ACS Publications. Most Trusted. Most Cited. Most Read
BF3·OEt2-Promoted Diastereoselective Diacetoxylation of Alkenes by PhI(OAc)2
My Activity

Figure 1Loading Img
    Article

    BF3·OEt2-Promoted Diastereoselective Diacetoxylation of Alkenes by PhI(OAc)2
    Click to copy article linkArticle link copied!

    View Author Information
    The State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
    E-mail: (X.M.) [email protected], (Z.L.) [email protected]
    Other Access OptionsSupporting Information (1)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2011, 76, 24, 9997–10004
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo201752y
    Published November 17, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Selective syn and anti diacetoxylations of alkenes have been achieved using a PhI(OAc)2/BF3·OEt2 system in the presence and absence of water, respectively. A broad range of substrates including electron-deficient alkenes (such as α,β-unsaturated esters) could be elaborated efficiently at room temperature with this methodology, furnishing the desired products in good to excellent yields and diastereoselectivity. In particular, a multigram-scale diastereoselective diacetoxylation of methyl cinnamate (5.00 g) was also accomplished in a few hours, maintaining the same efficiency as small-scale reaction. This novel methodology provides an alternative approach for the preparation of various 1,2-diols.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    General procedures and characterization data (1H and 13C NMR spectra). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 82 publications.

    1. Xiaofang Gao, Jiani Lin, Li Zhang, Xinyao Lou, Guanghui Guo, Na Peng, Huan Xu, Yi Liu. Iodine-Initiated Dioxygenation of Aryl Alkenes Using tert-Butylhydroperoxides and Water: A Route to Vicinal Diols and Bisperoxides. The Journal of Organic Chemistry 2021, 86 (21) , 15469-15480. https://doi.org/10.1021/acs.joc.1c01968
    2. Liangkun Pan, Zhihai Ke, Ying-Yeung Yeung. Lewis Base Catalyzed Dioxygenation of Olefins with Hypervalent Iodine Reagents. Organic Letters 2021, 23 (21) , 8174-8178. https://doi.org/10.1021/acs.orglett.1c02872
    3. Xiao-Jun Deng, Hui-Xia Liu, Lu-Wen Zhang, Guan-Yu Zhang, Zhi-Xiang Yu, Wei He. Iodoarene-Catalyzed Oxyamination of Unactivated Alkenes to Synthesize 5-Imino-2-Tetrahydrofuranyl Methanamine Derivatives. The Journal of Organic Chemistry 2021, 86 (1) , 235-253. https://doi.org/10.1021/acs.joc.0c02047
    4. Kaveh Farshadfar, Antony Chipman, Brian F. Yates, Alireza Ariafard. DFT Mechanistic Investigation into BF3-Catalyzed Alcohol Oxidation by a Hypervalent Iodine(III) Compound. ACS Catalysis 2019, 9 (7) , 6510-6521. https://doi.org/10.1021/acscatal.9b01599
    5. Ayumi Watanabe, Kazunori Miyamoto, Tomohide Okada, Tomotake Asawa, Masanobu Uchiyama. Safer Synthesis of (Diacetoxyiodo)arenes Using Sodium Hypochlorite Pentahydrate. The Journal of Organic Chemistry 2018, 83 (23) , 14262-14268. https://doi.org/10.1021/acs.joc.8b02541
    6. Margarida Borrell, Miquel Costas. Greening Oxidation Catalysis: Iron Catalyzed Alkene syn-Dihydroxylation with Aqueous Hydrogen Peroxide in Green Solvents. ACS Sustainable Chemistry & Engineering 2018, 6 (7) , 8410-8416. https://doi.org/10.1021/acssuschemeng.8b00542
    7. Mio Shimogaki, Morifumi Fujita, and Takashi Sugimura . Enantioselective C–C Bond Formation during the Oxidation of 5-Phenylpent-2-enyl Carboxylates with Hypervalent Iodine(III). The Journal of Organic Chemistry 2017, 82 (22) , 11836-11840. https://doi.org/10.1021/acs.joc.7b01141
    8. Margarida Borrell and Miquel Costas . Mechanistically Driven Development of an Iron Catalyst for Selective Syn-Dihydroxylation of Alkenes with Aqueous Hydrogen Peroxide. Journal of the American Chemical Society 2017, 139 (36) , 12821-12829. https://doi.org/10.1021/jacs.7b07909
    9. Beom Shin Cho and Young Keun Chung . Palladium(II)-Catalyzed Transformation of 3-Alkylbenzofurans to [2,3′-Bibenzofuran]-2′(3′H)-ones: Oxidative Dimerization of 3-Alkylbenzofurans. The Journal of Organic Chemistry 2017, 82 (4) , 2237-2242. https://doi.org/10.1021/acs.joc.6b02864
    10. Huaiyuan Zhang, Danfeng Huang, Ke-Hu Wang, Jun Li, Yingpeng Su, and Yulai Hu . Synthesis of Benzimidazolones via One-Pot Reaction of Hydroxylamines, Aldehydes, and Trimethylsilyl Cyanide Promoted by Diacetoxyiodobenzene. The Journal of Organic Chemistry 2017, 82 (3) , 1600-1609. https://doi.org/10.1021/acs.joc.6b02781
    11. Ignacio Colomer, Rosimeire Coura Barcelos, Kirsten E. Christensen, and Timothy J. Donohoe . Orthogonally Protected 1,2-Diols from Electron-Rich Alkenes Using Metal-Free Olefin syn-Dihydroxylation. Organic Letters 2016, 18 (22) , 5880-5883. https://doi.org/10.1021/acs.orglett.6b02959
    12. Susana Izquierdo, Stéphanie Essafi, Iker del Rosal, Pietro Vidossich, Roser Pleixats, Adelina Vallribera, Gregori Ujaque, Agustí Lledós, and Alexandr Shafir . Acid Activation in Phenyliodine Dicarboxylates: Direct Observation, Structures, and Implications. Journal of the American Chemical Society 2016, 138 (39) , 12747-12750. https://doi.org/10.1021/jacs.6b07999
    13. Akira Yoshimura and Viktor V. Zhdankin . Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chemical Reviews 2016, 116 (5) , 3328-3435. https://doi.org/10.1021/acs.chemrev.5b00547
    14. Carla Alamillo-Ferrer, Stuart C. Davidson, Michael J. Rawling, Natalie H. Theodoulou, Matthew Campbell, Philip G. Humphreys, Alan R. Kennedy, and Nicholas C. O. Tomkinson . Alkene anti-Dihydroxylation with Malonoyl Peroxides. Organic Letters 2015, 17 (20) , 5132-5135. https://doi.org/10.1021/acs.orglett.5b02674
    15. Le Liu, Daisy Zhang-Negrerie, Yunfei Du, and Kang Zhao . PhICl2 and Wet DMF: An Efficient System for Regioselective Chloroformyloxylation/α-Chlorination of Alkenes/α,β-Unsaturated Compounds. Organic Letters 2014, 16 (2) , 436-439. https://doi.org/10.1021/ol403321n
    16. Yin Wang, Lei Zhang, Yunhui Yang, Ping Zhang, Zhenting Du, and Congyang Wang . Alkene Oxyalkylation Enabled by Merging Rhenium Catalysis with Hypervalent Iodine(III) Reagents via Decarboxylation. Journal of the American Chemical Society 2013, 135 (48) , 18048-18051. https://doi.org/10.1021/ja410195j
    17. Qicai Xue, Jin Xie, Pan Xu, Kaidong Hu, Yixiang Cheng, and Chengjian Zhu . Metal-Free, n-Bu4NI-Catalyzed Regioselective Difunctionalization of Unactivated Alkenes. ACS Catalysis 2013, 3 (6) , 1365-1368. https://doi.org/10.1021/cs400250m
    18. Santhosh Kumar Alla, Rapolu Kiran Kumar, Pradeep Sadhu, and Tharmalingam Punniyamurthy . Iodobenzene Catalyzed C–H Amination of N-Substituted Amidines Using m-Chloroperbenzoic Acid. Organic Letters 2013, 15 (6) , 1334-1337. https://doi.org/10.1021/ol400274f
    19. Tian Tian, Wen-He Zhong, Shuai Meng, Xiang-Bao Meng, and Zhong-Jun Li . Hypervalent Iodine Mediated para-Selective Fluorination of Anilides. The Journal of Organic Chemistry 2013, 78 (2) , 728-732. https://doi.org/10.1021/jo302099d
    20. Sharon R. Neufeldt and Melanie S. Sanford . Asymmetric Chiral Ligand-Directed Alkene Dioxygenation. Organic Letters 2013, 15 (1) , 46-49. https://doi.org/10.1021/ol303003g
    21. Sylvain Picon, Michael Rawling, Matthew Campbell, and Nicholas C. O. Tomkinson . Alkene Dihydroxylation with Malonoyl Peroxides: Catalysis Using Fluorinated Alcohols. Organic Letters 2012, 14 (24) , 6250-6253. https://doi.org/10.1021/ol3030154
    22. Hisaaki Zaimoku, Takashi Hatta, Tsuyoshi Taniguchi, and Hiroyuki Ishibashi . Iodine-Mediated α-Acetoxylation of 2,3-Disubstituted Indoles. Organic Letters 2012, 14 (23) , 6088-6091. https://doi.org/10.1021/ol302983t
    23. Yunhui Zheng, Xuming Li, Chengfeng Ren, Daisy Zhang-Negrerie, Yunfei Du, and Kang Zhao . Synthesis of Oxazoles from Enamides via Phenyliodine Diacetate-Mediated Intramolecular Oxidative Cyclization. The Journal of Organic Chemistry 2012, 77 (22) , 10353-10361. https://doi.org/10.1021/jo302073e
    24. Wenhe Zhong, Shan Liu, Jun Yang, Xiangbao Meng, and Zhongjun Li . Metal-Free, Organocatalytic Syn Diacetoxylation of Alkenes. Organic Letters 2012, 14 (13) , 3336-3339. https://doi.org/10.1021/ol301311e
    25. Yanshuo Zhu, Wenya Zhang, Hongyan Wang, Dan Li, Xinxin Xie, Hongwei Hu, Penghua Shu. Metal-free remote site-selective radical C(sp 3 )–H acyloxylation of amides. New Journal of Chemistry 2025, 49 (12) , 5062-5065. https://doi.org/10.1039/D5NJ00098J
    26. Sumit Kumar, Aditi Arora, Riya Chaudhary, Shivani Sapra, Bhawani Shankar, Sandeep Kumar, Brajendra K. Singh. BF 3  ⋅ OEt 2 as a Versatile Reagent: Applications in Organic Synthesis. ChemistrySelect 2024, 9 (41) https://doi.org/10.1002/slct.202403695
    27. Shyam Sathyamoorthi, Steven P. Kelley. A study of alkene disulfonoxylation. Medicinal Chemistry Research 2024, 33 (8) , 1423-1431. https://doi.org/10.1007/s00044-024-03239-7
    28. Shuowen Wang, Rong Li, Shanping Chen, Guojiang Mao, Wen Shao, Guo-Jun Deng. Chemoselective synthesis of α-carboline derivatives via hypervalent iodine-catalyzed [3+3] annulation under metal-free conditions. Green Synthesis and Catalysis 2024, 5 (2) , 112-116. https://doi.org/10.1016/j.gresc.2023.01.002
    29. Fateh V. Singh, Thomas Wirth. Selected Diastereoselective Reactions: Hypervalent Iodine Chemistry. 2024, 663-679. https://doi.org/10.1016/B978-0-32-390644-9.00099-8
    30. Emmanuel Roulland. Introductory Remarks: Chiral Pool Syntheses and Diastereoselective Reactions. 2024, 1-8. https://doi.org/10.1016/B978-0-32-390644-9.00146-3
    31. Jef R. Vanhoof, Pieter J. De Smedt, Jan Derhaeg, Rob Ameloot, Dirk E. De Vos. Metal‐Free Electrocatalytic Diacetoxylation of Alkenes. Angewandte Chemie 2023, 135 (49) https://doi.org/10.1002/ange.202311539
    32. Jef R. Vanhoof, Pieter J. De Smedt, Jan Derhaeg, Rob Ameloot, Dirk E. De Vos. Metal‐Free Electrocatalytic Diacetoxylation of Alkenes. Angewandte Chemie International Edition 2023, 62 (49) https://doi.org/10.1002/anie.202311539
    33. Chanachon Thiamsiri, Thanchanok Ratvijitvech, Torsak Luanphaisarnnont. A facile synthesis of iodine-functionalized hypercrosslinked polymers. Materials Advances 2023, 4 (21) , 5184-5190. https://doi.org/10.1039/D3MA00316G
    34. Yu-Fang Tan, Dan Yang, Ya-Nan Zhao, Jin-Feng Lv, Zhi Guan, Yan-Hong He. Electrochemical radical–polar crossover diesterification of alkenes with carboxylic acids. Green Chemistry 2023, 25 (4) , 1540-1545. https://doi.org/10.1039/D2GC04399H
    35. Charlotte Hampton, Marco Simonetti, Daniele Leonori. Olefin‐Dihydroxylierung mit Nitroarenen als Photosensibilisatoren. Angewandte Chemie 2023, 135 (8) https://doi.org/10.1002/ange.202214508
    36. Charlotte Hampton, Marco Simonetti, Daniele Leonori. Olefin Dihydroxylation Using Nitroarenes as Photoresponsive Oxidants. Angewandte Chemie International Edition 2023, 62 (8) https://doi.org/10.1002/anie.202214508
    37. Seema Vittal, Mohammed Mujahid Alam, Mohamed Hussien, Mohammed Amanullah, Parshuram M. Pisal, Varala Ravi. Applications of Phenyliodine(III)diacetate in C−H Functionalization and Hetero‐Hetero Bond Formations: A Septennial Update. ChemistrySelect 2023, 8 (1) https://doi.org/10.1002/slct.202204240
    38. Liangkun Pan, Ka-Mei Lee, Zhihai Ke, Ying-Yeung Yeung. Application of a DIB/BBr 3 protocol in metal-free aryl coupling reactions. New Journal of Chemistry 2022, 46 (44) , 21047-21053. https://doi.org/10.1039/D2NJ04478A
    39. John M. Ovian, Eric N. Jacobsen. Catalytic Alkene Difunctionalization Reactions. 2022, 243-274. https://doi.org/10.1002/9783527829569.ch9
    40. Huaiyuan Zhang, Rodrigo A. Cormanich, Thomas Wirth. Chiral Ligands in Hypervalent Iodine Compounds: Synthesis and Structures of Binaphthyl‐Based λ 3 ‐Iodanes. Chemistry – A European Journal 2022, 28 (5) https://doi.org/10.1002/chem.202103623
    41. Yanshuo Zhu, Wei Yu. Photoinduced C(sp 3 )–H chlorination of amides with tetrabutyl ammonium chloride. Organic & Biomolecular Chemistry 2021, 19 (46) , 10228-10232. https://doi.org/10.1039/D1OB02081A
    42. Siddappa Chandrappa, Kereyagalahally H. Narasimhamurthy, Muthipeedika Nibin Joy, Kanchugarakoppal S. Rangappa. One-pot tandem approach for the diastereoselective syn-diacetoxylation of cinnamic esters. Chemical Data Collections 2021, 34 , 100710. https://doi.org/10.1016/j.cdc.2021.100710
    43. Ayan Dasgupta, Christian Thiehoff, Paul D. Newman, Thomas Wirth, Rebecca L. Melen. Reactions promoted by hypervalent iodine reagents and boron Lewis acids. Organic & Biomolecular Chemistry 2021, 19 (22) , 4852-4865. https://doi.org/10.1039/D1OB00740H
    44. Thierry Achard, Stéphane Bellemin‐Laponnaz. Recent Advances on Catalytic Osmium‐Free Olefin syn ‐Dihydroxylation. European Journal of Organic Chemistry 2021, 2021 (6) , 877-896. https://doi.org/10.1002/ejoc.202001209
    45. . Common Reagents in Organic Synthesis. 2021, 603-669. https://doi.org/10.1002/9783527828166.ch16
    46. Xiaojun Deng, Luwen Zhang, Huixia Liu, Yu Bai, Wei He. mCPBA-mediated dioxygenation of unactivated alkenes for the synthesis of 5-imino-2-tetrahydrofuranyl methanol derivatives. Tetrahedron Letters 2020, 61 (50) , 152620. https://doi.org/10.1016/j.tetlet.2020.152620
    47. Muthiah Suresh, Anusueya Kumari, Raj Bahadur Singh. A transition metal free expedient approach for the C C bond cleavage of arylidene Meldrum's acid and malononitrile derivatives. Tetrahedron 2019, 75 (41) , 130573. https://doi.org/10.1016/j.tet.2019.130573
    48. Goutam Brahmachari, Indrajit Karmakar. sp 2‐C–H Acetoxylation of Diversely Substituted ( E )‐1‐(Arylmethylene)‐2‐phenylhydrazines Using PhI(OAc) 2 as Acetoxy Source at Ambient Conditions. European Journal of Organic Chemistry 2019, 2019 (34) , 5925-5933. https://doi.org/10.1002/ejoc.201900994
    49. Ji Hoon Lee, Sungwook Choi, Ki Bum Hong. Alkene Difunctionalization Using Hypervalent Iodine Reagents: Progress and Developments in the Past Ten Years. Molecules 2019, 24 (14) , 2634. https://doi.org/10.3390/molecules24142634
    50. Chenghao Ye, Xuezhen Kou, Guoqiang Yang, Jiefeng Shen, Wanbin Zhang. PhI(OAc)2-mediated alkoxyoxygenation of β,γ-unsaturated ketoximes: Preparation of isoxazolines bearing two contiguous tetrasubstituted carbons. Tetrahedron Letters 2019, 60 (16) , 1148-1152. https://doi.org/10.1016/j.tetlet.2019.03.046
    51. R. Martin Romero, Kilian Muñiz. Carbon–Heteroatom Bond Formation Mediated by Hypervalent Iodine. 2018, 1-43. https://doi.org/10.1002/9780470682531.pat0948
    52. Chuan Wang. Vicinal anti ‐Dioxygenation of Alkenes. Asian Journal of Organic Chemistry 2018, 7 (3) , 509-521. https://doi.org/10.1002/ajoc.201700621
    53. Asim Maity, Sung-Min Hyun, David C. Powers. Oxidase catalysis via aerobically generated hypervalent iodine intermediates. Nature Chemistry 2018, 10 (2) , 200-204. https://doi.org/10.1038/nchem.2873
    54. Xiang Li, Pinhong Chen, Guosheng Liu. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein Journal of Organic Chemistry 2018, 14 , 1813-1825. https://doi.org/10.3762/bjoc.14.154
    55. . Oxidation–Oxygenation. 2017, 593-793. https://doi.org/10.1002/9781119390541.ch9
    56. Gang Wen, Wen-Xuan Zhang, Song Wu. A Novel Synthesis of 4-Acetoxyl 5(4H)-Oxazolones by Direct α-Oxidation of N-Benzoyl Amino-Acid Using Hypervalent Iodine. Molecules 2017, 22 (7) , 1102. https://doi.org/10.3390/molecules22071102
    57. Kristina Aertker, Raquel J. Rama, Julita Opalach, Kilian Muñiz. Vicinal Difunctionalization of Alkenes under Iodine(III) Catalysis involving Lewis Base Adducts. Advanced Synthesis & Catalysis 2017, 359 (8) , 1290-1294. https://doi.org/10.1002/adsc.201601178
    58. Alexis Theodorou, Ierasia Triandafillidi, Christoforos G. Kokotos. Green Organocatalytic Dihydroxylation of Alkenes. European Journal of Organic Chemistry 2017, 2017 (11) , 1502-1509. https://doi.org/10.1002/ejoc.201601144
    59. Tse‐Lok Ho, Mary Fieser, Louis Fieser, Janice Smith. Phenyliodine( III ) diacetate. 2017https://doi.org/10.1002/9780471264194.fos07981.pub6
    60. Tse‐Lok Ho, Mary Fieser, Louis Fieser, Janice Smith. Phenyliodine( III ) diacetate. 2017https://doi.org/10.1002/9780471264194.fos07981.pub7
    61. Weiyi Wang, Qiuqin He, Renhua Fan. PhI(OAc) 2 -mediated dialkoxylation of 4-aminostyrenes through a dearomatization process under metal-free conditions. Organic Chemistry Frontiers 2017, 4 (11) , 2156-2158. https://doi.org/10.1039/C7QO00545H
    62. Thurpu Raghavender Reddy, Dodla Sivanageswara Rao, Kalvacherla Babachary, Sudhir Kashyap. Sulfonium Salts of Iodine(I) Species as Efficient Reagents for the Regioselective Bisfunctionalisation of ­Glycals and Enol Ethers. European Journal of Organic Chemistry 2016, 2016 (2) , 291-301. https://doi.org/10.1002/ejoc.201501183
    63. Chun-Yang Zhao, Liang-Gui Li, Qing-Rong Liu, Cheng-Xue Pan, Gui-Fa Su, Dong-Liang Mo. Synthesis of β-acetoxy alcohols by PhI(OAc) 2 -mediated metal-free diastereoselective β-acetoxylation of alcohols. Organic & Biomolecular Chemistry 2016, 14 (28) , 6795-6803. https://doi.org/10.1039/C6OB01203E
    64. Antoine Jobin-Des Lauriers, Claude Legault. Metathetical Redox Reaction of (Diacetoxyiodo)arenes and Iodoarenes. Molecules 2015, 20 (12) , 22635-22644. https://doi.org/10.3390/molecules201219874
    65. B. T. V. Srinivas, Vikas S. Rawat, Bojja Sreedhar. Iron‐Catalyzed Dioxygenation of Alkenes and Terminal Alkynes by using (Diacetoxyiodo)benzene as Oxidant. Advanced Synthesis & Catalysis 2015, 357 (16-17) , 3587-3596. https://doi.org/10.1002/adsc.201500681
    66. Mio Shimogaki, Morifumi Fujita, Takashi Sugimura. Stereoselective Formation of Substituted 1,3-Dioxolanes through a Three-Component Assembly during the Oxidation of Alkenes with Hypervalent Iodine(III). Molecules 2015, 20 (9) , 17041-17057. https://doi.org/10.3390/molecules200917041
    67. Praewpan Katrun, Sornsiri Hlekhlai, Jatuporn Meesin, Manat Pohmakotr, Vichai Reutrakul, Thaworn Jaipetch, Darunee Soorukram, Chutima Kuhakarn. PhI(OAc) 2 mediated decarboxylative sulfonylation of β-aryl-α,β-unsaturated carboxylic acids: a synthesis of (E)-vinyl sulfones. Organic & Biomolecular Chemistry 2015, 13 (16) , 4785-4794. https://doi.org/10.1039/C5OB00417A
    68. V. V. Zhdankin. 31.4.1.3 Hypervalent Iodoarenes and Aryliodonium Salts (Update 2015). 2015https://doi.org/10.1055/sos-SD-131-00118
    69. Biplab Mondal, Somjit Hazra, Kishor Naktode, Tarun K. Panda, B. Roy. PhI(OAc)2 and BF3–OEt2 mediated heterocyclization: metal-free synthesis of pyrimidine-annulated oxazolines. Tetrahedron Letters 2014, 55 (41) , 5625-5628. https://doi.org/10.1016/j.tetlet.2014.08.051
    70. Mitsuhiro Kashiwa, Motohiro Sonoda, Shinji Tanimori. Facile Access to 1 H ‐Indazoles through Iodobenzene‐Catalyzed C–H Amination under Mild, Transition‐Metal‐Free Conditions. European Journal of Organic Chemistry 2014, 2014 (22) , 4720-4723. https://doi.org/10.1002/ejoc.201402488
    71. R. Martín Romero, Thorsten H. Wöste, Kilian Muñiz. Vicinal Difunctionalization of Alkenes with Iodine(III) Reagents and Catalysts. Chemistry – An Asian Journal 2014, 9 (4) , 972-983. https://doi.org/10.1002/asia.201301637
    72. Michael J. Rawling, Julian H. Rowley, Matthew Campbell, Alan R. Kennedy, John A. Parkinson, Nicholas C. O. Tomkinson. Mechanistic insights into the malonoyl peroxide syn-dihydroxylation of alkenes. Chem. Sci. 2014, 5 (5) , 1777-1785. https://doi.org/10.1039/C3SC53256A
    73. Yaohong Zhao, Xiangyou Xing, Shaolong Zhang, David Zhigang Wang. N,N-Dimethylaminobenzoates enable highly enantioselective Sharpless dihydroxylations of 1,1-disubstituted alkenes. Org. Biomol. Chem. 2014, 12 (25) , 4314-4317. https://doi.org/10.1039/C4OB00621F
    74. Shaoxia Lin, Mengru Li, Zhiyong Dong, Fushun Liang, Jingping Zhang. Hypervalent iodine(iii)-mediated cyclopropa(e)nation of alkenes/alkynes under mild conditions. Organic & Biomolecular Chemistry 2014, 12 (8) , 1341. https://doi.org/10.1039/c3ob42123f
    75. . Hypervalent Iodine Reagents in Organic Synthesis. 2013, 145-336. https://doi.org/10.1002/9781118341155.ch3
    76. Rajarshi Samanta, Kiran Matcha, Andrey P. Antonchick. Metal‐Free Oxidative Carbon‐Heteroatom Bond Formation Through C–H Bond Functionalization. European Journal of Organic Chemistry 2013, 2013 (26) , 5769-5804. https://doi.org/10.1002/ejoc.201300286
    77. Mathieu Bekkaye, Yingpeng Su, Géraldine Masson. Metal‐Free Dioxygenation of Enecarbamates Mediated by a Hypervalent Iodine Reagent. European Journal of Organic Chemistry 2013, 2013 (19) , 3978-3982. https://doi.org/10.1002/ejoc.201300501
    78. Nicholas G. Moon, Andrew M. Harned. Iodine(III)-promoted synthesis of oxazolines from N-allylamides. Tetrahedron Letters 2013, 54 (23) , 2960-2963. https://doi.org/10.1016/j.tetlet.2013.03.140
    79. Michael J. Rawling, Nicholas C. O. Tomkinson. Metal-free syn-dioxygenation of alkenes. Organic & Biomolecular Chemistry 2013, 11 (9) , 1434. https://doi.org/10.1039/c3ob27387c
    80. Ryan K. Quinn, Valerie A. Schmidt, Erik J. Alexanian. Radical carbooxygenations of alkenes using hydroxamic acids. Chemical Science 2013, 4 (10) , 4030. https://doi.org/10.1039/c3sc51466h
    81. Qiang Liu, Qing Yong Zhao, Jie Liu, Pan Wu, Hong Yi, Aiwen Lei. A trans diacyloxylation of indoles. Chemical Communications 2012, 48 (26) , 3239. https://doi.org/10.1039/c2cc17815j
    82. Qing Wang, Wenhe Zhong, Xiong Wei, Maoheng Ning, Xiangbao Meng, Zhongjun Li. Metal-free intramolecular aminofluorination of alkenes mediated by PhI(OPiv)2/hydrogen fluoride–pyridine system. Organic & Biomolecular Chemistry 2012, 10 (43) , 8566. https://doi.org/10.1039/c2ob26664d

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2011, 76, 24, 9997–10004
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo201752y
    Published November 17, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    5153

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.