Nengchao Luo, Shunji Xie, Haikun Zhang, Qinghong Zhang, Feng Wang, Ye Wang. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews 2020, 49 (17) , 6198-6223. https://doi.org/10.1039/D0CS00314J
    53. Yinling Wang, Yue Liu, Jianghua He, Yuetao Zhang. Redox-neutral photocatalytic strategy for selective C–C bond cleavage of lignin and lignin models via PCET process. Science Bulletin 2019, 64 (22) , 1658-1666. https://doi.org/10.1016/j.scib.2019.09.003
    54. Xia Zhao, Yiying Yang, Rongxiu Zhu, Chengbu Liu, Dongju Zhang. Mechanistic picture of the redox-neutral C C bond cleavage in 1,3-dilignol lignin model compound catalyzed by [Ru(Cl)(H)(PPh3)3]/triphos. Molecular Catalysis 2019, 471 , 77-84. https://doi.org/10.1016/j.mcat.2019.04.020
    55. , Hanna Yeromina, Nataliya Demchenko, , Olga Kiz, , Zinaida Ieromina, , Sergiy Demchenko, . The Synthesis and Antimicrobial Properties of New 2-(R-Phenylimino)-1,3-thiazoline Derivatives Containing the N-Methylpiperazine Moiety. Chemistry & Chemical Technology 2019, 13 (2) , 150-156. https://doi.org/10.23939/chcht13.02.150
    56. Samira Gharehkhani, Yiqian Zhang, Pedram Fatehi. Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science 2019, 72 , 59-89. https://doi.org/10.1016/j.pecs.2019.01.002
    57. Wang Zhou, Junki Nakahashi, Tomoya Miura, Masahiro Murakami. Light/Copper Relay for Aerobic Fragmentation of Lignin Model Compounds. Asian Journal of Organic Chemistry 2018, 7 (12) , 2431-2434. https://doi.org/10.1002/ajoc.201800520
    58. H. Eemil P. Salonen, Carsten P. A. Mecke, Miika I. Karjomaa, Pekka M. Joensuu, Ari M. P. Koskinen. Copper Catalyzed Alcohol Oxidation and Cleavage of β‐O‐4 Lignin Model Systems: From Development to Mechanistic Examination. ChemistrySelect 2018, 3 (44) , 12446-12454. https://doi.org/10.1002/slct.201802715
    59. Jian Zhang. Conversion of Lignin Models by Photoredox Catalysis. ChemSusChem 2018, 11 (18) , 3071-3080. https://doi.org/10.1002/cssc.201801370
    60. Susana Guadix-Montero, Meenakshisundaram Sankar. Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation. Topics in Catalysis 2018, 61 (3-4) , 183-198. https://doi.org/10.1007/s11244-018-0909-2
    61. Yinling Wang, Yiman Du, Jianghua He, Yuetao Zhang. Transformation of lignin model compounds to N -substituted aromatics via Beckmann rearrangement. Green Chemistry 2018, 20 (14) , 3318-3326. https://doi.org/10.1039/C8GC00920A
    62. Jie Chen, Mao-Wen Xu, Jinggao Wu, Chang Ming Li. Center-iodized graphene as an advanced anode material to significantly boost the performance of lithium-ion batteries. Nanoscale 2018, 10 (19) , 9115-9122. https://doi.org/10.1039/C8NR00061A
    63. Zhen Fang, Mark S. Meier. Toward the oxidative deconstruction of lignin: oxidation of β-1 and β-5 linkages. Organic & Biomolecular Chemistry 2018, 16 (13) , 2330-2341. https://doi.org/10.1039/C8OB00409A
    64. Wei-Jing Gao, Chiu Marco Lam, Bao-Guo Sun, R. Daniel Little, Cheng-Chu Zeng. Selective electrochemical C O bond cleavage of β-O-4 lignin model compounds mediated by iodide ion. Tetrahedron 2017, 73 (17) , 2447-2454. https://doi.org/10.1016/j.tet.2017.03.027
    65. Yinling Wang, Qianyi Wang, Jianghua He, Yuetao Zhang. Highly effective C–C bond cleavage of lignin model compounds. Green Chemistry 2017, 19 (13) , 3135-3141. https://doi.org/10.1039/C7GC00844A
    66. Verónica Sáez-Jiménez, Jorge Rencoret, Miguel Angel Rodríguez-Carvajal, Ana Gutiérrez, Francisco Javier Ruiz-Dueñas, Angel T. Martínez. Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin. Biotechnology for Biofuels 2016, 9 (1) https://doi.org/10.1186/s13068-016-0615-x
    67. Rui Zhu, Bing Wang, Minshu Cui, Jin Deng, Xinglong Li, Yingbo Ma, Yao Fu. Chemoselective oxidant-free dehydrogenation of alcohols in lignin using Cp*Ir catalysts. Green Chemistry 2016, 18 (7) , 2029-2036. https://doi.org/10.1039/C5GC02347E
    68. Jian Shi, Sivakumar Pattathil, Ramakrishnan Parthasarathi, Nickolas A. Anderson, Jeong Im Kim, Sivasankari Venketachalam, Michael G. Hahn, Clint Chapple, Blake A. Simmons, Seema Singh. Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chemistry 2016, 18 (18) , 4884-4895. https://doi.org/10.1039/C6GC01193D
    69. Jian Sun, Tanmoy Dutta, Ramakrishnan Parthasarathi, Kwang Ho Kim, Nikola Tolic, Rosalie K. Chu, Nancy G. Isern, John R. Cort, Blake A. Simmons, Seema Singh. Rapid room temperature solubilization and depolymerization of polymeric lignin at high loadings. Green Chemistry 2016, 18 (22) , 6012-6020. https://doi.org/10.1039/C6GC02258H
    70. Jason S. Lupoi, Seema Singh, Ramakrishnan Parthasarathi, Blake A. Simmons, Robert J. Henry. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renewable and Sustainable Energy Reviews 2015, 49 , 871-906. https://doi.org/10.1016/j.rser.2015.04.091
    71. . Chemical Characterization and Modification of Lignins. 2015, 189-246. https://doi.org/10.1002/9781118682784.ch7
    72. Suk Hyun Lim, Woo Sol Lee, Young-Il Kim, Youngku Sohn, Dae Won Cho, Cheolhee Kim, Eunae Kim, John A. Latham, Debra Dunaway-Mariano, Patrick S. Mariano. Photochemical and enzymatic SET promoted C–C bond cleavage reactions of lignin β-1 model compounds containing varying number of methoxy substituents on their arene rings. Tetrahedron 2015, 71 (24) , 4236-4247. https://doi.org/10.1016/j.tet.2015.04.077
    73. Thorsten vom Stein, Tim den Hartog, Julien Buendia, Spas Stoychev, Jakob Mottweiler, Carsten Bolm, Jürgen Klankermayer, Walter Leitner. Ruthenium‐Catalyzed CC Bond Cleavage in Lignin Model Substrates. Angewandte Chemie 2015, 127 (20) , 5957-5961. https://doi.org/10.1002/ange.201410620
    74. Thorsten vom Stein, Tim den Hartog, Julien Buendia, Spas Stoychev, Jakob Mottweiler, Carsten Bolm, Jürgen Klankermayer, Walter Leitner. Ruthenium‐Catalyzed CC Bond Cleavage in Lignin Model Substrates. Angewandte Chemie International Edition 2015, 54 (20) , 5859-5863. https://doi.org/10.1002/anie.201410620
    75. Adam Wu, Jean Michel Lauzon, Brian R. James. Hydrogenolysis of a γ-Acetylated Lignin Model Compound with a Ruthenium–Xantphos Catalyst. Catalysis Letters 2015, 145 (2) , 511-518. https://doi.org/10.1007/s10562-014-1401-7
    76. Jakob Mottweiler, Julien Buendia, Erik Zuidema, Carsten Bolm. Cleavage and Diastereoselective Synthesis of Mono- and Dilignol β-O-4 Model Compounds. 2015, 105-116. https://doi.org/10.1007/978-3-662-45425-1_8
    77. Fei-Xian Luo, Tai-Gang Zhou, Xin Li, Yun-Lei Luo, Zhang-Jie Shi. Fragmentation of structural units of lignin promoted by persulfate through selective C–C cleavage under mild conditions. Organic Chemistry Frontiers 2015, 2 (9) , 1066-1070. https://doi.org/10.1039/C5QO00116A
    78. Sarifuddin Gazi, Wilson Kwok Hung Ng, Rakesh Ganguly, Adhitya Mangala Putra Moeljadi, Hajime Hirao, Han Sen Soo. Selective photocatalytic C–C bond cleavage under ambient conditions with earth abundant vanadium complexes. Chemical Science 2015, 6 (12) , 7130-7142. https://doi.org/10.1039/C5SC02923F
    79. Daniel J. Yelle, Alexander N. Kapich, Carl J. Houtman, Fachuang Lu, Vitaliy I. Timokhin, Raymond C. Fort, John Ralph, Kenneth E. Hammel, . A Highly Diastereoselective Oxidant Contributes to Ligninolysis by the White Rot Basidiomycete Ceriporiopsis subvermispora. Applied and Environmental Microbiology 2014, 80 (24) , 7536-7544. https://doi.org/10.1128/AEM.02111-14
    80. Baburam Sedai, R. Tom Baker. Copper Catalysts for Selective CC Bond Cleavage of β‐O‐4 Lignin Model Compounds. Advanced Synthesis & Catalysis 2014, 356 (17) , 3563-3574. https://doi.org/10.1002/adsc.201400463
    81. Benjamin G. Janesko. Acid-catalyzed hydrolysis of lignin β-O-4 linkages in ionic liquid solvents: a computational mechanistic study. Physical Chemistry Chemical Physics 2014, 16 (11) , 5423. https://doi.org/10.1039/c3cp53836b
    82. In-Yup Jeon, Hyun-Jung Choi, Min Choi, Jeong-Min Seo, Sun-Min Jung, Min-Jung Kim, Sheng Zhang, Lipeng Zhang, Zhenhai Xia, Liming Dai, Noejung Park, Jong-Beom Baek. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01810
    83. In‐Yup Jeon, Sheng Zhang, Lipeng Zhang, Hyun‐Jung Choi, Jeong‐Min Seo, Zhenhai Xia, Liming Dai, Jong‐Beom Baek. Edge‐Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal‐Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Advanced Materials 2013, 25 (42) , 6138-6145. https://doi.org/10.1002/adma.201302753
    84. Ariana Beste, A.C. Buchanan. Kinetic simulation of the thermal degradation of phenethyl phenyl ether, a model compound for the β-O-4 linkage in lignin. Chemical Physics Letters 2012, 550 , 19-24. https://doi.org/10.1016/j.cplett.2012.08.040
    85. Elena Fernández-Fueyo, Francisco J. Ruiz-Dueñas, Yuta Miki, María Jesús Martínez, Kenneth E. Hammel, Angel T. Martínez. Lignin-degrading Peroxidases from Genome of Selective Ligninolytic Fungus Ceriporiopsis subvermispora. Journal of Biological Chemistry 2012, 287 (20) , 16903-16916. https://doi.org/10.1074/jbc.M112.356378
    86. Adam Wu, Brian O. Patrick, Enoch Chung, Brian R. James. Hydrogenolysis of β-O-4 lignin model dimers by a ruthenium-xantphos catalyst. Dalton Transactions 2012, 41 (36) , 11093. https://doi.org/10.1039/c2dt31065a
    87. Julien Buendia, Jakob Mottweiler, Carsten Bolm. Preparation of Diastereomerically Pure Dilignol Model Compounds. Chemistry – A European Journal 2011, 17 (49) , 13877-13882. https://doi.org/10.1002/chem.201101579
    88. Paul Langan, S. Gnanakaran, Kirk D. Rector, Norma Pawley, David T. Fox, Dae Won Cho, Kenneth E. Hammel. Exploring new strategies for cellulosic biofuels production. Energy & Environmental Science 2011, 4 (10) , 3820. https://doi.org/10.1039/c1ee01268a

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2010, 75, 19, 6549–6562
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo1012509
    Published September 10, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    4468

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.