ACS Publications. Most Trusted. Most Cited. Most Read
Iron-Catalyzed Regioselective Direct Oxidative Aryl–Aryl Cross-Coupling
My Activity

Figure 1Loading Img
    Article

    Iron-Catalyzed Regioselective Direct Oxidative Aryl–Aryl Cross-Coupling
    Click to copy article linkArticle link copied!

    View Author Information
    I&PC Division and Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500 607, India
    Other Access OptionsSupporting Information (2)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2011, 76, 24, 10229–10235
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo202152b
    Published November 9, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Regioselective iron-catalyzed cross-dehydrogenative coupling (CDC) of two aromatic compounds using tert-BuOOH as oxidant under mild conditions has been reported. The direct oxidative coupling reaction is selective toward creation of a carbon–carbon bond at the position ortho to the functional groups of the substrates, completely preventing the homocoupled products. The C–C bond-forming reaction makes the method versatile, leading to functionalized 2,2′ -disubstituted biaryls.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    IR, 1H and 13CNMR, HRMS data for all new compounds and CIF file of 1b. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 73 publications.

    1. Jude M. Reyes, John Vincent M. Tumaneng, Gilbert U. Yu. Facile Grignard Reaction Demonstration Using Molecular Sieved Dried Solvent. ACS Chemical Health & Safety 2022, 29 (1) , 49-53. https://doi.org/10.1021/acs.chas.1c00015
    2. Vlada Vershinin, Hagit Forkosh, Mor Ben-Lulu, Anna Libman, Doron Pappo. Mechanistic Insights into the FeCl3-Catalyzed Oxidative Cross-Coupling of Phenols with 2-Aminonaphthalenes. The Journal of Organic Chemistry 2021, 86 (1) , 79-90. https://doi.org/10.1021/acs.joc.0c00874
    3. Kenji Matsumoto, Yasunori Toubaru, Shohei Tachikawa, Ayaka Miki, Kentaro Sakai, Syota Koroki, Tsukasa Hirokane, Mitsuru Shindo, Masahiro Yoshida. Catalytic and Aerobic Oxidative Biaryl Coupling of Anilines Using a Recyclable Heterogeneous Catalyst for Synthesis of Benzidines and Bicarbazoles. The Journal of Organic Chemistry 2020, 85 (23) , 15154-15166. https://doi.org/10.1021/acs.joc.0c02020
    4. Raju Adepu, Jadhav Rahul Dhanaji, Polasani Samatha, Prathama S. Mainkar, Srivari Chandrasekhar. Synthesis of 2-Amino-2′-hydroxy-1,1′-biaryls via Cascade Benzannulation and C–N Bond Cleavage Sequence. Organic Letters 2020, 22 (21) , 8224-8228. https://doi.org/10.1021/acs.orglett.0c02749
    5. Thomas J. Paniak, Marisa C. Kozlowski. Aerobic Catalyzed Oxidative Cross-Coupling of N,N-Disubstituted Anilines and Aminonaphthalenes with Phenols and Naphthols. Organic Letters 2020, 22 (5) , 1765-1770. https://doi.org/10.1021/acs.orglett.0c00046
    6. Yu-Quan Zhao, Jun-Jie Tian, Chong-Ren Ai, Xiao-Chen Wang. Diiodomethane-Mediated Generation of N-Aryliminium Ions and Subsequent [4 + 2] Cycloadditions with Olefins. The Journal of Organic Chemistry 2020, 85 (4) , 2456-2465. https://doi.org/10.1021/acs.joc.9b03148
    7. Hayley Reed, Tyler R. Paul, William J. Chain. Synthesis of Halogenated Anilines by Treatment of N,N-Dialkylaniline N-Oxides with Thionyl Halides. The Journal of Organic Chemistry 2018, 83 (18) , 11359-11368. https://doi.org/10.1021/acs.joc.8b01590
    8. Botla Vinayak and Malapaka Chandrasekharam . Copper-Catalyzed Direct Nitration on Aryl C–H Bonds by Concomitant Azidation–Oxidation with TMS Azide and TBHP under Aerobic Conditions. Organic Letters 2017, 19 (13) , 3528-3531. https://doi.org/10.1021/acs.orglett.7b01489
    9. Bin-Bin Feng, Jian-Quan Liu, and Xiang-Shan Wang . Cu(OAc)2-Catalyzed Aerobic Oxidative Dehydrogenation Coupling: Synthesis of Heptacyclic Quinolizino[3,4,5,6-kla]perimidines. The Journal of Organic Chemistry 2017, 82 (3) , 1817-1822. https://doi.org/10.1021/acs.joc.6b02644
    10. Jing-Bo Yu, Yang Zhang, Zhi-Jiang Jiang, and Wei-Ke Su . Mechanically Induced Fe(III) Catalysis at Room Temperature: Solvent-Free Cross-Dehydrogenative Coupling of 3-Benzylic Indoles with Methylenes/Indoles. The Journal of Organic Chemistry 2016, 81 (22) , 11514-11520. https://doi.org/10.1021/acs.joc.6b02197
    11. Arvind Kumar and Bhahwal Ali Shah . Synthesis of Biaryls via Benzylic C–C Bond Cleavage of Styrenes and Benzyl Alcohols. Organic Letters 2015, 17 (21) , 5232-5235. https://doi.org/10.1021/acs.orglett.5b02578
    12. Ingmar Bauer and Hans-Joachim Knölker . Iron Catalysis in Organic Synthesis. Chemical Reviews 2015, 115 (9) , 3170-3387. https://doi.org/10.1021/cr500425u
    13. Yongjia Shang, Xiaoqian Hu, Xinwei He, Jiajia Tao, Guang Han, Fuli Wu, and Jie Wang . FeCl3-Mediated Synthesis of β-Alkynyl Ketones via Domino Nucleophilic-Substitution/Intramolecular-Cyclization/Reverse Claisen Condensation of N-Cyclohexyl Propargylamines and 1,3-Diketones. The Journal of Organic Chemistry 2015, 80 (9) , 4760-4765. https://doi.org/10.1021/acs.joc.5b00281
    14. Yaxin Wang, Fangfang Peng, Jing Liu, Congde Huo, Xicun Wang, and Xiaodong Jia . Radical Cation Salt-Promoted Catalytic Aerobic sp3 C–H Oxidation: Construction of Quinoline-Fused Lactones and Lactams. The Journal of Organic Chemistry 2015, 80 (1) , 609-614. https://doi.org/10.1021/jo502184k
    15. Xiaodong Jia, Fangfang Peng, Chang Qing, Congde Huo, and Xicun Wang . Catalytic Radical Cation Salt Induced Csp3–H Functionalization of Glycine Derivatives: Synthesis of Substituted Quinolines. Organic Letters 2012, 14 (15) , 4030-4033. https://doi.org/10.1021/ol301909g
    16. Miao Zhao, Fen Wang, and Xingwei Li . Cross-Dehydrogenative Coupling between Enamino Esters and Ketones: Synthesis of Tetrasubstituted Pyrroles. Organic Letters 2012, 14 (6) , 1412-1415. https://doi.org/10.1021/ol300147t
    17. Sudheer Kumar Karu, Navyasree Pilli, Chandrasekharam Malapaka. Acid‐Catalyzed Tandem Ritter and Mannich Reactions for Direct Access to 3‐Aryl 3‐amidooxindoles from Isatin. ChemistrySelect 2023, 8 (47) https://doi.org/10.1002/slct.202304188
    18. Dayi Liu, Zeynab Imani, Catherine Gourson, Régis Guillot, Sylvie Robin, David J. Aitken. A Post-Synthetic Modification Strategy for the Preparation of Homooligomers of 3-Amino-1-methylazetidine-3-carboxylic Acid. Synlett 2023, 34 (15) , 1787-1790. https://doi.org/10.1055/a-2071-4122
    19. Sudheer Kumar Karu, Chandrasekharam Malapaka. Acid Catalyzed Multicomponent Reaction to Access Functionalized N‐Benzhydryl Amides: A Tandem Ritter Reaction. European Journal of Organic Chemistry 2023, 26 (31) https://doi.org/10.1002/ejoc.202300481
    20. Clément Jacob, Julien Annibaletto, Bert U. W. Maes, Gwilherm Evano. Direct Arylation of C(sp2)–H Bonds in Anilines. Synthesis 2023, 55 (12) , 1799-1823. https://doi.org/10.1055/a-2039-7985
    21. Fan Jia, Zhiping Li. Iron‐Catalyzed Cross‐Dehydrogenative Coupling. 2022, 1-24. https://doi.org/10.1002/9783527834242.chf0046
    22. Susmita Mondal, Sadhanendu Samanta, Alakananda Hajra. Iron‐Catalyzed CH Functionalization to Form CC and C–Heteroatom Bonds. 2022, 1-37. https://doi.org/10.1002/9783527834242.chf0048
    23. Jean Christopher Chamcheu, Samuel T. Boateng, Tithi Roy, Mercy E. Agbo, Sergette Banang-Mbeumi, Roxane-Cherille N. Chamcheu, Marion Bramwell, Long K. Pham, Keith E. Jackson, Ronald A. Hill, Bolni Marius Nagalo, Tatiana Efimova, Jean Fotie. Identification of Potential Inhibitors of Cutaneous Melanoma and Non-Melanoma Skin Cancer Cells Through In-Vitro and In-Silico Screening of a Small Library of Phenolic Compounds. SSRN Electronic Journal 2022, 9 https://doi.org/10.2139/ssrn.4102562
    24. Sadhna Bansal, Anand B. Shabade, Benudhar Punji. Advances in C( sp 2 )−H/C( sp 2 )−H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. Advanced Synthesis & Catalysis 2021, 363 (8) , 1998-2022. https://doi.org/10.1002/adsc.202001498
    25. Sujoy Rana, Jyoti Prasad Biswas, Sabarni Paul, Aniruddha Paik, Debabrata Maiti. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chemical Society Reviews 2021, 50 (1) , 243-472. https://doi.org/10.1039/D0CS00688B
    26. Hao Wang, Ping Ying, Jingbo Yu, Weike Su. Alternative Strategies Enabling Cross-Dehydrogenative Coupling: Access to C—C Bonds. Chinese Journal of Organic Chemistry 2021, , 1897. https://doi.org/10.6023/cjoc202009053
    27. Lin Feng, Tao Wang, Hongxing Jia, Jianmin Huang, Dong Han, Wenzhao Zhang, Honghe Ding, Qian Xu, Pingwu Du, Junfa Zhu. On-surface synthesis of planar acenes via regioselective aryl–aryl coupling. Chemical Communications 2020, 56 (36) , 4890-4893. https://doi.org/10.1039/D0CC01043J
    28. Mu-Jia Luo, Yang Li, Xuan-Hui Ouyang, Jin-Heng Li, De-Liang He. Electrochemical dehydrogenative cross-coupling of two anilines: facile synthesis of unsymmetrical biaryls. Chemical Communications 2020, 56 (18) , 2707-2710. https://doi.org/10.1039/C9CC09879H
    29. Alexander Purtsas, Olga Kataeva, Hans‐Joachim Knölker. Iron‐Catalyzed Oxidative C−C Cross‐Coupling Reaction of Tertiary Anilines with Hydroxyarenes by Using Air as Sole Oxidant**. Chemistry – A European Journal 2020, 26 (11) , 2499-2508. https://doi.org/10.1002/chem.201905595
    30. Krishna Sharma, Alexander V. Strizhak, Elaine Fowler, Xuelu Wang, Wenshu Xu, Claus Hatt Jensen, Yuteng Wu, Hannah F. Sore, Yu Heng Lau, Marko Hyvönen, Laura S. Itzhaki, David R. Spring. Water-soluble, stable and azide-reactive strained dialkynes for biocompatible double strain-promoted click chemistry. Organic & Biomolecular Chemistry 2019, 17 (34) , 8014-8018. https://doi.org/10.1039/C9OB01745C
    31. Li-Qin Yan, Xiaoting Cai, Xinwei He, Hui Wang, Mengqing Xie, Youpeng Zuo, Yongjia Shang. Synthesis of 4-styrylcoumarins via FeCl 3 -promoted cascade reactions of propargylamines with β-keto esters. Organic & Biomolecular Chemistry 2019, 17 (16) , 4005-4013. https://doi.org/10.1039/C9OB00323A
    32. Vinayak Botla, NavyaSree Pilli, Chandrasekharam Malapaka. Uncatalyzed, on water oxygenative cleavage of inert C–N bond with concomitant 8,7-amino shift in 8-aminoquinoline derivatives. Green Chemistry 2019, 21 (7) , 1735-1742. https://doi.org/10.1039/C9GC00289H
    33. Daggupati V. Ramana, Karu Sudheer Kumar, Ealeswarapu Srujana, Malapaka Chandrasekharam. Copper‐Catalyzed Double Friedel‐Crafts Alkylation of Tetrahydroquinolines Under Aqueous Conditions: Efficient Synthesis of gem‐Diarylacetic Esters. European Journal of Organic Chemistry 2019, 2019 (4) , 742-745. https://doi.org/10.1002/ejoc.201801369
    34. Vinayak Botla, Ashok Akudari, Chandrasekharam Malapaka. Cu-catalyzed direct ortho-chlorination/-oxygenation of aryls: Switching of oxidant, control the diversity of products. Tetrahedron Letters 2019, 60 (2) , 115-119. https://doi.org/10.1016/j.tetlet.2018.11.071
    35. Daggupati V. Ramana, Malapaka Chandrasekharam. Copper‐Catalyzed Direct Oxidative α‐Functionalization of Tetrahydroquinoline in Water under Mild Conditions. Advanced Synthesis & Catalysis 2018, 360 (21) , 4080-4083. https://doi.org/10.1002/adsc.201800684
    36. . Biaryls. 2018, 83-154. https://doi.org/10.1002/9781118686263.ch4
    37. Richard C. Larock, Xiaoxia Zhang. Formation of Alkanes and Arenes by Coupling Reactions. 2018, 1-149. https://doi.org/10.1002/9781118662083.cot01-002
    38. Yefu Zhu, Yong Zheng, Weibin Song, Bole Wei, Lijiang Xuan. Metal-free one-pot α -benzoxylation of benzylic alcohols with acids or aldehydes. Tetrahedron Letters 2018, 59 (4) , 368-371. https://doi.org/10.1016/j.tetlet.2017.12.030
    39. Ramana V. Daggupati, Chandrasekharam Malapaka. Cu( i )-Catalyzed amidation/imidation of N -arylglycine ester derivatives via C–N coupling under mild conditions. Organic Chemistry Frontiers 2018, 5 (5) , 788-792. https://doi.org/10.1039/C7QO00851A
    40. Botla Vinayak, Pardhi Vishal Ravindrakumar, Daggupati V. Ramana, Malapaka Chandrasekharam. Revisiting 1-chloro-1,2-benziodoxol-3-one: efficient ortho -chlorination of aryls under aqueous conditions. New Journal of Chemistry 2018, 42 (11) , 8953-8959. https://doi.org/10.1039/C8NJ00530C
    41. Botla Vinayak, Akudari Ashok, Malapaka Chandrasekharam. Copper‐Catalyzed Chelation‐Assisted ortho ‐Nitration of 2‐Aryls Using Pharmacophoric Benzothiazoles and Benzoxazoles as Directing Groups. European Journal of Organic Chemistry 2017, 2017 (47) , 7127-7132. https://doi.org/10.1002/ejoc.201701187
    42. Xinwei He, Jiajia Tao, Hui Wang, Xiaoting Cai, Qianqian Li, Yongjia Shang. Synthesis of polysubstituted phenyl acetates via FeCl 3 -mediated domino reaction of 2-(aryl(piperidin-1-yl)methyl)phenols and 1,3-diketones. Tetrahedron 2017, 73 (50) , 7017-7023. https://doi.org/10.1016/j.tet.2017.10.045
    43. Vinayak Botla, NavyaSree Pilli, Dhevendar Koude, Sunil Misra, Chandrasekharam Malapaka. Molecular Engineering of Tetracyclic 2,3‐Dihydro‐1 H ‐benzo[2,3]‐benzofuro[4,5‐e][1,3]oxazine Derivatives: Evaluation for Potential Anticancer Agents. Archiv der Pharmazie 2017, 350 (10) https://doi.org/10.1002/ardp.201700169
    44. Da-Gang Zhou, Pan-Pan Zhou, Huan-Wang Jing. Mechanisms of Csp 3 -H functionalization of ethyl 2-(methyl( p -tolyl)amino)acetate: A theoretical investigation. Computational and Theoretical Chemistry 2017, 1118 , 144-152. https://doi.org/10.1016/j.comptc.2017.09.003
    45. Daggupati V. Ramana, L. Raju Chowhan, Malapaka Chandrasekharam. Copper (I) Catalyzed Sp 3 C‐H Arylation of N ‐Arylglycine Ester Derivatives under Aerobic Conditions. ChemistrySelect 2017, 2 (7) , 2241-2244. https://doi.org/10.1002/slct.201700330
    46. Begur Vasanthkumar Varun, Jayaraman Dhineshkumar, Kiran R. Bettadapur, Yogesh Siddaraju, Kaliyamoorthy Alagiri, Kandikere Ramaiah Prabhu. Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Letters 2017, 58 (9) , 803-824. https://doi.org/10.1016/j.tetlet.2017.01.035
    47. Raphael F. Fritsche, Gabriele Theumer, Olga Kataeva, Hans‐Joachim Knölker. Iron‐Catalyzed Oxidative C−C and N−N Coupling of Diarylamines and Synthesis of Spiroacridines. Angewandte Chemie 2017, 129 (2) , 564-568. https://doi.org/10.1002/ange.201610168
    48. Raphael F. Fritsche, Gabriele Theumer, Olga Kataeva, Hans‐Joachim Knölker. Iron‐Catalyzed Oxidative C−C and N−N Coupling of Diarylamines and Synthesis of Spiroacridines. Angewandte Chemie International Edition 2017, 56 (2) , 549-553. https://doi.org/10.1002/anie.201610168
    49. Botla Vinayak, Pilli NavyaSree, Malapaka Chandrasekharam. Iron( iii )-catalyzed chelation assisted remote C–H bond oxygenation of 8-amidoquinolines. Organic & Biomolecular Chemistry 2017, 15 (43) , 9200-9208. https://doi.org/10.1039/C7OB02159C
    50. Miaoshen Su, Cheng Li, Jingjun Ma. Iron‐catalyzed C−H Activation. Journal of the Chinese Chemical Society 2016, 63 (10) , 828-840. https://doi.org/10.1002/jccs.201600184
    51. VINAYAK BOTLA, CHIRANJEEVI BARREDDI, RAMANA V DAGGUPATI, CHANDRASEKHARAM MALAPAKA. Base-oxidant promoted metal-free N-demethylation of arylamines. Journal of Chemical Sciences 2016, 128 (9) , 1469-1473. https://doi.org/10.1007/s12039-016-1152-7
    52. Vinayak Botla, Daggupati V. Ramana, Barreddi Chiranjeevi, Malapaka Chandrasekharam. Iron‐Mediated Direct Ortho ‐ Nitration of Anilides and Aromatic Sulfonamides under Aerobic Oxidation Conditions.. ChemistrySelect 2016, 1 (13) , 3974-3978. https://doi.org/10.1002/slct.201600906
    53. Xu‐Heng Yang, Ren‐Jie Song, Ye‐Xiang Xie, Jin‐Heng Li. Iron Catalyzed Oxidative Coupling, Addition, and Functionalization. ChemCatChem 2016, 8 (15) , 2429-2445. https://doi.org/10.1002/cctc.201600019
    54. Leiyang Lv, Zhiping Li. Fe-Catalyzed Cross-Dehydrogenative Coupling Reactions. Topics in Current Chemistry 2016, 374 (4) https://doi.org/10.1007/s41061-016-0038-y
    55. Sololiya C. Berkessa, Zachary J.F. Clarke, Jean Fotie, D. Scott Bohle, Casey C. Grimm. Silver(I)-mediated regioselective oxidative cross-coupling of phenol and aniline derivatives resulting in 2′-aminobiphenyl-2-ols. Tetrahedron Letters 2016, 57 (14) , 1613-1618. https://doi.org/10.1016/j.tetlet.2016.02.111
    56. Kankatala S. V. Gupta, Daggupati V. Ramana, Botla Vinayak, Balasubramanian Sridhar, Malapaka Chandrasekharam. Copper-catalyzed regio and diastereoselective three component C–N, C–C and C–O bond forming reaction: oxidative sp 3 C–H functionalization. New Journal of Chemistry 2016, 40 (7) , 6389-6395. https://doi.org/10.1039/C5NJ03707G
    57. Yong Zheng, Wei-Bin Song, Li-Jiang Xuan. Copper-catalyzed oxidative esterification of ortho-formyl phenols without affecting labile formyl group. Tetrahedron Letters 2015, 56 (31) , 4569-4573. https://doi.org/10.1016/j.tetlet.2015.06.024
    58. Tao Deng, Hongjun Wang, Chun Cai. Copper‐Catalyzed Asymmetric Oxidative Cross‐Coupling of 2‐Naphthols with Aryl Methyl Ketones. European Journal of Organic Chemistry 2015, 2015 (7) , 1569-1574. https://doi.org/10.1002/ejoc.201403512
    59. Masumi Itazaki, Hiroshi Nakazawa. Iron-Catalyzed Cross-Dehydrogenative-Coupling Reactions. 2015, 47-81. https://doi.org/10.1007/3418_2015_105
    60. Chuan-Mi Feng, Yi-Zhou Zhu, Shao-Chun Zhang, Yun Zang, Jian-Yu Zheng. Synthesis of directly fused porphyrin dimers through Fe(OTf) 3 -mediated oxidative coupling. Organic & Biomolecular Chemistry 2015, 13 (9) , 2566-2569. https://doi.org/10.1039/C4OB02644F
    61. Yong Zheng, Wei-Bin Song, Li-Jiang Xuan. Directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes. Organic & Biomolecular Chemistry 2015, 13 (44) , 10834-10843. https://doi.org/10.1039/C5OB01465D
    62. Barreddi Chiranjeevi, Botla Vinayak, Thupakula Parsharamulu, Vemulapalli S. PhaniBabu, Bharatam Jagadeesh, Balasubramanian Sridhar, Malapaka Chandrasekharam. Iron(III)‐Catalyzed C–H Functionalization: ortho ‐Benzoyloxylation of N , N ‐Dialkylanilines and Its Application to 1,4‐Benzoxazepines. European Journal of Organic Chemistry 2014, 2014 (35) , 7839-7849. https://doi.org/10.1002/ejoc.201402751
    63. . Cross‐Coupling Arylations: Precedents and Rapid HistoricalReview of the Field. 2014, 1-94. https://doi.org/10.1002/9783527672707.ch1
    64. . Electrophilic Arylation of Arenes. 2014, 61-84. https://doi.org/10.1002/9783527687800.ch3
    65. Nam T.S. Phan, Phuong H.L. Vu, Tung T. Nguyen. Expanding applications of copper-based metal–organic frameworks in catalysis: Oxidative C–O coupling by direct C–H activation of ethers over Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst. Journal of Catalysis 2013, 306 , 38-46. https://doi.org/10.1016/j.jcat.2013.06.006
    66. Umesh A. Kshirsagar, Regev Parnes, Hagit Goldshtein, Rivka Ofir, Raz Zarivach, Doron Pappo. Aerobic Iron‐Based Cross‐Dehydrogenative Coupling Enables Efficient Diversity‐Oriented Synthesis of Coumestrol‐Based Selective Estrogen Receptor Modulators. Chemistry – A European Journal 2013, 19 (40) , 13575-13583. https://doi.org/10.1002/chem.201300389
    67. Marek Grzybowski, Kamil Skonieczny, Holger Butenschön, Daniel T. Gryko. Oxidative aromatische Kupplung und Scholl‐Reaktion im Vergleich. Angewandte Chemie 2013, 125 (38) , 10084-10115. https://doi.org/10.1002/ange.201210238
    68. Marek Grzybowski, Kamil Skonieczny, Holger Butenschön, Daniel T. Gryko. Comparison of Oxidative Aromatic Coupling and the Scholl Reaction. Angewandte Chemie International Edition 2013, 52 (38) , 9900-9930. https://doi.org/10.1002/anie.201210238
    69. Barreddi Chiranjeevi, Ganesh Koyyada, S. Prabusreenivasan, Vanaja Kumar, Pombala Sujitha, C. Ganesh Kumar, B. Sridhar, Saida Shaik, Malapaka Chandrasekharam. Iron-catalyzed aryl-aryl cross coupling route for the synthesis of 1-(2-amino)-phenyl)dibenzo[b,d]furan-2-ol derivatives and their biological evaluation. RSC Advances 2013, 3 (37) , 16475. https://doi.org/10.1039/c3ra43345e
    70. Adinarayana Murthy Akondi, Rajiv Trivedi, Bojja Sreedhar, Mannepalli Lakshmi Kantam, Suresh Bhargava. Cerium-containing MCM-41 catalyst for selective oxidative arene cross-dehydrogenative coupling reactions. Catalysis Today 2012, 198 (1) , 35-44. https://doi.org/10.1016/j.cattod.2012.05.029
    71. Naohiko Yoshikai. Iron‐Catalyzed C  C Bond Formation with C  H Bond Activation. 2012https://doi.org/10.1002/9780470682531.pat0655
    72. Malapaka Chandrasekharam, Barreddi Chiranjeevi, Kankatala S. V. Gupta, B. Sridhar. ChemInform Abstract: Iron‐Catalyzed Regioselective Direct Oxidative Aryl—Aryl Cross‐Coupling.. ChemInform 2012, 43 (14) https://doi.org/10.1002/chin.201214087
    73. M. Chandrasekharam, M. Anil Reddy, Surya P. Singh, B. Priyanka, K. Bhanuprakash, M. Lakshmi Kantam, A. Islam, L. Han. One bipyridine and triple advantages: tailoring ancillary ligands in ruthenium complexes for efficient sensitization in dye solar cells. Journal of Materials Chemistry 2012, 22 (36) , 18757. https://doi.org/10.1039/c2jm34558g

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2011, 76, 24, 10229–10235
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo202152b
    Published November 9, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    5005

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.