ACS Publications. Most Trusted. Most Cited. Most Read
Influence of Temperature and Pressure on Cyclic Carbonate Synthesis Catalyzed by Bimetallic Aluminum Complexes and Application to Overall syn-Bis-hydroxylation of Alkenes
My Activity
    Article

    Influence of Temperature and Pressure on Cyclic Carbonate Synthesis Catalyzed by Bimetallic Aluminum Complexes and Application to Overall syn-Bis-hydroxylation of Alkenes
    Click to copy article linkArticle link copied!

    View Author Information
    School of Chemistry and University Research Centre in Catalysis and Intensified Processing, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, England, U.K.
    Other Access OptionsSupporting Information (1)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2013, 78, 2, 419–426
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo302317w
    Published December 21, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The effect of moderate temperatures (22–100 °C) and pressures (1–10 bar) on the synthesis of cyclic carbonates from epoxides and carbon dioxide catalyzed by a combination of bimetallic aluminum complexes and tetrabutylammonium bromide is investigated. The combined bimetallic complex and tetrabutylammonium bromide catalyst system is shown to be an order of magnitude more active than the use of tetrabutylammonium bromide alone at all temperatures and pressures studied. At the higher temperatures and pressures used, disubstituted epoxides become substrates for the reaction and it is shown that reactions proceed with retention of the epoxide stereochemistry. This allowed a route for the overall syn-bis-hydroxylation of alkenes to be developed without the use of hazardous metal based reagents. At higher pressures it is also possible to use compressed air as the carbon dioxide source.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    1H and 13C NMR and GCMS spectra for cyclic carbonates; 1H and 13C NMR spectra for epoxides 5ae and diols 7ad. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 121 publications.

    1. Ekata Saha, Hiren Jungi, Shilpa Dabas, Abra Mathew, Rositha Kuniyil, Saravanan Subramanian, Joyee Mitra. Amine-rich Nickel(II)-Xerogel as a Highly Active Bifunctional Metallo-organo Catalyst for Aqueous Knoevenagel Condensation and Solvent-free CO2 Cycloaddition. Inorganic Chemistry 2023, 62 (37) , 14959-14970. https://doi.org/10.1021/acs.inorgchem.3c01669
    2. Ali Rostami, Amirhossein Ebrahimi, Nader Sakhaee, Farhad Golmohammadi, Ahmed Al-Harrasi. Microwave-Assisted Electrostatically Enhanced Phenol-Catalyzed Synthesis of Oxazolidinones. The Journal of Organic Chemistry 2022, 87 (1) , 40-55. https://doi.org/10.1021/acs.joc.1c01686
    3. Juan Fernández-Baeza, Luis F. Sánchez-Barba, Agustín Lara-Sánchez, Sonia Sobrino, Jaime Martínez-Ferrer, Andrés Garcés, Marta Navarro, Ana M. Rodríguez. NNC-Scorpionate Zirconium-Based Bicomponent Systems for the Efficient CO2 Fixation into a Variety of Cyclic Carbonates. Inorganic Chemistry 2020, 59 (17) , 12422-12430. https://doi.org/10.1021/acs.inorgchem.0c01532
    4. Felipe de la Cruz-Martínez, Marc Martínez de Sarasa Buchaca, Javier Martínez, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Antonio Rodríguez-Diéguez, José A. Castro-Osma, Agustín Lara-Sánchez. Synthesis of Bio-Derived Cyclic Carbonates from Renewable Resources. ACS Sustainable Chemistry & Engineering 2019, 7 (24) , 20126-20138. https://doi.org/10.1021/acssuschemeng.9b06016
    5. Fei Chen, Qiao-Chu Zhang, Donghui Wei, Qingqing Bu, Bin Dai, Ning Liu. Highly Stereo-Controlled Synthesis of Fatty Acid-Derived Cyclic Carbonates by Using Iron(II) Complex and Nucleophilic Halide. The Journal of Organic Chemistry 2019, 84 (18) , 11407-11416. https://doi.org/10.1021/acs.joc.9b01068
    6. Arunangshu Kundu, Gobinda Chandra De, Sushobhan Ghosh. Green Synthesis of Novel Polyesterurethane Materials from Epoxides and Carbon Dioxide by New Set of One-Dimensional Coordination Polymer Catalyst. ACS Omega 2019, 4 (9) , 14074-14084. https://doi.org/10.1021/acsomega.9b01922
    7. Manpreet Singh, Pratik Solanki, Parth Patel, Aniruddha Mondal, Subhadip Neogi. Highly Active Ultrasmall Ni Nanoparticle Embedded Inside a Robust Metal–Organic Framework: Remarkably Improved Adsorption, Selectivity, and Solvent-Free Efficient Fixation of CO2. Inorganic Chemistry 2019, 58 (12) , 8100-8110. https://doi.org/10.1021/acs.inorgchem.9b00833
    8. Arunangshu Kundu, Swagata Saikia, Manoj Majumder, Oindrila Sengupta, Biswajit Bhattacharya, Gobinda Chandra De, Sushobhan Ghosh. New Set of Multicomponent Crystals as Efficient Heterogeneous Catalysts for the Synthesis of Cyclic Carbonates. ACS Omega 2019, 4 (3) , 5221-5232. https://doi.org/10.1021/acsomega.9b00101
    9. Francesco Della Monica, Bholanath Maity, Thomas Pehl, Antonio Buonerba, Assunta De Nisi, Magda Monari, Alfonso Grassi, Bernhard Rieger, Luigi Cavallo, Carmine Capacchione. [OSSO]-Type Iron(III) Complexes for the Low-Pressure Reaction of Carbon Dioxide with Epoxides: Catalytic Activity, Reaction Kinetics, and Computational Study. ACS Catalysis 2018, 8 (8) , 6882-6893. https://doi.org/10.1021/acscatal.8b01695
    10. Lars Longwitz, Johannes Steinbauer, Anke Spannenberg, and Thomas Werner . Calcium-Based Catalytic System for the Synthesis of Bio-Derived Cyclic Carbonates under Mild Conditions. ACS Catalysis 2018, 8 (1) , 665-672. https://doi.org/10.1021/acscatal.7b03367
    11. Rafik Rajjak Shaikh, Suriyaporn Pornpraprom, and Valerio D’Elia . Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions. ACS Catalysis 2018, 8 (1) , 419-450. https://doi.org/10.1021/acscatal.7b03580
    12. Sunatda Arayachukiat, Chutima Kongtes, Alexander Barthel, Sai V. C. Vummaleti, Albert Poater, Sippakorn Wannakao, Luigi Cavallo, and Valerio D’Elia . Ascorbic Acid as a Bifunctional Hydrogen Bond Donor for the Synthesis of Cyclic Carbonates from CO2 under Ambient Conditions. ACS Sustainable Chemistry & Engineering 2017, 5 (8) , 6392-6397. https://doi.org/10.1021/acssuschemeng.7b01650
    13. Sergio Sopeña, Eddy Martin, Eduardo C. Escudero-Adán, and Arjan W. Kleij . Pushing the Limits with Squaramide-Based Organocatalysts in Cyclic Carbonate Synthesis. ACS Catalysis 2017, 7 (5) , 3532-3539. https://doi.org/10.1021/acscatal.7b00475
    14. Yasunori Toda, Yutaka Komiyama, Ayaka Kikuchi, and Hiroyuki Suga . Tetraarylphosphonium Salt-Catalyzed Carbon Dioxide Fixation at Atmospheric Pressure for the Synthesis of Cyclic Carbonates. ACS Catalysis 2016, 6 (10) , 6906-6910. https://doi.org/10.1021/acscatal.6b02265
    15. José A. Castro-Osma, Katie J. Lamb, and Michael North . Cr(salophen) Complex Catalyzed Cyclic Carbonate Synthesis at Ambient Temperature And Pressure. ACS Catalysis 2016, 6 (8) , 5012-5025. https://doi.org/10.1021/acscatal.6b01386
    16. Pengfei Gao, Zhiwen Zhao, Lijuan Chen, Dan Yuan, and Yingming Yao . Dinuclear Aluminum Poly(phenolate) Complexes as Efficient Catalysts for Cyclic Carbonate Synthesis. Organometallics 2016, 35 (11) , 1707-1712. https://doi.org/10.1021/acs.organomet.6b00153
    17. Valerio D’Elia, Hailin Dong, Aaron J. Rossini, Cory M. Widdifield, Sai V. C. Vummaleti, Yury Minenkov, Albert Poater, Edy Abou-Hamad, Jérémie D. A. Pelletier, Luigi Cavallo, Lyndon Emsley, and Jean-Marie Basset . Cooperative Effect of Monopodal Silica-Supported Niobium Complex Pairs Enhancing Catalytic Cyclic Carbonate Production. Journal of the American Chemical Society 2015, 137 (24) , 7728-7739. https://doi.org/10.1021/jacs.5b02872
    18. Michael North, Sophie C. Z. Quek, Natalie E. Pridmore, Adrian C. Whitwood, and Xiao Wu . Aluminum(salen) Complexes as Catalysts for the Kinetic Resolution of Terminal Epoxides via CO2 Coupling. ACS Catalysis 2015, 5 (6) , 3398-3402. https://doi.org/10.1021/acscatal.5b00235
    19. Yuan-Zhao Hua, Xiao-Chao Yang, Meng-Meng Liu, Xixi Song, Min-Can Wang, and Jun-Biao Chang . Asymmetric Copolymerization of Cyclopentene Oxide and CO2 Using a Dinuclear Zinc–AzePhenol Catalyst: Enlightened by DFT Calculations. Macromolecules 2015, 48 (6) , 1651-1657. https://doi.org/10.1021/acs.macromol.5b00066
    20. Carmen Martín, Giulia Fiorani, and Arjan W. Kleij . Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catalysis 2015, 5 (2) , 1353-1370. https://doi.org/10.1021/cs5018997
    21. Wei-Min Ren, Ye Liu, and Xiao-Bing Lu . Bifunctional Aluminum Catalyst for CO2 Fixation: Regioselective Ring Opening of Three-Membered Heterocyclic Compounds. The Journal of Organic Chemistry 2014, 79 (20) , 9771-9777. https://doi.org/10.1021/jo501926p
    22. So Han Kim, Duseong Ahn, Min Jeong Go, Myung Hwan Park, Min Kim, Junseong Lee, and Youngjo Kim . Dinuclear Aluminum Complexes as Catalysts for Cycloaddition of CO2 to Epoxides. Organometallics 2014, 33 (11) , 2770-2775. https://doi.org/10.1021/om500257j
    23. Thilo Baronsky, Christopher Beattie, Ross W. Harrington, Reyhan Irfan, Michael North, Javier G. Osende, and Carl Young . Bimetallic Aluminum(salen) Catalyzed Synthesis of Oxazolidinones from Epoxides and Isocyanates. ACS Catalysis 2013, 3 (4) , 790-797. https://doi.org/10.1021/cs4001046
    24. Katsuhiko Takeuchi, Hiroki Koizumi, Haruki Nagae, Kazuhiro Matsumoto, Norihisa Fukaya, Kazuhiko Sato, Jun-Chul Choi. Direct use of low-concentration CO2 in the synthesis of dialkyl carbonates, carbamate acid esters, and urea derivatives. Journal of CO2 Utilization 2024, 83 , 102814. https://doi.org/10.1016/j.jcou.2024.102814
    25. Peyman Ghorbani, Alireza Abbasi, Samira Zamani, Mahdiyeh-Sadat Hosseini. Enhanced solvent-free CO2 cycloaddition and green sulfide oxidation using surfactant-modified defective HKUST-1 for encapsulating β-brominated Zn(II) porphyrin. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 685 , 133123. https://doi.org/10.1016/j.colsurfa.2023.133123
    26. Diego Jaraba Cabrera, Lucía Álvarez-Miguel, Carlos Díez-Poza, Marta E.G. Mosquera, Christopher J. Whiteoak. Combining bio- and chemo-catalysis for cyclic carbonate synthesis at very low pressure: Efficient “online” utilization of CO2 obtained directly from the fermentation of sugars. Catalysis Today 2024, 429 , 114477. https://doi.org/10.1016/j.cattod.2023.114477
    27. Aishwarya Ramesh, Sharmistha De, Sakshi Bajaj, Bidisa Das, Saumi Ray. CO 2 to Cyclic Carbonate: A Mechanistic Insight of a Benign Route Using Zinc(II) Salophen Complexes. European Journal of Inorganic Chemistry 2024, 27 (6) https://doi.org/10.1002/ejic.202300610
    28. Mengrui Li, Lan Shi, Yi Liu, Shuangjiang Li, Weigang Cui, Wenlong Li, Yunfei Zhi, Shaoyun Shan, Yingju Miao. A dual-ionic hyper-crosslinked polymer for efficient CO2 fixation and conversion. Chemical Engineering Journal 2024, 481 , 148550. https://doi.org/10.1016/j.cej.2024.148550
    29. Marta Navarro, Andrés Garcés, Luis F. Sánchez-Barba, David González-Lizana, Agustín Lara-Sánchez. Very efficient organo-zinc scorpionates for CO 2 fixation into a variety of cyclic carbonates: synthesis, coordination ability and catalytic studies. Dalton Transactions 2023, 52 (18) , 6105-6116. https://doi.org/10.1039/D3DT00510K
    30. Ali Rostami, Amirhossein Ebrahimi, Mohammed Al-Jassasi, Saber Mirzaei, Ahmed Al-Harrasi. 2-Picolinic acid as a naturally occurring hydrogen bond donor for the preparation of cyclic carbonates from terminal/internal epoxides and CO 2. Green Chemistry 2022, 24 (23) , 9069-9083. https://doi.org/10.1039/D2GC02146C
    31. Mingan Chen, Hui Yang, Ming Wah Wong. Polymerization-like mechanism for fixation of CO 2 with epoxides by multifunctional organocatalysts. Chemical Communications 2022, 58 (59) , 8262-8265. https://doi.org/10.1039/D2CC03409C
    32. Divya Prasad, Komal N. Patil, Nitin K. Chaudhari, Hern Kim, Bhari Mallanna Nagaraja, Arvind H. Jadhav. Paving way for sustainable earth-abundant metal based catalysts for chemical fixation of CO 2 into epoxides for cyclic carbonate formation. Catalysis Reviews 2022, 64 (2) , 356-443. https://doi.org/10.1080/01614940.2020.1812212
    33. Maryam Anafcheh, Mansour Zahedi. Hydrogenation of Carbon Dioxide into Formic Acid by Aluminum Ligated NNN Pincer Fullerene Through Metal–Ligand H2O-Assisted Pathway: A Computational Study. Catalysis Letters 2022, 152 (4) , 1224-1232. https://doi.org/10.1007/s10562-021-03723-4
    34. Emmanuel Gras, Omar Sadek. Oxiranes and Oxirenes: Fused-Ring Derivatives. 2022, 275-360. https://doi.org/10.1016/B978-0-12-818655-8.00026-3
    35. Dragoslav Vidović. Aluminum Complexes in Organic Synthesis. 2022, 335-381. https://doi.org/10.1016/B978-0-12-820206-7.00052-4
    36. Luis F. Sánchez-Barba, Marta Navarro, Luis F. Sánchez-Barba, Andrés Garcés, Juan Fernández-Baeza, Agustín Lara-Sánchez. Very Efficient Organo-Zinc Scorpionates for the Co2 Fixation into a Variety of Cyclic Carbonates. SSRN Electronic Journal 2022, 24 https://doi.org/10.2139/ssrn.4162686
    37. Jae Hyung Kim, Seung Hyun Lee, Nam Hee Kim, Eun Joo Kang. Sustainable synthesis of five-membered heterocycles using carbon dioxide and Fe-iminopyridine catalysts. Journal of CO2 Utilization 2021, 50 , 101595. https://doi.org/10.1016/j.jcou.2021.101595
    38. Wooyong Seong, Hyungwoo Hahm, Seyong Kim, Jongwoo Park, Khalil A. Abboud, Sukwon Hong. Self-Assembled Bimetallic Aluminum-Salen Catalyst for the Cyclic Carbonates Synthesis. Molecules 2021, 26 (13) , 4097. https://doi.org/10.3390/molecules26134097
    39. Abdul Rehman, Faisal Saleem, Farhan Javed, Amir Ikhlaq, Syed Waqas Ahmad, Adam Harvey. Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides. Journal of Environmental Chemical Engineering 2021, 9 (2) , 105113. https://doi.org/10.1016/j.jece.2021.105113
    40. Kuan Yin, Linyan Hua, Liye Qu, Quanyou Yao, Yaorong Wang, Dan Yuan, Hongpeng You, Yingming Yao. Heterobimetallic rare earth metal–zinc catalysts for reactions of epoxides and CO 2 under ambient conditions. Dalton Transactions 2021, 50 (4) , 1453-1464. https://doi.org/10.1039/D0DT03772A
    41. Jun-Jie Lv, Feng-Lin Cao, Mei-Ling Wang, Xi-Mei Zong, Xiao-Min Kang, Zhi-Lei Wu. A new Co-based metal-organic coordination polymer as a catalyst in chemical fixation of CO2. Polyhedron 2021, 195 , 114982. https://doi.org/10.1016/j.poly.2020.114982
    42. Liping Guo, Katie J. Lamb, Michael North. Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chemistry 2021, 23 (1) , 77-118. https://doi.org/10.1039/D0GC03465G
    43. Francesco Della Monica, Carmine Capacchione. Homogeneous Iron Catalysts for the Synthesis of Useful Molecules from CO 2 . 2020, 331-365. https://doi.org/10.1002/9783527821952.ch10
    44. Marta Navarro, Luis F. Sánchez-Barba, Andrés Garcés, Juan Fernández-Baeza, Israel Fernández, Agustín Lara-Sánchez, Ana M. Rodríguez. Bimetallic scorpionate-based helical organoaluminum complexes for efficient carbon dioxide fixation into a variety of cyclic carbonates. Catalysis Science & Technology 2020, 10 (10) , 3265-3278. https://doi.org/10.1039/D0CY00593B
    45. Paweł G. Parzuchowski, Aleksandra Świderska, Marlena Roguszewska, Karolina Rolińska, Dominik Wołosz, Mariusz Mamiński. Hyperbranched Poly(ether-siloxane)s Containing Ammonium Groups: Synthesis, Characterization and Catalytic Activity. Polymers 2020, 12 (4) , 856. https://doi.org/10.3390/polym12040856
    46. Ali Rostami, Amirhossein Ebrahimi, John Husband, Muhammad Usman Anwar, Rene Csuk, Ahmed Al‐Harrasi. Squaramide–Quaternary Ammonium Salt as an Effective Binary Organocatalytic System for Oxazolidinone Synthesis from Isocyanates and Epoxides. European Journal of Organic Chemistry 2020, 2020 (12) , 1881-1895. https://doi.org/10.1002/ejoc.202000153
    47. Wenli Zhang, Fangpei Ma, Long Ma, Yu Zhou, Jun Wang. Imidazolium‐Functionalized Ionic Hypercrosslinked Porous Polymers for Efficient Synthesis of Cyclic Carbonates from Simulated Flue Gas. ChemSusChem 2020, 13 (2) , 341-350. https://doi.org/10.1002/cssc.201902952
    48. Xin Jin, Jie Ding, Qi Xia, Guangyu Zhang, Chaohe Yang, Jian Shen, Bala Subramaniam, Raghunath V. Chaudhari. Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. Journal of CO2 Utilization 2019, 34 , 115-148. https://doi.org/10.1016/j.jcou.2019.05.024
    49. Nam Hee Kim, Eun Young Seong, Jae Hyung Kim, Seung Hyun Lee, Kwang-Hyun Ahn, Eun Joo Kang. Functionally-designed heteroleptic Fe-bisiminopyridine systems for the transformation of carbon dioxide. Journal of CO2 Utilization 2019, 34 , 516-521. https://doi.org/10.1016/j.jcou.2019.07.033
    50. Mehran Ghasemlou, Fugen Daver, Elena P. Ivanova, Benu Adhikari. Bio-based routes to synthesize cyclic carbonates and polyamines precursors of non-isocyanate polyurethanes: A review. European Polymer Journal 2019, 118 , 668-684. https://doi.org/10.1016/j.eurpolymj.2019.06.032
    51. Habib Ullah, Bibimaryam Mousavi, Hussein A. Younus, Zafar A.K. Khattak, Suleman Suleman, Muhammad T. Jan, Baoyi Yu, Somboon Chaemchuen, Francis Verpoort. ONO pincer type ligand complexes of Al(III) as efficient catalyst for chemical fixation of CO2 to epoxides at atmospheric pressure. Journal of Catalysis 2019, 377 , 190-198. https://doi.org/10.1016/j.jcat.2019.07.033
    52. Sonia Sobrino, Marta Navarro, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Andrés Garcés, Agustín Lara-Sánchez, José A. Castro-Osma. Efficient CO 2 fixation into cyclic carbonates catalyzed by NNO-scorpionate zinc complexes. Dalton Transactions 2019, 48 (28) , 10733-10742. https://doi.org/10.1039/C9DT01844A
    53. Neha Yadav, Farzad Seidi, Silvano Del Gobbo, Valerio D'Elia, Daniel Crespy. Versatile functionalization of polymer nanoparticles with carbonate groups via hydroxyurethane linkages. Polymer Chemistry 2019, 10 (26) , 3571-3584. https://doi.org/10.1039/C9PY00597H
    54. Miguel A. Gaona, Felipe de la Cruz-Martínez, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Carlos Alonso-Moreno, Ana M. Rodríguez, Antonio Rodríguez-Diéguez, José A. Castro-Osma, Antonio Otero, Agustín Lara-Sánchez. Synthesis of helical aluminium catalysts for cyclic carbonate formation. Dalton Transactions 2019, 48 (13) , 4218-4227. https://doi.org/10.1039/C9DT00323A
    55. Eun Young Seong, Jae Hyung Kim, Nam Hee Kim, Kwang‐Hyun Ahn, Eun Joo Kang. Multifunctional and Sustainable Fe‐Iminopyridine Complexes for the Synthesis of Cyclic Carbonates. ChemSusChem 2019, 12 (2) , 409-415. https://doi.org/10.1002/cssc.201802563
    56. Francesco Della Monica, Antonio Buonerba, Veronica Paradiso, Stefano Milione, Alfonso Grassi, Carmine Capacchione. [OSSO]‐Type Fe(III) Metallate as Single‐Component Catalyst for the CO 2 Cycloaddition to Epoxides. Advanced Synthesis & Catalysis 2019, 361 (2) , 283-288. https://doi.org/10.1002/adsc.201801240
    57. Francesco Della Monica, Antonio Buonerba, Carmine Capacchione. Homogeneous Iron Catalysts in the Reaction of Epoxides with Carbon Dioxide. Advanced Synthesis & Catalysis 2019, 361 (2) , 265-282. https://doi.org/10.1002/adsc.201801281
    58. Jie Qin, Vladimir A. Larionov, Klaus Harms, Eric Meggers. Kinetic Resolution of Epoxides with CO 2 Catalyzed by a Chiral‐at‐Iridium Complex. ChemSusChem 2019, 12 (1) , 320-325. https://doi.org/10.1002/cssc.201802049
    59. Ali Rostami, Mohammadali Mahmoodabadi, Amir Hossein Ebrahimi, Hormoz Khosravi, Ahmed Al‐Harrasi. An Electrostatically Enhanced Phenol as a Simple and Efficient Bifunctional Organocatalyst for Carbon Dioxide Fixation. ChemSusChem 2018, 11 (24) , 4262-4268. https://doi.org/10.1002/cssc.201802028
    60. Pooja R. Tambe, Ganapati D. Yadav. Heterogeneous cycloaddition of styrene oxide with carbon dioxide for synthesis of styrene carbonate using reusable lanthanum–zirconium mixed oxide as catalyst. Clean Technologies and Environmental Policy 2018, 20 (2) , 345-356. https://doi.org/10.1007/s10098-017-1475-1
    61. Takuji Hirose, Shujie Qu, Koichi Kodama, Xiangyong Wang. Organocatalyst system for disubstituted carbonates from cycloaddition between CO2 and internal epoxides. Journal of CO2 Utilization 2018, 24 , 261-265. https://doi.org/10.1016/j.jcou.2018.01.016
    62. Jun Ma, Lu Lu, Qingqing Mei, Qinggong Zhu, Jiayin Hu, Buxing Han. ZnI 2 /NEt 3 ‐Catalyzed Cycloaddition of CO 2 with Propargylic Alcohols: Computational Study on Mechanism. ChemCatChem 2017, 9 (21) , 4090-4097. https://doi.org/10.1002/cctc.201700771
    63. Xiangyong Wang, Yingying Zhao, Koichi Kodama, Takuji Hirose. Poly(4‐vinylphenol)/tetra‐ n ‐butylammonium iodide: Efficient organocatalytic system for synthesis of cyclic carbonates from CO 2 and epoxides. Journal of Applied Polymer Science 2017, 134 (33) https://doi.org/10.1002/app.45189
    64. Javier Martínez, Juan Fernández‐Baeza, Luis F. Sánchez‐Barba, José A. Castro‐Osma, Agustín Lara‐Sánchez, Antonio Otero. An Efficient and Versatile Lanthanum Heteroscorpionate Catalyst for Carbon Dioxide Fixation into Cyclic Carbonates. ChemSusChem 2017, 10 (14) , 2886-2890. https://doi.org/10.1002/cssc.201700898
    65. Michael J. Kelly, Alexander Barthel, Clement Maheu, Ounjit Sodpiban, Frank-Blondel Dega, Sai V.C. Vummaleti, Edy Abou-Hamad, Jeremie D.A. Pelletier, Luigi Cavallo, Valerio D’Elia, Jean-Marie Basset. Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst. Journal of CO2 Utilization 2017, 20 , 243-252. https://doi.org/10.1016/j.jcou.2017.05.020
    66. Hendrik Büttner, Lars Longwitz, Johannes Steinbauer, Christoph Wulf, Thomas Werner. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2. Topics in Current Chemistry 2017, 375 (3) https://doi.org/10.1007/s41061-017-0136-5
    67. Mariachiara Cozzolino, Tomer Rosen, Israel Goldberg, Mina Mazzeo, Marina Lamberti. Selective Synthesis of Cyclic Carbonate by Salalen–Aluminum Complexes and Mechanistic Studies. ChemSusChem 2017, 10 (6) , 1217-1223. https://doi.org/10.1002/cssc.201601479
    68. Jeroen Rintjema, Arjan W. Kleij. Aluminum‐Mediated Formation of Cyclic Carbonates: Benchmarking Catalytic Performance Metrics. ChemSusChem 2017, 10 (6) , 1274-1282. https://doi.org/10.1002/cssc.201601712
    69. Chihiro Maeda, Sota Sasaki, Tadashi Ema. Electronic Tuning of Zinc Porphyrin Catalysts for the Conversion of Epoxides and Carbon Dioxide into Cyclic Carbonates. ChemCatChem 2017, 9 (6) , 946-949. https://doi.org/10.1002/cctc.201601690
    70. José Enrique Gómez, Arjan W. Kleij. Recent progress in stereoselective synthesis of cyclic organic carbonates and beyond. Current Opinion in Green and Sustainable Chemistry 2017, 3 , 55-60. https://doi.org/10.1016/j.cogsc.2016.11.005
    71. Ya Xu, Dan Yuan, Yaorong Wang, Yingming Yao. Aluminum complexes derived from a hexadentate salen-type Schiff base: synthesis, structure, and catalysis for cyclic carbonate synthesis. Dalton Transactions 2017, 46 (18) , 5848-5855. https://doi.org/10.1039/C7DT00789B
    72. Z. Alaji, E. Safaei, A. Wojtczak. Development of pyridine based o-aminophenolate zinc complexes as structurally tunable catalysts for CO 2 fixation into cyclic carbonates. New Journal of Chemistry 2017, 41 (18) , 10121-10131. https://doi.org/10.1039/C7NJ01656E
    73. Shailesh Verma, Gaurav Kumar, Amamudin Ansari, Rukhsana I. Kureshy, Noor-ul H. Khan. A nitrogen rich polymer as an organo-catalyst for cycloaddition of CO 2 to epoxides and its application for the synthesis of polyurethane. Sustainable Energy & Fuels 2017, 1 (7) , 1620-1629. https://doi.org/10.1039/C7SE00298J
    74. Francesco Della Monica, Sai V. C. Vummaleti, Antonio Buonerba, Assunta De Nisi, Magda Monari, Stefano Milione, Alfonso Grassi, Luigi Cavallo, Carmine Capacchione. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether‐Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure–Reactivity Relationship and Mechanistic DFT Study. Advanced Synthesis & Catalysis 2016, 358 (20) , 3231-3243. https://doi.org/10.1002/adsc.201600621
    75. James W. Comerford, Ian D.V. Ingram, Michael North, Xiao Wu. Catalytic Cyclic Carbonate Synthesis with Sustainable Metals. 2016, 1-13. https://doi.org/10.1002/9781119951438.eibc2414
    76. Wusheng Guo, Luis Martínez‐Rodríguez, Eddy Martin, Eduardo C. Escudero‐Adán, Arjan W. Kleij. Highly Efficient Catalytic Formation of ( Z )‐1,4‐But‐2‐ene Diols Using Water as a Nucleophile. Angewandte Chemie 2016, 128 (37) , 11203-11206. https://doi.org/10.1002/ange.201603638
    77. Wusheng Guo, Luis Martínez‐Rodríguez, Eddy Martin, Eduardo C. Escudero‐Adán, Arjan W. Kleij. Highly Efficient Catalytic Formation of ( Z )‐1,4‐But‐2‐ene Diols Using Water as a Nucleophile. Angewandte Chemie International Edition 2016, 55 (37) , 11037-11040. https://doi.org/10.1002/anie.201603638
    78. Bin Xu, Peng Wang, Min Lv, Dan Yuan, Yingming Yao. Transformation of Carbon Dioxide into Oxazolidinones and Cyclic Carbonates Catalyzed by Rare‐Earth‐Metal Phenolates. ChemCatChem 2016, 8 (15) , 2466-2471. https://doi.org/10.1002/cctc.201600534
    79. Sergio Sopeña, Victor Laserna, Wusheng Guo, Eddy Martin, Eduardo C. Escudero‐Adán, Arjan W. Kleij. Regioselective Organocatalytic Formation of Carbamates from Substituted Cyclic Carbonates. Advanced Synthesis & Catalysis 2016, 358 (13) , 2172-2178. https://doi.org/10.1002/adsc.201600290
    80. Giulia Fiorani, Moritz Stuck, Carmen Martín, Marta Martínez Belmonte, Eddy Martin, Eduardo C. Escudero‐Adán, Arjan W. Kleij. Catalytic Coupling of Carbon Dioxide with Terpene Scaffolds: Access to Challenging Bio‐Based Organic Carbonates. ChemSusChem 2016, 9 (11) , 1304-1311. https://doi.org/10.1002/cssc.201600238
    81. Shailesh Verma, Mrinal Kanti Si, Rukhsana I. Kureshy, Mohd Nazish, Manish Kumar, Noor-ul H. Khan, Sayed H.R. Abdi, Hari C. Bajaj, Bishwajit Ganguly. Chemical fixation of CO2 to cyclic carbonates using Al(III) β-aminoalcohol based efficient catalysts: An experimental and computational studies. Journal of Molecular Catalysis A: Chemical 2016, 417 , 135-144. https://doi.org/10.1016/j.molcata.2016.03.018
    82. Chihiro Maeda, Junta Shimonishi, Ray Miyazaki, Jun‐ya Hasegawa, Tadashi Ema. Highly Active and Robust Metalloporphyrin Catalysts for the Synthesis of Cyclic Carbonates from a Broad Range of Epoxides and Carbon Dioxide. Chemistry – A European Journal 2016, 22 (19) , 6556-6563. https://doi.org/10.1002/chem.201600164
    83. Wusheng Guo, Victor Laserna, Eddy Martin, Eduardo C. Escudero‐Adán, Arjan W. Kleij. Stereodivergent Carbamate Synthesis by Selective in Situ Trapping of Organic Carbonate Intermediates. Chemistry – A European Journal 2016, 22 (5) , 1722-1727. https://doi.org/10.1002/chem.201504510
    84. Mariachiara Cozzolino, Konstantin Press, Mina Mazzeo, Marina Lamberti. Carbon Dioxide/Epoxide Reactions Catalyzed by Bimetallic Salalen Aluminum Complexes. ChemCatChem 2016, 8 (2) , 455-460. https://doi.org/10.1002/cctc.201500856
    85. G. Rokicki, P.G. Parzuchowski. ROP of Cyclic Carbonates and ROP of Macrocycles – Latest Developments. 2016https://doi.org/10.1016/B978-0-12-803581-8.01381-3
    86. Alexander Barthel, Youssef Saih, Michel Gimenez, Jérémie D. A. Pelletier, F. E. Kühn, Valerio D'Elia, Jean-Marie Basset. Highly integrated CO 2 capture and conversion: direct synthesis of cyclic carbonates from industrial flue gas. Green Chemistry 2016, 18 (10) , 3116-3123. https://doi.org/10.1039/C5GC03007B
    87. Yanwei Ren, Ou Jiang, Hang Zeng, Qiuping Mao, Huanfeng Jiang. Lewis acid–base bifunctional aluminum–salen catalysts: synthesis of cyclic carbonates from carbon dioxide and epoxides. RSC Advances 2016, 6 (4) , 3243-3249. https://doi.org/10.1039/C5RA24596F
    88. Christopher G. Gianopoulos, Nishant Kumar, Yihong Zhao, Li Jia, Kristin Kirschbaum, Mark R. Mason. Aluminum alkoxide, amide and halide complexes supported by a bulky dipyrromethene ligand: synthesis, characterization, and preliminary ε-caprolactone polymerization activity. Dalton Transactions 2016, 45 (35) , 13787-13797. https://doi.org/10.1039/C6DT02449A
    89. J. Diebler, A. Spannenberg, T. Werner. Atom economical synthesis of di- and trithiocarbonates by the lithium tert-butoxide catalyzed addition of carbon disulfide to epoxides and thiiranes. Organic & Biomolecular Chemistry 2016, 14 (31) , 7480-7489. https://doi.org/10.1039/C6OB01081D
    90. Mark R. Mason. Aluminum‐Based Catalysis. 2015, 1-22. https://doi.org/10.1002/9781119951438.eibc2333
    91. Bo Zou, Liang Hao, Lin-Yuan Fan, Zhi-Ming Gao, Shi-Lu Chen, Hui Li, Chang-Wen Hu. Highly efficient conversion of CO2 at atmospheric pressure to cyclic carbonates with in situ-generated homogeneous catalysts from a copper-containing coordination polymer. Journal of Catalysis 2015, 329 , 119-129. https://doi.org/10.1016/j.jcat.2015.05.002
    92. Valerio D'Elia, Jérémie D. A. Pelletier, Jean‐Marie Basset. Cycloadditions to Epoxides Catalyzed by Group III–V Transition‐Metal Complexes. ChemCatChem 2015, 7 (13) , 1906-1917. https://doi.org/10.1002/cctc.201500231
    93. Javier Martínez, José A. Castro‐Osma, Amy Earlam, Carlos Alonso‐Moreno, Antonio Otero, Agustín Lara‐Sánchez, Michael North, Antonio Rodríguez‐Diéguez. Synthesis of Cyclic Carbonates Catalysed by Aluminium Heteroscorpionate Complexes. Chemistry – A European Journal 2015, 21 (27) , 9850-9862. https://doi.org/10.1002/chem.201500790
    94. So Han Kim, Sang Yeop Han, Jeong Hee Kim, Yi Young Kang, Junseong Lee, Youngjo Kim. Monomeric or Dimeric Aluminum Complexes as Catalysts for Cycloaddition between CO 2 and Epoxides. European Journal of Inorganic Chemistry 2015, 2015 (13) , 2323-2329. https://doi.org/10.1002/ejic.201500184
    95. Leticia Peña Carrodeguas, Joan González‐Fabra, Fernando Castro‐Gómez, Carles Bo, Arjan W. Kleij. Al III ‐Catalysed Formation of Poly(limonene)carbonate: DFT Analysis of the Origin of Stereoregularity. Chemistry – A European Journal 2015, 21 (16) , 6115-6122. https://doi.org/10.1002/chem.201406334
    96. Dongsheng Bai, Zhiyong Zhang, Guangjian Wang, Fang Ma. Cycloaddition of epoxide and CO 2 to cyclic carbonate catalyzed by VO(IV) porphyrin. Applied Organometallic Chemistry 2015, 29 (4) , 240-243. https://doi.org/10.1002/aoc.3278
    97. Hendrik Büttner, Kornelia Lau, Anke Spannenberg, Thomas Werner. Bifunctional One‐Component Catalysts for the Addition of Carbon Dioxide to Epoxides. ChemCatChem 2015, 7 (3) , 459-467. https://doi.org/10.1002/cctc.201402816
    98. Arjan W. Kleij, Christopher J. Whiteoak. Diastereo‐ and Enantioselective Valorization of Cyclic Organic Carbonates. ChemCatChem 2015, 7 (1) , 51-53. https://doi.org/10.1002/cctc.201402801
    99. Arjan W. Kleij. Green Catalytic Synthesis of Heterocyclic Structures Using Carbon Dioxide and Related Motifs. 2015, 141-162. https://doi.org/10.1016/B978-0-12-800070-0.00006-2
    100. Mengshuai Liu, Kunqi Gao, Lin Liang, Fangxiao Wang, Lei Shi, Li Sheng, Jianmin Sun. Insights into hydrogen bond donor promoted fixation of carbon dioxide with epoxides catalyzed by ionic liquids. Physical Chemistry Chemical Physics 2015, 17 (8) , 5959-5965. https://doi.org/10.1039/C4CP05464D
    Load all citations

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2013, 78, 2, 419–426
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo302317w
    Published December 21, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    3695

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.