ACS Publications. Most Trusted. Most Cited. Most Read
Mechanism of the Acid-Promoted Intramolecular Schmidt Reaction: Theoretical Assessment of the Importance of Lone Pair–Cation, Cation−π, and Steric Effects in Controlling Regioselectivity
My Activity
    Article

    Mechanism of the Acid-Promoted Intramolecular Schmidt Reaction: Theoretical Assessment of the Importance of Lone Pair–Cation, Cation−π, and Steric Effects in Controlling Regioselectivity
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of California at Davis, Davis, California 95616, United States
    Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
    Other Access OptionsSupporting Information (1)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2012, 77, 1, 640–647
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo202338m
    Published November 29, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The mechanism of the acid-catalyzed intramolecular Schmidt reaction of 2-azidopropylcyclohexanones was studied using density functional theory (primarily M06-2X). The reaction was found to proceed through rapid formation of azidohydrin intermediates followed by rate-determining concerted N2-loss/shift of the alkyl group antiperiplanar to the N2 leaving group. For cases where steric, lone pair–cation, and cation−π effects have been invoked previously as regiocontrol elements, the origins and magnitudes of these effects have been examined theoretically.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional details on computations, including energies and coordinates for all minima and transition state structures, IRC plots, and full GAUSSIAN reference. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 42 publications.

    1. Shinji Yamada. Cation−π Interactions in Organic Synthesis. Chemical Reviews 2018, 118 (23) , 11353-11432. https://doi.org/10.1021/acs.chemrev.8b00377
    2. Harish Jangra, Quan Chen, Elina Fuks, Ivo Zenz, Peter Mayer, Armin R. Ofial, Hendrik Zipse, Herbert Mayr. Nucleophilicity and Electrophilicity Parameters for Predicting Absolute Rate Constants of Highly Asynchronous 1,3-Dipolar Cycloadditions of Aryldiazomethanes. Journal of the American Chemical Society 2018, 140 (48) , 16758-16772. https://doi.org/10.1021/jacs.8b09995
    3. Marc Liniger, David G. VanderVelde, Michael K. Takase, Mona Shahgholi, and Brian M. Stoltz . Total Synthesis and Characterization of 7-Hypoquinuclidonium Tetrafluoroborate and 7-Hypoquinuclidone BF3 Complex. Journal of the American Chemical Society 2016, 138 (3) , 969-974. https://doi.org/10.1021/jacs.5b11750
    4. Tongxiang Lu and Steven E. Wheeler . Quantifying the Role of Anion−π Interactions in Anion−π Catalysis. Organic Letters 2014, 16 (12) , 3268-3271. https://doi.org/10.1021/ol501283u
    5. Hashim F. Motiwala, Charlie Fehl, Sze-Wan Li, Erin Hirt, Patrick Porubsky, and Jeffrey Aubé . Overcoming Product Inhibition in Catalysis of the Intramolecular Schmidt Reaction. Journal of the American Chemical Society 2013, 135 (24) , 9000-9009. https://doi.org/10.1021/ja402848c
    6. Selina Wireduaah, Trent M. Parker, and Michael Lewis . Effects of the Aromatic Substitution Pattern in Cation−π Sandwich Complexes. The Journal of Physical Chemistry A 2013, 117 (12) , 2598-2604. https://doi.org/10.1021/jp309740r
    7. Bo Su, Fazhong Chen, and Qingmin Wang . An Enantioselective Strategy for the Synthesis of (S)-Tylophorine via One-Pot Intramolecular Schmidt/Bischler–Napieralski/Imine-Reduction Cascade Sequence. The Journal of Organic Chemistry 2013, 78 (6) , 2775-2779. https://doi.org/10.1021/jo302725q
    8. A. Subha Mahadevi and G. Narahari Sastry . Cation−π Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science. Chemical Reviews 2013, 113 (3) , 2100-2138. https://doi.org/10.1021/cr300222d
    9. Osvaldo Gutierrez and Dean J. Tantillo . Analogies between Synthetic and Biosynthetic Reactions in Which [1,2]-Alkyl Shifts Are Combined with Other Events: Dyotropic, Schmidt, and Carbocation Rearrangements. The Journal of Organic Chemistry 2012, 77 (20) , 8845-8850. https://doi.org/10.1021/jo301864h
    10. Ruzhang Liu, Osvaldo Gutierrez, Dean J. Tantillo, and Jeffrey Aubé . Stereocontrol in a Combined Allylic Azide Rearrangement and Intramolecular Schmidt Reaction. Journal of the American Chemical Society 2012, 134 (15) , 6528-6531. https://doi.org/10.1021/ja300369c
    11. Sambasivarao Kotha, Mohammad Salman. Synthesis and Reactions of Pentacycloundecane Derivatives Related to Cookson’s Dione. Synlett 2024, 79 https://doi.org/10.1055/a-2356-8408
    12. Ruzhang Liu, Juan Wang, Hao Wu, Xianfeng Quan, Shilin Wang, Jiandong Guo, Yang Wang, Heting Li. Stereocontrol in an intermolecular Schmidt reaction of equilibrating hydroxyalkyl allylic azides. Chemical Communications 2024, 60 (32) , 4362-4365. https://doi.org/10.1039/D4CC00907J
    13. Tongyu Huo, Xinyi Zhao, Zengrui Cheng, Jialiang Wei, Minghui Zhu, Xiaodong Dou, Ning Jiao. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharmaceutica Sinica B 2023, 356 https://doi.org/10.1016/j.apsb.2023.11.021
    14. Yongyin Liu, Guanghui Song, Hui Chen, Juan Li. Cu( i )-catalysed asymmetric intramolecular tandem oxaziridination/rearrangement reaction: theoretical insight into the mechanism, enantioselectivity, ligand effect, and comparison with the corresponding Lewis-acid-promoted reaction. Organic Chemistry Frontiers 2023, 10 (2) , 448-460. https://doi.org/10.1039/D2QO01372J
    15. Guilherme L. Kosteczka, Rafael N. Soek, Wagner E. Richter, Renan B. Campos. Substituent effects on intramolecular Schmidt reactions: a theoretical study on the formation of bridged lactams. Organic & Biomolecular Chemistry 2023, 78 https://doi.org/10.1039/D3OB00532A
    16. M. Matsugi, T. Shioiri. Recent New Developments in Hofmann, Curtius, Schmidt, Lossen, and Related Reactions. 2023https://doi.org/10.1016/B978-0-323-96025-0.00008-9
    17. Lars Gnägi, Remo Arnold, Florence Giornal, Harish Jangra, Ajoy Kapat, Erich Nyfeler, Robin M. Schärer, Hendrik Zipse, Philippe Renaud. Stereoselective and Stereospecific Triflate‐Mediated Intramolecular Schmidt Reaction: Ready Access to Alkaloid Skeletons**. Angewandte Chemie 2021, 133 (18) , 10267-10273. https://doi.org/10.1002/ange.202016892
    18. Lars Gnägi, Remo Arnold, Florence Giornal, Harish Jangra, Ajoy Kapat, Erich Nyfeler, Robin M. Schärer, Hendrik Zipse, Philippe Renaud. Stereoselective and Stereospecific Triflate‐Mediated Intramolecular Schmidt Reaction: Ready Access to Alkaloid Skeletons**. Angewandte Chemie International Edition 2021, 60 (18) , 10179-10185. https://doi.org/10.1002/anie.202016892
    19. Qing Sun, Xin Lu, Dean J. Tantillo. Dynamic Effects in Intramolecular Schmidt Reactions: Entropy, Electrostatic Drag, and Selectivity Prediction. ChemPhysChem 2021, 22 (7) , 649-656. https://doi.org/10.1002/cphc.202100033
    20. Sebastian Spicher, Eike Caldeweyher, Andreas Hansen, Stefan Grimme. Benchmarking London dispersion corrected density functional theory for noncovalent ion–π interactions. Physical Chemistry Chemical Physics 2021, 100 https://doi.org/10.1039/D1CP01333E
    21. Thomas Saal, Zsófia E. Blastik, Ralf Haiges, Archith Nirmalchandar, Amanda F. Baxter, Karl O. Christe, Monica Vasiliu, David A. Dixon, Petr Beier, G. K. Surya Prakash. Protonierung von CH 3 N 3 und CF 3 N 3 in Supersäuren: Isolierung und strukturelle Charakterisierung von langlebigen Methyl‐ und Trifluormethylamino‐Diazonium‐Ionen. Angewandte Chemie 2020, 132 (30) , 12620-12627. https://doi.org/10.1002/ange.202002750
    22. Thomas Saal, Zsófia E. Blastik, Ralf Haiges, Archith Nirmalchandar, Amanda F. Baxter, Karl O. Christe, Monica Vasiliu, David A. Dixon, Petr Beier, G. K. Surya Prakash. Protonation of CH 3 N 3 and CF 3 N 3 in Superacids: Isolation and Structural Characterization of Long‐Lived Methyl‐ and Trifluoromethylamino Diazonium Ions. Angewandte Chemie International Edition 2020, 59 (30) , 12520-12526. https://doi.org/10.1002/anie.202002750
    23. Francisco Xavier Domínguez-Villa, Gustavo Ávila-Zárraga, Concepción Armenta-Salinas. Synthesis of new fused dipyrroloazepinones via a two-step tandem reaction: Comparison of the Schmidt and Beckmann pathways. Tetrahedron Letters 2020, 61 (15) , 151751. https://doi.org/10.1016/j.tetlet.2020.151751
    24. Sambasivarao Kotha, Subba Rao Cheekatla. A new skeletal rearrangement of 1,7-dimethyl Cookson's cage dione catalyzed by a Lewis acid. Organic & Biomolecular Chemistry 2020, 18 (7) , 1377-1383. https://doi.org/10.1039/C9OB02298H
    25. Rajat Maji, Heena Ugale, Steven E. Wheeler. Understanding the Reactivity and Selectivity of Fluxional Chiral DMAP‐Catalyzed Kinetic Resolutions of Axially Chiral Biaryls. Chemistry – A European Journal 2019, 25 (17) , 4452-4459. https://doi.org/10.1002/chem.201806068
    26. Renan B. Campos, Dean J. Tantillo. Designing Reactions with Post-Transition-State Bifurcations: Asynchronous Nitrene Insertions into C–C σ Bonds. Chem 2019, 5 (1) , 227-236. https://doi.org/10.1016/j.chempr.2018.10.019
    27. C. Rose Kennedy, Song Lin, Eric N. Jacobsen. The Cation–π Interaction in Small‐Molecule Catalysis. Angewandte Chemie International Edition 2016, 55 (41) , 12596-12624. https://doi.org/10.1002/anie.201600547
    28. C. Rose Kennedy, Song Lin, Eric N. Jacobsen. Die Kation‐π‐Wechselwirkung in der Katalyse mit niedermolekularen Verbindungen. Angewandte Chemie 2016, 128 (41) , 12784-12814. https://doi.org/10.1002/ange.201600547
    29. Isabelle Gillaizeau, Nicolas Gigant. Alkyl and Acyl Azide Rearrangements. 2015, 85-110. https://doi.org/10.1002/9781118939901.ch4
    30. J. M. Coxon. Molecular Rearrangements. 2015, 469-540. https://doi.org/10.1002/9781118930786.ch12
    31. R. A. McClelland. Carbocations. 2015, 251-266. https://doi.org/10.1002/9781118930786.ch6
    32. Naresh Bhuma, Madhuri Vangala, Roopa J. Nair, Sushma G. Sabharwal, Dilip D. Dhavale. Halogenated d-xylono-δ-lactams: synthesis and enzyme inhibition study. Carbohydrate Research 2015, 402 , 215-224. https://doi.org/10.1016/j.carres.2014.10.023
    33. J. Aubé, C. Fehl, R. Liu, M.C. McLeod, H.F. Motiwala. 6.15 Hofmann, Curtius, Schmidt, Lossen, and Related Reactions. 2014, 598-635. https://doi.org/10.1016/B978-0-08-097742-3.00623-6
    34. Steven E. Wheeler, Jacob W. G. Bloom. Anion–π interactions and positive electrostatic potentials of N-heterocycles arise from the positions of the nuclei, not changes in the π-electron distribution. Chem. Commun. 2014, 50 (76) , 11118-11121. https://doi.org/10.1039/C4CC05304D
    35. Xiaowei Sun, Chengzhe Gao, Fan Zhang, Zhuang Song, Lingyi Kong, Xiaoan Wen, Hongbin Sun. Electronic and steric effects on the intramolecular Schmidt reaction of alkyl azides with secondary benzyl alcohols. Tetrahedron 2014, 70 (3) , 643-649. https://doi.org/10.1016/j.tet.2013.11.098
    36. Morgane Gaydou, Antonio M. Echavarren. Gold‐Catalyzed Synthesis of Tetrazoles from Alkynes by CC Bond Cleavage. Angewandte Chemie International Edition 2013, 52 (50) , 13468-13471. https://doi.org/10.1002/anie.201308076
    37. Morgane Gaydou, Antonio M. Echavarren. Gold‐Catalyzed Synthesis of Tetrazoles from Alkynes by CC Bond Cleavage. Angewandte Chemie 2013, 125 (50) , 13710-13713. https://doi.org/10.1002/ange.201308076
    38. Michal Szostak, Jeffrey Aubé. Chemistry of Bridged Lactams and Related Heterocycles. Chemical Reviews 2013, 113 (8) , 5701-5765. https://doi.org/10.1021/cr4000144
    39. Ganesh C. Nandi, Kenneth K. Laali. Schmidt reaction in ionic liquids: highly efficient and selective conversion of aromatic and heteroaromatic aldehydes to nitriles with [BMIM(SO3H)][OTf] as catalyst and [BMIM][PF6] as solvent. Tetrahedron Letters 2013, 54 (17) , 2177-2179. https://doi.org/10.1016/j.tetlet.2013.02.051
    40. Hua Chen, Rui Li, Zhenying Liu, Sinan Wei, Hongzhi Zhang, Xiaoliu Li. Synthesis of kifunensine thioanalogs and their inhibitory activities against HIV-RT and α-mannosidase. Carbohydrate Research 2013, 365 , 1-8. https://doi.org/10.1016/j.carres.2012.10.017
    41. Simon Pichette, Samuel Aubert-Nicol, Jean Lessard, Claude Spino. Photochemical and Thermal Ring-Contraction of Cyclic Hydroxamic Acid Derivatives. The Journal of Organic Chemistry 2012, 77 (24) , 11216-11226. https://doi.org/10.1021/jo3023507
    42. Hua Chen, Rui Li, Fang Gao, Xiaoliu Li. An efficient synthesis of δ-glyconolactams by intramolecular Schmidt–Boyer reaction under microwave radiation. Tetrahedron Letters 2012, 53 (52) , 7147-7149. https://doi.org/10.1016/j.tetlet.2012.10.098

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2012, 77, 1, 640–647
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo202338m
    Published November 29, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2448

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.