ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Direct Synthesis of Amides from Carboxylic Acids and Amines Using B(OCH2CF3)3

View Author Information
Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London, WC1H 0AJ, U.K.
*E-mail: [email protected]. Fax: +(44)-(0)20-7679-7463. Phone: +(44)-(0)20-7679-2467.
Cite this: J. Org. Chem. 2013, 78, 9, 4512–4523
Publication Date (Web):April 16, 2013
https://doi.org/10.1021/jo400509n
Copyright © 2013 American Chemical Society
ACS AuthorChoiceACS AuthorChoice

Article Views

59788

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (844 KB)
Supporting Info (1)»

Abstract

B(OCH2CF3)3, prepared from readily available B2O3 and 2,2,2-trifluoroethanol, is as an effective reagent for the direct amidation of a variety of carboxylic acids with a broad range of amines. In most cases, the amide products can be purified by a simple filtration procedure using commercially available resins, with no need for aqueous workup or chromatography. The amidation of N-protected amino acids with both primary and secondary amines proceeds effectively, with very low levels of racemization. B(OCH2CF3)3 can also be used for the formylation of a range of amines in good to excellent yield, via transamidation of dimethylformamide.

Introduction

ARTICLE SECTIONS
Jump To

The amide bond is widely prevalent in both naturally occurring and synthetic compounds. It is increasingly important in pharmaceutical chemistry, being present in 25% of available drugs, with amidation reactions being among the most commonly used reactions in medicinal chemistry. There is considerable interest in the development of new approaches to direct amidation, (1, 2) and organizations such as the ACS Green Chemistry Institute Pharmaceutical Roundtable have indicated that amide bond formation is one of the most important reactions used in industry for which better reagents are required. (3) Although there are a large range of reagents and strategies for amide bond formation available, (4) few can really be considered ideal. Currently there is a focus on the development of novel, atom-economical, benign methods for amidation, and there have been many recent developments in this field. An important consideration here is the ease with which the reagent or catalyst can be separated from the resulting product. Direct thermal amide formation from amines and carboxylic acids has been reported using toluene as the reaction solvent (5) or using radiofrequency heating under neat conditions, (6) and this reagent-free approach is practical in many cases, but the substrate scope is quite limited. Alternatively, a number of metal-based catalytic systems have also been reported, with recent examples including the use of Ti(OiPr)4, (7) Cp2ZrCl2, (5) and ZrCl4 (5, 8) under strictly anhydrous dehydrating conditions. Boron mediated amidation reactions have attracted considerable attention, (9-12) and boronic acids have been shown to be effective catalysts for direct amide formation from carboxylic acids and amines. (9) In general, boronic acid catalyzed amidation reactions require the removal of water from the reaction either by a dehydrating agent such as molecular sieves or by azeotropic reflux. The reactions also typically require relatively dilute reaction conditions. Stoichiometric boron reagents for amidation often require anhydrous conditions and/or an excess of either the acid or the amine, however. (10-12) While many of these boron-mediated processes are promising, to date the substrate scope is limited to relatively activated systems.
We have recently reported that simple borate esters are effective reagents for the direct synthesis of amides from carboxylic acids or primary amides. (13) Although commercially available B(OMe)3 was useful for amidation in some cases, the 2,2,2-trifluoroethanol-derived ester B(OCH2CF3)3 gave consistently higher conversions and was applicable to a much wider range of substrates. The use of B(OCH2CF3)3 as an amidation reagent is operationally simple, as the reaction can be carried out open to the air with equimolar quantities of acid and amine in a solvent in which most amines and acids are readily soluble (MeCN). In all of the examples examined, the thermal background yield of amide was found to be low in comparison to that obtained in the presence of the borate ester.
Herein, we report a method for the large-scale preparation of B(OCH2CF3)3 from readily available B2O3 and a full study of the scope and limitations of B(OCH2CF3)3 as a direct amidation reagent. We also describe its application to the formylation of amines by transamidation of DMF. Importantly, a solid phase purification procedure has been developed that enables the amide products to be obtained without aqueous workup or chromatography.

Results and Discussion

ARTICLE SECTIONS
Jump To

Preparation of the B(OCH2CF3)3 Reagent

In our initial work, we prepared B(OCH2CF3)3 by reaction of 2,2,2-trifluoroethanol with BBr3 at low temperature (Scheme 1). This gave B(OCH2CF3)3 in excellent yield after purification by distillation. However, BBr3 is somewhat expensive and can be difficult to handle because of the fact that it readily hydrolyzes on contact with moisture. We therefore sought an alternative method for preparing the amidation reagent. The synthesis of B(OCH2CF3)3 has been previously reported from boric acid (14) and from B2O3. (15) We found the latter procedure to be particularly straightforward on multigram scale. Simply heating a suspension of B2O3 in 2,2,2-trifluoroethanol for 24 h, followed by distillation, gave the borate ester in 33–48% yield on 25–50 g scale, and up to 28% of the trifluoroethanol could be recovered and recycled. Although this procedure is lower yielding in comparison to our original approach, B2O3 is considerably cheaper than BBr3 and the reaction is not particularly moisture-sensitive. The B(OCH2CF3)3 reagent can be stored at room temperature under inert atmosphere for at least four months without any observable deterioration.

Scheme 1

Scheme 1. Synthesis of B(OCH2CF3)3 from (a) BBr3 and (b) B2O3

Development of a Solid Phase Workup Procedure and Evaluation of Other Borates

In order to explore different workup procedures and reagents, the amidation of phenylacetic acid with benzylamine was selected as a test reaction (Table 1). After the amidation reaction, the reaction mixture contains the amide product, borate-ester derived byproducts, and potentially some unreacted amine and/or carboxylic acid. In our preliminary report, the amidation reactions were purified by acid and base washes to remove these impurities. (13) Under our original conditions (2 equiv of borate, 15 h, 80 °C), the amide was obtained in 91% yield (entry 1). The reaction time could be reduced from 15 to 5 h with only a small decrease in yield (entry 2). We explored an alternative solid phase workup for the amidation reactions involving treatment of the crude reaction mixture with three commercially available resins (Amberlyst acidic, basic and Amberlite boron scavenger resins), followed by MgSO4, and then filtration/evaporation (Figure 1). This provided the amide product in a comparable yield and purity to the aqueous workup (entry 3). This procedure is more convenient for general use and could potentially be used to enable automation of the reaction.
Table 1. Comparison of Boron Reagents and Workup Procedures
entryreagenttime [h]yield [%]a
1B(OCH2CF3)31591b
2B(OCH2CF3)3588b
3B(OCH2CF3)3587c
4B(OMe)3569c
5B(OMe)31592b
6B2O3515b
71572c
811581c
9none1518b
a

Isolated yield.

b

Aqueous workup procedure.

c

Solid phase workup procedure.

Figure 1

Figure 1. Solid phase workup of amidation reactions.

We subsequently compared different boron reagents under these conditions. Trimethyl borate was effective for amidation (entries 4 and 5), but a longer reaction time was required in order to obtain a good yield. B2O3 itself showed low reactivity in the amidation reaction with only 15% yield after a 5 h reaction time (entry 6). Commercially available trimethoxyboroxine 1 is reported to be a stronger Lewis acid than both B(OMe)3 and B(OCH2CF3)3 but did not offer any significant advantage in the amidation reaction (entry 7). (14) Interestingly, the reaction with 1 did not lead to comparable conversions even after a 15 h reaction time (entry 8). This may be due to the fact that 1 can more readily form oligomeric species such as B2O3 upon heating, and such species are much less active in the amidation reaction. It should be noted that the thermal reaction in the absence of any reagent gave only an 18% yield of the amide. In our preliminary communicaton (13) we determined the thermal reaction yield for the 15 other amidation reactions studied to be <9%. This clearly demonstrates the importance of the borate ester in mediating the amidation reaction.

Scope of the Amidation Reactions

The full scope of the amidation reactions was explored with a wide range of amines and carboxylic acids. To evaluate the amine scope, the preparation of phenylactetamides (Figure 2, 2a2x) from phenylacetic acid was explored using our standard reaction conditions (2 equiv of B(OCH2CF3)3, MeCN, 80 °C). Primary amines including benzylamines (2a2d), simple aliphatic amines (2e) and even functionalized examples (2f2h) could be coupled in good yield. A range of cyclic secondary amines also underwent amidation efficiently, including several medicinally relevant examples (2i2m). The hydrochloride salt of dimethylamine underwent amidation in good yield when two or more equivalents of the hydrochloride salt were employed (2n) in combination with 2 equiv of Hünig’s base. The acyclic secondary amine dibenzylamine showed poor reactivity, however (2o), and a significant quantity of the secondary N-benzyl amide 2a was obtained, indicating that partial cleavage of one of the benzyl units had occurred. Less nucleophilic systems such as anilines (2p2u) and tert-butylamine (2v) could also be coupled, but higher reaction temperatures were needed in some cases in order to obtain reasonable yields. Extremely unreactive systems such as 2-pyridylamine (2u) gave only very low yields of the coupling product and adamantylamine (2w) and 2-mercaptoaniline (2x) did not undergo amidation at all.

Figure 2

Figure 2. Scope of phenylacetamide synthesis with different amines. All reactions were carried out at 80 °C for 5 h, and the solid phase workup procedure was used unless otherwise stated. (a) Aqueous workup procedure; (b) 80 °C for 15 h; (c) 100 °C for 15 h in a sealed tube; (d) purified by column chromatography; (e) from 1 equiv of Me2NH·HCl, 1 equiv of DIPEA; (f) from 2 equiv of Me2NH·HCl, 2 equiv of DIPEA; (g) from 3 equiv of Me2NH·HCl, 3 equiv of DIPEA; (h) 6% of 2a was also isolated; (i) 100 °C for 24 h in a sealed tube.

The preparation of N-benzylamides (Figure 3, 3a3v) was explored using our standard conditions in order to evaluate the carboxylic acid scope. A range of N-benzyl-2-arylacetamides (2a, 3a3i) were obtained in very good yield including α-substituted (3b) and heteroaromatic acids (3h). A simple aliphatic acid (3j) and N-Boc sarcosine (3k) also underwent amidation effectively. Carboxylic acids with conjugated alkyne (3l) and alkene groups (3m3o) could be coupled efficiently, but more hindered examples required a higher reaction temperature (3n). More hindered aliphatic systems including trifluoroacetic acid (3p) and pivalic acid (3q) could also be coupled effectively by using a higher reaction temperature. Benzoic acids (3r3v) were also relatively unreactive and required higher reaction temperatures in order for reasonable conversions to be obtained.

Figure 3

Figure 3. Scope of N-benzylamide synthesis using different carboxylic acids. All reactions were carried out at 80 °C for 5 h, and the solid phase workup procedure was used unless otherwise stated. (a) Aqueous workup procedure; (b) 80 °C for 15 h; (c) 100 °C for 15 h in a sealed tube.

The coupling of a selection of other combinations of acids and amines (Figure 4, 4a4g) was explored, and yields were generally consistent with our observations of the relative reactivity of amines/acids outlined above. Thus, aliphatic amine/acid combinations (4a4d) generally gave reasonable yields of the amide, even with fairly volatile components (4a, 4b). Less reactive picolinic acid underwent amidation in relatively good yield with glycine methyl ester (4e). The reaction of a fairly nucleophilic aniline with an unsaturated acid also proceeded in good yield (4f). Pleasingly, we were also able to prepare paracetamol (4g) in moderate yield by coupling acetic acid with 4-hydroxyaniline. Interestingly, monoamidation of a dicarboxylic acid could also be achieved in 53% yield (4h). In the majority of cases, the amides 24 could be purified by the solid phase workup procedure, with the exception of amides containing strongly basic (2i, 2j, 2t, 2u, 4e) or acidic (4h) groups, which generally required chromatographic purification.

Figure 4

Figure 4. Further scope of the amidation reaction. All reactions were carried out at 80 °C for 15 h and purified by solid phase workup unless otherwise stated. (a) Aqueous workup procedure; (b) 80 °C for 5 h; (c) purified by column chromatography.

Lactam formation could also be achieved effectively (Figure 5, 5a5c). The background reaction for formation of six- (5a) and seven-membered (5b) lactams from simple thermal condensation was low in comparison to that observed in the presence of B(OCH2CF3)3. Lactamization of Boc-l-ornithine (5c) proceeded in 84% yield.

Figure 5

Figure 5. Lactamization reactions. All reactions were carried out at 80 °C for 5 h unless otherwise stated and purified by solid phase workup. (a) Yield without B(OCH2CF3)3; (b) 100 °C for 5 h in a sealed tube; (c) 80 °C for 15 h; (d) [α]D25 −9.5 (c 1.22, MeOH) [lit. (16) [α]D20 −10.6 (c 1.22, MeOH)].

To evaluate the amidation reaction on larger scales, both a secondary (4c) and a tertiary amide (2k) were prepared using gram quantities of material (Scheme 2). Although in both cases a slight reduction in yield was observed, more than 1 g of each amide could be synthesized in less than 15 mL of MeCN. In each case, the product was purified using the solid phase workup, without the need for aqueous workup or column chromatography. For comparison, the same reaction to give 1 g of 4c using a boronic acid catalyst would require ca. 70 mL of solvent. (9i)

Scheme 2

Scheme 2. Gram Scale Amidation Reactions

Coupling of Acids with an Adjacent Chiral Center

The amidation of carboxylic acids bearing a chiral center at the α-position is of high importance, and the coupling of α-amino acids is of particular significance. While there are many methods for achieving such couplings, the fact that B(OCH2CF3)3-mediated amidation reactions can be easily purified by a solid phase workup might offer greater convenience. The successful amidation of amino acids using boronic acid catalysts or other boron-based amidation reagents has not been reported to date. We therefore wished to explore the application of B(OCH2CF3)3 to the coupling of a selection of amino acids bearing commonly used nitrogen protecting groups to determine whether the corresponding amides could be obtained without racemization (Figure 6).
The coupling of a range of protected amino acids with benzylamine proceeded in good yield (6a6e) including both Boc (6a6d) and Cbz (6e) protected examples. In most cases no significant racemization was observed (6a, 6b, 6d). Where small levels of racemization were observed, this could be reduced significantly by decreasing the reaction time, albeit at the expense of product yield (6b, 6c). The synthesis of prolinamide 6d is notable, as derivatives of this compound have been used as organocatalysts in a variety of reactions. (17) Dipeptides (6f, 6g) could also be obtained in moderate yield, by coupling of two suitably protected amino acids with no observable formation of diastereomeric products. Dipeptides 6f and 6g have previously been synthesized via carbodiimide coupling, (18-21) but purification by aqueous workup, recrystallization or chromatography was required.
Pleasingly, amino acids could also be coupled with cyclic secondary amines (6h6l) in reasonable yield, and these couplings also proceeded with relatively low levels of racemization. The synthesis of amides 6h6j has been reported using a range of different coupling reagents, (22-30) but the enantiomeric purity of the products was not directly determined in any of these cases. The preparation of benzamides 6k and 6l has never been previously reported. The preparation of N-benzylamide 6m was achieved in excellent yield with negligible racemization. The coupling of amino acids with acyclic secondary amines was unsuccessful (6n, 6o).
The above reactions serve to illustrate the scope of the B(OCH2CF3)3 reagent for the coupling of acids bearing adjacent chiral centers. Commonly used nitrogen protecting groups (Boc, Cbz) are tolerated under the reaction conditions, and very little racemization is observed in many cases despite the high temperatures employed. Where racemization does occur, it can be reduced significantly by shortening the reaction time. Notably, the coupling of amino acids with secondary amines using conventional coupling reagents is often a considerable challenge, and an aqueous work up and/or chromatographic purification is generally required. Our method therefore offers a potentially valuable approach to tertiary amino acid amides, as it furnishes pure products in reasonable yield with high enantiopurity, following a simple solid phase workup.

Figure 6

Figure 6. Coupling of acids containing adjacent chiral centers. All reactions were carried out at 80 °C for 15 h unless otherwise stated and purified by solid phase workup. (a) 80 °C for 8 h; (b) 100 °C for 24 h in a sealed tube; (c) er measured after conversion to the N-benzoyl amide derivative; (d) 100 °C for 8 h in a sealed tube; (e) 80 °C for 5 h.

Transamidation of DMF using B(OCH2CF3)3

In our preliminary communication, we reported the transamidation of a limited selection of primary amides using B(OCH2CF3)3. Since this report, a number of alternative catalysts and reagents for transamidation reactions have been reported including hydroxylamine hydrochloride, (31) Cp2ZrCl2, (32) Cu(OAc)2, (33) PhI(OAc)2, (34) boric acid, (35) CeO2 (36) and l-proline. (37) In many cases these reagents are cheap and readily available, and the reactions have a wide substrate scope. On this basis, it therefore seemed that the potential application of B(OCH2CF3)3 as a reagent for transamidation of primary amides is somewhat limited. However, during our initial solvent screen for the direct amidation of carboxylic acids, we observed that B(OCH2CF3)3 was highly effective for the transamidation of DMF. With this in mind, we opted to investigate the scope of this reaction. Recent literature methods for the N-formylation of amines include HCONH2/NaOMe, (38) HCONH2/NH2OH·HCl, (31) HCONH2/Cp2ZrCl2, (32) HCO2H in the presence of protic ionic liquids, (39) and HCO2H/HCO2Na. (40) All of these methods require high temperatures, anhydrous conditions and purification by column chromatography. The direct transamidation of DMF has recently been achieved with boric acid, (35) PhI(OAc)2, (34)l-proline, (37) and imidazole, (41) but at high temperatures, (34, 35) with extended reaction times, (34, 35, 41) and/or with purification by column chromatography. (41) We therefore anticipated that B(OCH2CF3)3-mediated transamidation of DMF may provide a useful formylation method, especially if the products could be readily purified by solid phase workup.
The formylation of benzylamine was used as a model for optimization (Table 2). First, we confirmed that the background reaction, observed when the amine was heated in DMF at 100 °C in the absence of B(OCH2CF3)3, was negligible (entry 1). In neat DMF with 2 equiv of B(OCH2CF3)3, a 41% yield of formamide was obtained (entry 2). Surprisingly, the reaction was more effective with small quantities of DMF in acetonitrile as solvent (entries 3–9). Although reasonable yields were obtained with as little as 1 equiv of DMF (entry 3), the use of 10 equiv was found to be optimal (entry 8). The reaction temperature could be lowered to 80 °C without a detrimental effect on yield, and the pure formamide could be obtained in good yield after solid phase workup and evaporation (entry 10). Formylation of benzylamine could also be achieved with similar efficiency using formamide (88% yield) and N-methylformamide (94%). However, DMF is considerably cheaper and easier to separate from the formamide product than these alternative formyl donors.
Table 2. Formylation Optimizationa
entryDMF [equiv]yield [%]b
1neatc11
2neatd41
3160
4262
5366
6472
7574
81098
91592
10e1095
a

Product isolated by solid phase workup followed by column chromatography unless otherwise stated.

b

Isolated yield.

c

DMF (0.5 M) as solvent, no B(OCH2CF3)3.

d

DMF (0.5 M) as solvent.

e

80 °C, solid phase workup followed by evaporation of DMF, no column chromatography required.

The scope of this reaction was evaluated on a range of amines (Table 3). Aromatic and aliphatic amines underwent formylation in moderate to excellent yield (7a7f). Amines with α-substituents such as α-methylbenzylamine gave the corresponding formamide in excellent yield (7d). The volatile N-butylformamide (7g) could be obtained in good yield as calculated by 1H NMR, but a significant loss of the product was observed during isolation. Less nucleophilic systems such as aniline and related derivatives (7h, 7i) were formylated in relatively low yield. Secondary amines (7i, 7j) could also be formylated, although higher temperatures were required to obtain better yields.
Table 3. Formylation of Amines with DMF
Table a

Isolated yield.

Table b

Yield measured using mesitylene as an internal standard.

Table c

100 °C for 5 h in a sealed tube.

Conclusion

ARTICLE SECTIONS
Jump To

A convenient synthesis of B(OCH2CF3)3 from readily available bulk chemicals has been reported, and the full scope of its application in direct amidation reactions has been explored. A wide range of acids and amines containing varying functionalities can be successfully used in B(OCH2CF3)3-mediated amidation reactions, and the pure amide products can be isolated following an operationally simple solid phase workup procedure using commercially available resins, avoiding the need for aqueous workup or chromatographic purification. The amidation of a series of N-protected amino acids with both primary and secondary amines has been successfully demonstrated, and the products were obtained with high enantiopurity. The formylation of a series of primary and secondary amines via transamidation of DMF was also successfully achieved.

Experimental Section

ARTICLE SECTIONS
Jump To

General Methods

All solvents and chemicals were used as supplied unless otherwise indicated. Reactions in MeCN at 100 °C were performed in a sealed (screw cap) carousel tube. All resins were washed with CH2Cl2 and dried under a vacuum prior to use. Column chromatography was carried out using silica gel, and analytical thin layer chromatography was carried out using aluminum-backed silica plates. Components were visualized using combinations of UV (254 nm) and potassium permanganate. [α]D values are given in 10–1 deg cm2 g–1, concentration (c) in g per 100 mL. 1H NMR spectra were recorded at 300, 400, 500, or 600 MHz in the stated solvent using residual protic solvent CDCl3 (δ = 7.26 ppm, s), DMSO (δ = 2.56 ppm, qn) or MeOD (δ = 4.87, s and 3.31, quintet) as the internal standard. Chemical shifts are quoted in ppm using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; qn, quintet; m, multiplet; br, broad or a combination of these. The coupling constants (J) are measured in Hertz. 13C NMR spectra were recorded at 75, 100, 125, or 150 MHz in the stated solvent using the central reference of CDCl3 (δ = 77.0 ppm, t), DMSO (δ = 39.52 ppm, septet) or MeOD (δ = 49.15 ppm, septet) as the internal standard. Chemical shifts are reported to the nearest 0.1 ppm. Mass spectrometry data were collected on either TOF or magnetic sector analyzers. The ionization method is reported in the experimental data. The data for amides 2a, 2d, 2e, 2g, 2h, 3j, 3l, 3o, 3q, 3r, 4a, 4b, 4d, 4f and 6b was reported in our preliminary communication. (13)

Tris-(2,2,2-trifluoroethyl) borate (13)

25 g Scale

A suspension of B2O3 (25.6 g, 0.37 mol) in 2,2,2-trifluoroethanol (53 mL, 0.73 mol) was stirred at 80 °C for 8 h. The reaction mixture was then filtered to remove excess boric anhydride. The filtrate was purified by distillation to give B(OCH2CF3)3 as a clear liquid (36.0 g, 117 mmol, 48%).

50 g Scale (With CF3CH2OH Recovery)

A suspension of B2O3 (48.1 g, 0.69 mol) in 2,2,2-trifluoroethanol (100 mL, 1.37 mol) was stirred at 80 °C for 24 h. The reaction mixture was then filtered to remove excess boric anhydride. The filtrate was purified by distillation to give B(OCH2CF3)3 as a clear liquid (46.3 g, 150 mmol, 33%). 2,2,2-Trifluoroethanol (38.4 g, 28%) was recovered during the distillation: bp 122–125 °C (760 Torr) [lit. (13) 120–123 °C (760 Torr)]; νmax (film/cm–1) 3165 (C–H), 1441 (C–F), 1376 (B–O), 1156 (C–O); δH (300 MHz, CDCl3) 4.24 (q, J 8.3 6H); δC (75 MHz, CDCl3) 61.8 (q, J 36.5), 123.2 (q, J 276); δF (282 MHz, CDCl3) −77.06; Found (CI) [M + H]+ 309.0334 C6H7O3F9B, requires 309.0344.

General Procedure for Amidation of Carboxylic acids

All reactions were performed on a 1 mmol scale. B(OCH2CF3)3 (2.0 mmol, 2 equiv) was added to a solution of acid (1.0 mmol, 1 equiv) and amine (1.0 mmol, 1 equiv) in MeCN (2 mL, 0.5 M). The reaction mixture was stirred at the indicated temperature (80 °C, or 100 °C in a sealed tube) for the indicated time (5–24 h).

Solid Phase Workup

After the indicated time, the reaction mixture was diluted with CH2Cl2 or EtOAc (3 mL) and water (0.5 mL). Amberlyst A-26(OH) (150 mg), Amberlyst 15 (150 mg) and Amberlite IRA743 (150 mg) were added to the reaction mixture, and it was stirred for 30 min. MgSO4 was added to the reaction mixture, which was then filtered, the solids were washed three times with CH2Cl2 or EtOAc, and the filtrate was concentrated in vacuo to yield the amide product.
For amides 2i, 2j, 2t, 2u and 4e, Amberlyst 15 was not used. In these cases, the product was separated from any excess amine by column chromatography.

Aqueous Workup Procedure

After the reaction was complete, the solvent was removed under reduced pressure. The residue was redissolved in CH2Cl2 (15 mL) and washed with aqueous solutions of NaHCO3 (15 mL, 1 M) and HCl (15 mL, 1 M), dried over MgSO4, filtered and concentrated under reduced pressure to give the amide product.

General Procedure for the Formylation of Amines with DMF

All reactions were performed on a 1 mmol scale. B(OCH2CF3)3 (2.0 mmol, 2 equiv) was added to a solution of amine (1.0 mmol, 1 equiv) and DMF (10.0 mmol, 10 equiv) in MeCN (2 mL, 0.5 M). The reaction mixture was stirred at 80 °C for 5 h. After 5 h, the reaction mixture was diluted with CH2Cl2 or EtOAc (3 mL) and water (0.5 mL). Amberlyst 15 (150 mg) and Amberlite IRA743 (150 mg) were added to the reaction mixture, and it was stirred for 30 min. The reaction mixture was dried over MgSO4 and then filtered, the solids were washed three times with CH2Cl2 or EtOAc, and the filtrate was diluted with toluene (10 mL) and then concentrated in vacuo repeatedly (5 times) to yield the clean product.

N-(2-Methoxybenzyl)-2-phenylacetamide (2b)

Yellow solid (256 mg, 99%): mp 94–95 °C (CH2Cl2); νmax (solid/cm–1) 3284 (N–H), 3066, 3030, 2939, 2837 (C–H), 1646 (C═O); δH (600 MHz, CDCl3) 3.58 (s, 2H), 3.66 (s, 3H), 4.39 (d, J 5.8, 2H), 6.01 (br s, 1H), 6.80 (d, J 8.1, 1H), 6.87 (td, J 7.4, 0.9, 1H), 7.17 (dd, J 7.4, 1.6, 1H), 7.22–7.25 (m, 3H), 7.27–7.30 (m, 1H), 7.33–7.36 (m, 2H); δC (150 MHz, CDCl3) 40.0, 44.0, 55.1, 110.2, 120.7, 126.1, 127.4, 128.9, 129.0, 129.6, 129.7, 135.1, 157.6, 170.7; Found (EI) [M]+ 255.1251 C16H17O2N, requires 255.1254.

N-(4-Methoxybenzyl)-2-phenylacetamide (2c) (42)

Yellow solid (252 mg, 99%): mp 139–141 °C (CH2Cl2) [lit. (42) 138–139 °C]; νmax (solid/cm–1) 3235 (N–H), 3063, 3032, 2969, 2936 (C–H), 1623 (C═O); δH (600 MHz, CDCl3) 3.62 (s, 2H), 3.78 (s, 3H), 4.34 (d, J 5.8, 2H), 5.60 (br s, 1H), 6.81–6.83 (m, 2H), 7.09–7.12 (m, 2H), 7.25–7.26 (m, 1H), 7.26–7.30 (m, 2H), 7.32–7.36 (m, 2H); δC (150 MHz, CDCl3) 43.2, 44.0, 55.4, 114.1, 127.5, 129.0, 129.2, 129.6, 130.3, 134.9, 159.1, 170.9; Found (EI) [M]+ 255.1257 C16H17O2N, requires 255.1254.

N-(2-(1H-Indol-3-yl)ethyl)-2-phenylacetamide (2f) (43)

Yellow solid (158 mg, 57%): mp 145–146 °C (CH2Cl2) [lit. (43) 151–153 °C]; νmax (solid/cm–1) 3391 (N–H), 3249 (N–H), 3062, 3033, 2920, 2850 (C–H), 1634 (C═O); δH (500 MHz, CDCl3) 2.90 (t, J 6.7, 2H), 3.50–3.56 (m, 4H), 5.44 (br s, 1H), 6.77 (s, 1H), 7.08–7.15 (m, 3H), 7.18–7.22 (m, 1H), 7.23–7.28 (m, 1H), 7.26–7.30 (m, 2H), 7.35 (d, J 8.1, 1H), 7.54 (d, J 7.8, 1H), 8.00 (br s, 1H); δC (125 MHz, CDCl3) 25.1, 39.8, 44.0, 111.3, 112.8, 118.7, 119.6, 122.0, 122.3, 127.3, 129.0 (2C), 129.5, 135.0, 136.4, 171.0; Found (ES) [M + Na]+ 301.1305 C18H18ON2Na, requires 301.1317.

N-Methyl-N′-phenylacetylpiperazine (2i) (44)

Purified by column chromatography (Et2O:MeOH:NEt3 89:10:1). Yellow oil (170 mg, 96%): νmax (film/cm–1) 3029, 2940, 2853, 2795 (C–H), 1627 (C═O); δH (500 MHz, CDCl3) 2.20 (t, J 5.1, 2H), 2.25 (s, 3H), 2.34 (t, J 5.1, 2H), 3.45 (t, J 5.1, 2H), 3.66 (t, J 5.1, 2H), 3.72 (s, 2H), 7.21–7.25 (m, 3H), 7.29–7.33 (m, 2H); δC (125 MHz, CDCl3) 41.0, 41.7, 46.0 (2C), 54.7, 55.0, 126.9, 128.7, 128.8, 135.1, 169.5.

N-Phenyl-N′-phenylacetylpiperazine (2j)

Purified by column chromatography (Et2O). Brown solid (209 mg, 76%): mp 91–93 °C (CH2Cl2); νmax (solid/cm–1) 2919, 2827 (C–H), 1632 (C═O); δH (600 MHz, CDCl3) 2.95–2.98 (m, 2H), 3.10–3.13 (m, 2H), 3.56–3.59 (m, 2H), 3.78–3.82 (m, 4H), 6.87–6.93 (m, 3H), 7.25–7.31 (m, 5H), 7.33–7.37 (m, 2H); δC (150 MHz, CDCl3) 41.2, 41.8, 46.1, 49.3, 49.6, 116.7, 120.6, 127.1, 128.8, 129.0, 129.4, 135.2, 151.0, 169.6; Found (ES) [M + H]+ 281.1656 C18H21ON2, requires 281.1654.

N-Phenylacetylmorpholine (2k) (45)

White solid (182 mg, 89%): mp 65–67 °C (CH2Cl2) [lit. (45) 62–64 °C]; νmax (solid/cm–1) 3064, 3033, 2961, 2917, 2893, 2851 (C–H), 1640 (C═O); δH (400 MHz, CDCl3) 3.40–3.44 (m, 2H), 3.44–3.48 (m, 2H), 3.63 (s, 4H), 3.72 (s, 2H), 7.21–7.27 (m, 3H), 7.29–7.34 (m, 2H); δC (100 MHz, CDCl3) 40.8, 42.1, 46.5, 66.4, 66.8, 126.9, 128.5, 128.8, 134.8, 169.6.

2-Phenyl-1-(pyrrolidin-1-yl)ethanone (2l)

Clear oil (185 mg, 97%): νmax (film/cm–1) 3061, 3030, 2971, 2874 (C–H), 1623 (C═O); δH (500 MHz, CDCl3) 1.80 (quintet, J 6.7, 2H), 1.88 (quintet, J 6.7, 2H), 3.39 (t, J 6.7, 2H), 3.46 (t, J 6.7, 2H), 3.63 (s, 2H), 7.19–7.23 (m, 1H), 7.24–7.31 (m, 4H); δC (125 MHz, CDCl3) 24.4, 26.2, 42.3, 46.0, 47.0, 126.7, 128.6, 129.0, 135.0, 169.6; Found (ES+) [M + H]+ 190.1226 C12H16ON, requires 190.1232.

N-Phenylacetylthiomorpholine (2m) (46)

Yellow solid (194 mg, 89%): mp 73–74 °C (CH2Cl2) [lit. (46) 73–75 °C]; νmax (solid/cm–1) 3024, 2960, 2911 (C–H), 1639 (C═O); δH (400 MHz, CDCl3) 2.26–2.30 (m, 2H), 2.52–2.59 (m, 2H), 3.65–3.70 (m, 2H), 3.72 (s, 2H), 3.85–3.90 (m, 2H), 7.20–7.26 (m, 3H), 7.29–7.34 (m, 2H); δC (100 MHz, CDCl3) 27.2, 27.4, 41.3, 44.4, 48.8, 126.9, 128.5, 128.9, 134.8, 169.4.

N,N-Dimethyl-2-phenylacetamide (2n) (47)

White solid (134 mg, 82 mg): mp 37–39 °C (CH2Cl2) [lit. (47) 38–40 °C]; νmax (solid/cm–1) 3062, 3029, 2931 (C–H), 1634 (C═O); δH (600 MHz, CDCl3) 2.91 (s, 3H), 2.93 (s, 3H), 3.66 (s, 2H), 7.17–7.23 (m, 3H), 7.25–7.28 (m, 2H); δC (150 MHz, CDCl3) 35.7, 37.8, 41.1, 126.8, 128.7, 128.9, 135.2, 171.1.

N,N-Dibenzyl-2-phenylacetamide (2o) (48)

Purified by column chromatography (Et2O:PE 3:1). Colorless oil (37 mg, 12%): νmax (film/cm–1) 3062, 3029, 2925 (C–H), 1639 (C═O); δH (500 MHz, CDCl3, 35 °C) 3.83 (s, 2H), 4.47 (s, 2H), 4.66 (s, 2H), 7.11–7.17 (m, 2H), 7.19–7.25 (m, 2H), 7.25–7.42 (m, 12H); δC (125 MHz, CDCl3, 35 °C) 41.0, 48.3, 50.3, 126.5, 126.9, 127.4, 127.6, 128.3, 128.5, 128.7, 128.8, 128.9, 135.0, 136.5, 137.3, 171.6.

N,2-Diphenylacetamide (2p) (49)

Off white solid (125 mg, 60%): mp 116–118 °C (CH2Cl2) [lit. (49) 116–117 °C]; νmax (solid/cm–1) 3254 (N–H), 3135, 3061, 3025 (C–H), 1655 (C═O); δH (600 MHz, CDCl3) 3.69 (s, 2H), 7.09 (t, J 7.4, 1H), 7.27 (t, J 7.8, 2H), 7.33–7.34 (m, 3H), 7.36–7.39 (m, 2H), 7.45 (d, J 8.0, 2H), 7.61 (br s, 1H); δC (150 MHz, CDCl3) 44.8, 120.1, 124.6, 127.7, 129.1, 129.3, 129.6, 134.7, 137.9, 169.6.

N-(2-Methoxyphenyl)-2-phenylacetamide (2q) (50)

Yellow solid (143 mg, 61%): mp 82–83 °C (CH2Cl2) [lit. (50) 80–81 °C]; νmax (solid/cm–1) 3284 (N–H), 3028, 3011, 2959, 2939, 2918, 2837 (C–H), 1648 (C═O), δH (500 MHz, CDCl3) 3.72 (s, 3H), 3.76 (s, 2H), 6.80 (dd, J 8.1, 1.1, 1H), 6.93 (td, J 7.8, 1.1, 1H), 7.01 (td, J 7.8, 1.5, 1H), 7.31–7.37 (m, 3H), 7.37–7.42 (m, 2H), 7.79 (br s, 1H), 8.35 (dd, J 8.0, 1.4, 1H); δC (125 MHz, CDCl3) 45.3, 55.7, 110.0, 119.6, 121.2, 123.8, 127.5, 127.7, 129.1, 129.7, 134.7, 147.9, 168.9.

2-Phenyl-N-p-tolylacetamide (2r) (49)

White solid (105 mg, 53%): mp 132–133 °C (CH2Cl2) [lit. (49) 131–132 °C]; νmax (solid/cm–1) 3289 (N–H), 3063, 3031, 2922 (C–H), 1650 (C═O); δH (500 MHz, CDCl3) 2.29 (s, 3H), 3.73 (s, 2H), 7.01 (br s, 1H), 7.08 (d, J 8.4, 2H), 7.28 (d, J 8.4, 2H), 7.31–7.36 (m, 3H), 7.38–7.42 (m, 2H); δC (125 MHz, CDCl3) 23.6, 47.4, 122.9, 130.2, 131.8, 132.2, 133.3, 136.8, 137.5, 138.0, 172.1.

N-(4-Methoxyphenyl)-2-phenylacetamide (2s) (49)

White solid (164 mg, 68%): mp 122–123 °C (CH2Cl2) [lit. (49) 124–125 °C]; νmax (solid/cm–1) 3315 (N–H), 3084, 3026, 3009, 2943 (C–H), 1650 (C═O); δH (500 MHz, CDCl3) 3.73 (s, 2H), 3.77 (s, 3H), 6.80–6.83 (m, 2H), 6.97 (br s, 1H), 7.29–7.36 (m, 5H), 7.38–7.42 (m, 2H); δC (125 MHz, CDCl3) 44.8, 55.5, 114.1, 121.9, 127.7, 129.3, 129.6, 130.7, 134.6, 156.6, 169.0.

N-(Pyridin-3-yl)-2-phenylacetamide (2t)

Purified by column chromatography (4% MeOH in EtOAc). White solid (114 mg, 53%): mp 107–108 °C (CH2Cl2); νmax (solid/cm–1) 3170 (N–H), 3032, 2971 (C–H), 1686 (C═O); δH (500 MHz, CDCl3) 3.68 (s, 2H), 7.20 (dd, J 8.3, 4.7, 1H), 7.23–7.33 (m, 5H), 8.06–8.10 (m, 1H), 8.27 (dd, J 4.7, 1.2, 1H), 8.57 (d, J 2.4, 1H), 9.05 (br s, 1H); δC (125 MHz, CDCl3) 44.3, 123.9, 127.5, 127.6, 129.0, 129.3, 134.4, 135.4, 141.3, 144.9, 170.4; Found (EI) [M]+ 212.0947 C13H12ON2, requires 212.0944.

N-(Pyridin-2-yl)-2-phenylacetamide (2u) (49)

Purified by column chromatography (EtOAc:PE 3:1, 10% NEt3). White solid (25 mg, 12%): mp 121–122 °C (CH2Cl2) [lit. (49) 122–124 °C]; νmax (solid/cm–1) 3230 (N–H), 3046, 2959, 2921 (C–H), 1656 (C═O); δH (500 MHz, CDCl3) 3.74 (s, 2H), 6.98–7.03 (m, 1H), 7.27–7.33 (m, 3H), 7.33–7.38 (m, 2H), 7.66–7.71 (m, 1H), 8.19–8.27 (m, 2H), 8.52 (br s, 1H); δC (125 MHz, CDCl3) 45.1, 114.1, 120.0, 127.8, 129.3, 129.6, 134.0, 138.5, 147.7, 151.3, 169.6; Found (ES) [M + H]+ 213.1035 C13H13ON2, requires 213.1028.

N-tert-Butyl-2-phenylacetamide (2v) (51)

White solid (116 mg, 60%): mp 104–106 °C (CH2Cl2) [lit. (51) 103 °C]; νmax (solid/cm–1) 3303 (N–H), 3063, 2962, 2872 (C–H), 1638 (C═O); δH (600 MHz, CDCl3) 1.28 (s, 9H), 3.48 (s, 2H), 5.17 (br s, 1H), 7.24 (d, J 7.2, 2H), 7.26–7.30 (m, 1H), 7.35 (t, J 7.4, 2H); δC (150 MHz, CDCl3) 28.8, 45.0, 51.4, 127.3, 129.1, 129.4, 135.6, 170.4.

N-Benzyl-2-(naphthalen-2-yl)acetamide (3a) (52)

Yellow solid (225 mg, 81%): mp 168–169 °C (CH2Cl2) [lit. (52) 170–174 °C]; νmax (solid/cm–1) 3225 (N–H), 3053, 3030, 2976, 2936 (C–H), 1628 (C═O); δH (500 MHz, CDCl3) 3.79 (s, 2H), 4.41 (d, J 5.8, 2H), 5.81 (br s, 1H), 7.18 (d, J 7.0, 2H), 7.21–7.30 (m, 3H), 7.39 (dd, J 8.3, 1.7, 1H), 7.46–7.52 (m, 2H), 7.72 (br s, 1H), 7.78–7.82 (m, 1H), 7.82–7.85 (m, 2H); δC (125 MHz, CDCl3) 43.7, 44.1, 126.2, 126.5, 127.4, 127.5, 127.6, 127.7, 127.8, 128.4, 128.7, 129.0, 132.3, 132.6, 133.6, 138.2, 170.8.

N-Benzyl-2,2-diphenylacetamide (3b) (53)

Yellow solid (247 mg, 81%): mp 127–128 °C (CH2Cl2) [lit. (53) 126–128 °C]; νmax (solid/cm–1) 3311 (N–H), 3060, 3030, 2930 (C–H), 1634 (C═O); δH (500 MHz, CDCl3) 4.48 (d, J 5.7, 2H), 4.96 (s, 1H), 5.94 (br s, 1H), 7.19–7.22 (m, 2H), 7.24–7.30 (m, 8H), 7.30–7.35 (m, 5H); δC (125 MHz, CDCl3) 43.9, 59.3, 127.4, 127.6, 127.7, 128.8, 128.9, 129.0, 138.2, 139.4, 171.8.

N-Benzyl-2-(4-methoxyphenyl)acetamide (3c) (54)

Yellow solid (232 mg, 90%): mp 134–135 °C (CH2Cl2) [lit. (54) 136 °C]; νmax (solid/cm–1) 3286 (N–H), 3082, 3063, 3033, 2968, 2838 (C–H), 1635 (C═O); δH (600 MHz, CDCl3) 3.57 (s, 2H), 3.79 (s, 3H), 4.40 (d, J 5.8, 2H), 5.75 (br s, 1H), 6.86–6.89 (m, 2H), 7.16–7.19 (m, 4H), 7.23–7.26 (m, 1H), 7.28–7.31 (m, 2H); δC (150 MHz, CDCl3) 43.0, 43.7, 55.4, 114.6, 126.8, 127.5, 127.6, 128.8, 130.7, 138.3, 159.0, 171.5.

N-Benzyl-2-(2-bromophenyl)acetamide (3d) (55)

Yellow solid (276 mg, 90%): mp 143–144 °C (CH2Cl2) [lit. (55) 144–145 °C]; νmax (solid/cm–1) 3272 (N–H), 3055, 3030, 2920, 2871 (C–H), 1642 (C═O); δH (600 MHz, CDCl3) 3.77 (s, 2H), 4.44 (d, J 5.7, 2H), 5.75 (br s, 1H), 7.16 (td, J 7.7, 1.7, 1H), 7.21–7.27 (m, 3H), 7.30 (app t, J 7.6, 3H), 7.37 (dd, J 7.5, 1.6, 1H), 7.58 (dd, J 8.0, 1.0, 1H); δC (150 MHz, CDCl3) 43.8, 44.2, 125.0, 127.6, 127.7, 128.2, 128.8, 129.4, 131.9, 133.3, 134.8, 138.1, 169.5.

N-Benzyl-2-(4-bromophenyl)acetamide (3e)

Yellow solid (289 mg, 94%): mp 165–166 °C (CH2Cl2); νmax (solid/cm–1) 3280 (N–H), 3056, 3026, 2917, 2872 (C–H), 1642 (C═O); δH (600 MHz, CDCl3) 3.55 (s, 2H), 4.41 (d, J 5.6, 2H), 5.72 (br s, 1H), 7.15 (d, J 8.4, 2H), 7.19 (d, J 7.0, 2H), 7.25–7.28 (m, 1H), 7.29–7.33 (m, 2H), 7.45–7.48 (m, 2H); δC (150 MHz, CDCl3) 43.2, 43.8, 121.6, 127.7, 127.8, 128.9, 131.2, 132.2, 133.8, 138.0, 170.2; Found (EI) [M]+ 303.0256 C15H14ONBr, requires 303.0253.

N-Benzyl-2-(3,4-dimethoxyphenyl)acetamide (3f)

Brown solid (235 mg, 81%): mp 100–101 °C (CH2Cl2) [lit. (56) 98–100 °C]; νmax (solid/cm–1) 3297 (N–H), 3065, 3033, 3000, 2936, 2835 (C–H), 1634 (C═O); δH (600 MHz, CDCl3) 3.58 (s, 2H), 3.85 (s, 3H), 3.86 (s, 3H), 4.41 (d, J 5.6, 2H), 5.74 (br s, 1H), 6.76–6.80 (m, 2H), 6.83 (d, J 8.0, 1H), 7.18 (d, J 7.0, 2H), 7.23–7.26 (m, 1H), 7.28–7.31 (m, 2H); δC (150 MHz, CDCl3) 43.6, 43.7, 55.98, 56.02, 111.6, 112.4, 121.8, 127.2, 127.58, 127.61, 128.8, 138.3, 148.4, 149.4, 171.3; Found (EI) [M]+ 285.1353 C17H19O3N, requires 285.1359.

N-Benzyl-2-(4-chlorophenyl)acetamide (3g) (57)

Yellow solid (244 mg, 93%): mp 157–158 °C (CH2Cl2) [lit. (57) 151–153 °C]; νmax (solid/cm–1) 3277 (N–H), 3056, 3027, 2918, 2874 (C–H), 1642 (C═O), 690 (C–Cl); δH (600 MHz, CDCl3) 3.56 (s, 2H), 4.41 (d, J 5.8, 2H), 5.76 (br s, 1H), 7.18–7.22 (m, 4H), 7.24–7.28 (m, 1H), 7.29–7.32 (m, 4H); δC (150 MHz, CDCl3) 43.1, 43.8, 127.69, 127.74, 128.9, 129.2, 130.9, 133.3, 133.5, 138.1, 170.4.

N-Benzyl-2-(thiophen-3-yl)acetamide (3h)

Yellow solid (212 mg, 91%): mp 96–98 °C (CH2Cl2); νmax (solid/cm–1) 3279 (N–H), 3086, 3062, 3032, 2925 (C–H), 1635 (C═O); δH (600 MHz, CDCl3) 3.65 (s, 2H), 4.42 (d, J 5.8, 2H), 5.85 (br s, 1H), 7.01 (d, J 4.8, 1H), 7.14–7.15 (m, 1H), 7.19 (d, J 7.5, 2H), 7.23–7.34 (m, 4H); δC (150 MHz, CDCl3) 38.3, 43.7, 123.7, 127.0, 127.61, 127.62, 128.6, 128.8, 134.8, 138.2, 170.5; Found (ES) [M + H]+ 232.0789 C13H14ONS, requires 232.0796.

N-Benzyl-2-(4-phenoxyphenyl)acetamide (3i)

Yellow solid (298 mg, 95%): mp 125–126 °C (CH2Cl2); νmax (solid/cm–1) 3285 (N–H), 3085, 3064, 3033, 2921 (C–H), 1636 (C═O); δH (600 MHz, CDCl3) 3.60 (s, 2H), 4.43 (d, J 5.9, 2H), 5.71 (br s, 1H), 6.96–7.01 (m, 4H), 7.10–7.13 (m, 1H), 7.18–7.21 (m, 2H), 7.21–7.24 (m, 2H), 7.25–7.28 (m, 1H), 7.29–7.36 (m, 4H); δC (150 MHz, CDCl3) 43.2, 43.8, 119.2, 119.3, 123.6, 127.6, 127.7, 128.8, 129.5, 129.9, 130.9, 138.2, 156.8, 157.0, 171.0; Found (EI) [M]+ 317.1416 C21H19O2N, requires 317.1410.

Boc-Sarcosine-benzamide (3k) (58)

Yellow solid (265 mg, 95%): mp 82–84 °C (CH2Cl2) [lit. (58) 83–85 °C]; νmax (solid/cm–1) 3310 (N–H), 3067, 2978, 2931 (C–H), 1664 (C═O), 1685 (C═O); δH (400 MHz, CDCl3, 58 °C) 1.40 (s, 9H), 2.90 (s, 3H), 3.83 (s, 2H), 4.41 (d, J 5.9, 2H), 6.52 (br s, 1H), 7.19–7.24 (m, 3H), 7.25–7.31 (m, 2H); δC (100 MHz, CDCl3, 58 °C) 28.2, 35.7, 43.3, 53.4, 80.6, 127.3, 127.5, 128.6, 138.2, 155.9, 169.1; Found (EI) [M]+ 278.1629 C15H22O3N2, requires 278.1625.

(E)-N-Benzyl-3-(thiophen-3-yl)acrylamide (3m)

Yellow solid (217 mg, 88%): mp 107–110 °C (CH2Cl2); νmax (solid/cm–1) 3275 (N–H), 3029, 2971 (C–H), 1739 (C═O); δH (600 MHz, CDCl3) 4.55 (d, J 5.7, 2H), 6.05 (br s, 1H), 6.26 (d, J 15.5, 1H), 7.22–7.24 (m, 1H), 7.26–7.36 (m, 6H), 7.42 (d, J 2.1, 1H), 7.65 (d, J 15.5, 1H); δC (150 MHz, CDCl3) 44.0, 120.2, 125.1, 126.9, 127.4, 127.7, 128.0, 128.9, 135.2, 137.8, 138.3, 166.1; Found (ES+) [M + H]+ 244.0800 C14H14NOS, requires 244.0796.

(E)-N-Benzyl-2-methyl-3-phenylacrylamide (3n)

White solid (229 mg, 90%): mp 120–121 °C (CH2Cl2); νmax (solid/cm–1) 3332 (N–H), 3079, 3059, 2921, 2852 (C–H), 1531 (C═O); δH (600 MHz, CDCl3) 2.11 (s, 3H), 4.56 (d, J 5.7, 2H), 6.69 (br s, 1H), 7.27–7.40 (m, 11H); δC (150 MHz, CDCl3) 14.5, 44.2, 127.7, 127.98, 128.04, 128.5, 128.9, 129.5, 131.9, 134.3, 136.2, 138.5, 169.6; Found (ES) [M + H]+ 252.1394 C17H18ON, requires 252.1388.

N-Benzyl-2,2,2-trifluoroacetamide (3p) (59)

Yellow solid (183 mg, 89%): mp 72–74 °C (CH2Cl2) [lit. (59) 70–71 °C]; νmax (solid/cm–1) 3300 (N–H), 3110, 3035, 2923 (C–H), 1702 (C═O); δH (500 MHz, CDCl3) 4.54 (d, J 5.8, 2H), 6.52 (br s, 1H), 7.28–7.32 (m, 2H), 7.32–7.41 (m, 3H); δC (125 MHz, CDCl3) 43.9, 116.0 (q, J 285.4), 128.0, 128.2, 129.0, 136.1, 157.5 (q, J 36.9); δF (282 MHz, CDCl3) −76.2.

N-Benzyl-4-methoxybenzamide (3s) (60)

Yellow solid (172 mg, 71%): mp 129–130 °C (CH2Cl2) [lit. (60) 129–130 °C]; νmax (solid/cm–1) 3256 (N–H), 3058, 2957, 2930, 2834 (C–H), 1631 (C═O); δH (500 MHz, CDCl3) 3.85 (s, 3H), 4.64 (d, J 5.7, 2H), 6.28 (br s, 1H), 6.90–6.94 (m, 2H), 7.28–7.32 (m, 1H), 7.36 (m, 4H), 7.74–7.77 (m, 2H); δC (125 MHz, CDCl3) 44.1, 55.5, 113.8, 126.7, 127.6, 128.0, 128.8, 128.9, 138.5, 162.3, 167.0.

N-Benzyl-4-(trifluoromethyl)benzamide (3t) (61)

Yellow solid (212 mg, 76%): mp 168–170 °C (CH2Cl2) [lit. (61) 149–151 °C]; νmax (solid/cm–1) 3326 (N–H), 3091, 3071, 3036 (C–H), 1643 (C═O); δH (600 MHz, CDCl3) 4.65 (d, J 5.6, 2H), 6.53 (br s, 1H), 7.29–7.33 (m, 1H), 7.33–7.38 (m, 4H), 7.68 (d, J 8.2, 2H), 7.89 (d, J 8.2, 2H); δC (150 MHz, CDCl3) 44.5, 123.7 (q, J 272.5), 125.8 (q, J 3.8), 127.6, 128.0, 128.1, 129.0, 133.4 (q, J 32.7), 137.7, 137.8, 166.2; δF (282 MHz, CDCl3) −63.4.

N,2-Dibenzylbenzamide (3u)

Yellow solid (184 mg, 61%): mp 119–120 °C (CH2Cl2); νmax (solid/cm–1) 3296 (N–H), 3057, 3025, 3008, 2921, 2873 (C–H), 1633 (C═O), δH (600 MHz, CDCl3) 4.22 (s, 2H), 4.49 (d, J 5.6, 2H), 5.86 (br s, 1H), 7.13 (d, J 7.1, 2H), 7.16–7.19 (m, 3H), 7.21–7.25 (m, 4H), 7.26–7.32 (m, 3H), 7.33–7.37 (m, 1H), 7.39–7.42 (m, 1H); δC (150 MHz, CDCl3) 39.0, 44.1, 126.2, 126.5, 127.3, 127.7, 128.0, 128.6, 128.9, 129.0, 130.3, 131.3, 136.5, 137.9, 139.0, 140.9, 169.9; Found (ES) [M + H]+ 302.1532 C21H20ON, requires 302.1545.

N-Benzyl-4-iodobenzamide (3v) (62)

White solid (124 mg, 37%): mp 167–168 °C (CH2Cl2) [lit. (62) 166–167 °C]; νmax (solid/cm–1) 3311 (N–H), 3083, 3060, 3028 (C–H), 1640 (C═O); δH (600 MHz, DMSO) 4.47 (d, J 6.0, 2H), 7.22–7.26 (m, 1H), 7.29–7.35 (m, 4H), 7.66–7.69 (m, 2H), 7.84–7.88 (m, 2H), 9.10 (br t, J 6.0, 1H); δC (150 MHz, DMSO) 42.7, 98.9, 126.8, 127.3, 128.3, 129.3, 133.8, 137.2, 139.5, 165.6; Found (EI) [M + H]+ 337.9962 C14H13ONI, requires 337.9958.

N-Butyl-2-p-tolylacetamide (4c) (63)

White solid (188 mg, 92%): mp 82–83 °C (CH2Cl2) [lit. (63) 73–74 °C]; νmax (solid/cm–1) 3301 (N–H), 2959, 2931, 2866 (C–H), 1649 (C═O); δH (500 MHz, CDCl3) 0.86 (t, J 7.3, 3H), 1.24 (sextet, J 7.3, 2H), 1.39 (quintet, J 7.3, 2H), 2.34 (s, 3H), 3.18 (dt, J 7.3, 6.0, 2H), 3.52 (s, 2H), 5.43 (br s, 1H), 7.11–7.17 (m, 4H); δC (125 MHz, CDCl3) 13.8, 20.0, 21.2, 31.6, 39.5, 43.6, 129.5, 129.8, 132.0, 137.1, 171.2; Found (EI) [M]+ 205.1464 C13H19ON, requires 205.1461.

Methyl 2-(picolinamido)acetate (4e) (64)

Purified by column chromatography (PE:EtOAc 1:1). White solid (132 mg, 72%): mp 82–84 °C (CH2Cl2) [lit. (64) 81–82 °C]; νmax (film/cm–1) 3375 (N–H), 3059, 2954, 2852 (C–H), 1746 (C═O), 1668 (C═O); δH (600 MHz, CDCl3) 3.74 (s, 3H), 4.23 (d, J 5.7, 2H), 7.38–7.42 (m, 1H), 7.80 (t, J 7.6, 1H), 8.13 (d, J 7.6, 1H), 8.49 (br s, 1H), 8.53 (br d, J 4.5); δC (150 MHz, CDCl3) 41.3, 52.5, 122.4, 126.6, 137.4, 148.4, 149.3, 164.7, 170.3.

N-(4-Hydroxyphenyl)acetamide (4g) (65)

White solid (97 mg, 69%): mp 169–170 °C (CH2Cl2) [lit. (65) 167–168 °C]; νmax (solid/cm–1) 3242 (N–H/O–H), 1632 (C═O); δH (600 MHz, MeOD) 2.07 (s, 3H), 6.71–6.74 (m, 2H), 7.28–7.32 (m, 2H); δC (150 MHz, MeOD) 23.5, 116.2, 123.4, 131.7, 155.4, 171.4.

2-(4-(2-(Benzylamino)-2-oxoethyl)phenyl)acetic acid (4h)

B(OCH2CF3)3 (621.8 mg, 2.02 mmol, 2 equiv) was added to a solution of phenylene diacetic acid (192 mg, 0.99 mmol, 1 equiv) and benzylamine (0.11 mL, 1.01 mmol, 1 equiv) in MeCN (2 mL, 0.5 M). The reaction mixture was stirred at 80 °C for 5 h. After 5 h the solvent was removed in vacuo, and the residue was diluted in Et2O (20 mL), washed with NaHCO3 (20 mL, 1 M), and extracted with Et2O (3 × 20 mL). The aqueous layer was acidifed with HCl (1 M) and extracted with CH2Cl2 (3 × 20 mL). The organic layer was dried over MgSO4 and concentrated in vacuo to yield the product as a white solid (146 mg, 0.52 mmol, 52%): mp 163–166 °C (CH2Cl2); νmax (solid/cm–1) 3284 (N–H/O–H), 3030, 3060 (C–H), 1699 (C═O), 1632 (C═O); δH (600 MHz, DMSO-d6) 3.45 (s, 2H), 3.53 (s, 2H), 4.26 (d, J 6.0, 2H), 7.16–7.19 (m, 2H), 7.20–7.25 (m, 5H), 7.29–7.32 (m, 2H), 8.55 (br t, J 5.6, 1H), 12.31 (br s, 1H); δC (150 MHz, DMSO-d6) 40.3, 42.0, 42,2, 126.8, 127.3, 128.3, 128.9, 129.3, 133.1, 134.7, 139.5, 170.2, 172.8; Found (EI) [M + H]+ 284.1279 C17H18O3N, requires 284.1287.

Piperidin-2-one (5a) (66)

Colorless oil (95 mg, 99%): νmax (film/cm–1) 3245 (N–H), 2945, 2870 (C–H), 1637 (C═O); δH (500 MHz, CDCl3) 1.69–1.82 (m, 4H), 2.30 (t, J 6.5, 2H), 3.26–3.32 (m, 2H), 7.03 (br s, 1H); δC (125 MHz, CDCl3) 20.8, 22.2, 31.5, 42.1, 172.9.

Azepan-2-one (5b) (57)

White solid (100 mg, 86%): mp 67–68 °C (CH2Cl2) [lit. (57) 66–68 °C]; νmax (solid/cm–1) 3202 (N–H), 2927, 2855 (C–H), 1648 (C═O); δH (500 MHz, CDCl3) 1.60–1.71 (m, 4H), 1.72–1.78 (m, 2H), 2.42–2.47 (m, 2H), 3.17–3.22 (m, 2H), 6.42 (br s, 1H); δC (125 MHz, CDCl3) 23.3, 29.8, 30.6, 36.8, 42.8, 179.5; Found (EI) [M]+ 113.0828 C6H11ON, requires 113.0835.

(S)-tert-Butyl 2-oxopiperidin-3-ylcarbamate (5c) (16)

White solid (180 mg, 84%): mp 100–101 °C (CH2Cl2) [lit. (16) 101–103 °C]; [α]D25 −9.5 (c 1.22, MeOH) [lit. (16) [α]D20 −10.6 (c 1.22, MeOH)]; νmax (solid/cm–1) 3264 (N–H), 2968 (C–H), 1715 (C═O), 1652 (C═O); δH (400 MHz, CDCl3, 58 °C) 1.45 (s, 9H), 1.54–1.67 (m, 1H), 1.82–1.93 (m, 2H), 2.41–2.50 (m, 1H), 3.27–3.33 (m, 2H), 4.01 (dt, J 11.3, 5.6, 1H), 5.45 (br s, 1H), 6.33 (br s, 1H); δC (100 MHz, CDCl3, 58 °C) 21.1, 27.9, 28.3, 41.7, 51.6, 79.5, 155.8, 171.6.

Boc-l-Methionine-benzamide (6a) (67)

Yellow solid (266 mg, 79%): mp 98–100 °C (CH2Cl2); [α]D25–9.1 (c 1.1, CH2Cl2) [lit. (67) [α]D24 −9.2 (c 1.1, CH2Cl2)]; νmax (solid/cm–1) 3335 (N–H), 3314 (N–H), 3061, 3027, 2968, 2936 (C–H), 1679 (C═O), 1655 (C═O); δH (400 MHz, CDCl3, 58 °C) 1.41 (s, 9H), 1.88–1.97 (m, 1H), 2.05 (s, 3H), 2.06–2.15 (m, 1H), 2.46–2.59 (m, 2H), 4.28 (app q, J 7.1, 1H), 4.36 (dd, J 14.8, 5.8, 1H), 4.43 (dd, J 14.8, 5.9, 1H), 5.42 (br d, J 8.1, 1H), 7.19–7.25 (m, 3H), 7.26–7.30 (m, 2H), 6.86 (br s, 1H); δC (100 MHz, CDCl3, 58 °C) 15.2, 28.3, 30.4, 32.0, 43.4, 54.1, 80.1, 127.3, 127.5, 128.5, 138.2, 155.7, 171.6; Found (ES) [M + Na]+ 361.1567 C17H26O3N2SNa, requires 361.1562; HPLC (hexane/i-PrOH 92:8, 0.5 mL/min, Chiralcel Daicel OD) tR (D) = 9.28 min (<1%), tR (L) = 12.48 min (>99%).

Boc-l-Phenylalanine-benzamide (6c) (68)

Yellow solid (287 mg, 81%): mp 128–129 °C (CH2Cl2) [lit. (68) 128 °C]; [α]D25 +5.2 (c 1.1, CH2Cl2) [lit. (67) [α]D22 +4.9 (c 0.20, CH2Cl2)]; νmax (solid/cm–1) 3343 (N–H), 3312 (N–H), 3024, 2927 (C–H), 1678 (C═O), 1659 (C═O); δH (400 MHz, CDCl3, 58 °C) 1.43 (s, 9H), 3.09 (dd, J 13.8, 7.2, 1H), 3.13 (dd, J 13.8, 6.7, 1H), 4.32–4.40 (m, 3H), 5.00 (br s, 1H), 6.03 (br s, 1H), 7.12–7.16 (m, 2H), 7.20–7.25 (m, 3H), 7.25–7.32 (m, 5H); δC (100 MHz, CDCl3, 58 °C) 28.2, 38.6, 43.5, 56.4, 80.2, 126.8, 127.4, 127.6, 128.5, 128.6, 129.3, 136.8, 137.8, 155.3, 171.0; HPLC (hexane/i-PrOH 90:10, 0.5 mL/min, Chiralcel Daicel OD) tR (D) = 10.62 min (<1%), tR (L) = 13.24 min (>99%).

Boc-l-Proline-benzamide (6d) (69)

Yellow solid (186 mg, 61%): mp 124–125 °C (CH2Cl2) [lit. (69) 125–126 °C]; [α]D25 −77.0 (c 1.0, CH2Cl2) [lit. (66) [α]D24 −76.2 (c 1.0, CH2Cl2)]; νmax (solid/cm–1) 3303 (N–H), 2978, 2933, 2909, 2874 (C–H), 1682 (C═O), 1653 (C═O); δH (400 MHz, CDCl3, 58 °C) 1.40 (s, 9H), 1.78–2.07 (m, 3H), 2.25 (br s, 1H), 3.37–3.42 (m, 2H), 4.24–4.30 (m, 1H), 4.37 (dd, J 14.8, 5.6, 1H), 4.46 (dd, J 14.8, 5.7, 1H), 6.82 (br s, 1H), 7.18–7.30 (m, 5H); δC (100 MHz, CDCl3, 58 °C) 24.1, 28.3 (2C), 43.3, 47.0, 60.6, 80.3, 127.2, 127.5, 128.5, 138.5, 155.2, 172.1; HPLC (hexane/i-PrOH 90:10, 0.5 mL/min, Chiralcel Daicel OD) tR (D) = 13.08 min (1%), tR (L) = 15.79 min (99%).

Cbz-l-Alanine-benzamide (6e) (22)

Yellow solid (245 mg, 78%): mp 138–139 °C (CH2Cl2) [lit. (22) 140–141 °C]; [α]D25 −8.0 (c 1.02, CHCl3) [lit. (22) [α]D22–8.1 (c 1.3, CHCl3)]; νmax (solid/cm–1) 3286 (N–H), 3059, 3035, 2975, 2930 (C–H), 1682 (C═O), 1641 (C═O); δH (500 MHz, CDCl3) 1.37 (d, J 6.9, 3H), 4.28–4.32 (m, 1H), 4.34 (dd, J 15.0, 5.7, 1H), 4.41 (dd, J 15.0, 5.6, 1H), 4.98 (d, J 12.1, 1H), 5.01 (d, J 12.1, 1H), 5.68 (br d, J 6.5, 1H), 6.88 (br s, 1H), 7.18–7.35 (m, 10H); δC (125 MHz, CDCl3) 18.9, 43.5, 50.7, 67.0, 127.5, 127.7, 128.1, 128.3, 128.6, 128.7, 136.2, 138.1, 156.1, 172.5; HPLC (hexane/i-PrOH 90:10, 0.5 mL/min, Chiralcel Daicel AD) tR (L) = 5.13 min (95%), tR (D) = 7.88 min (5%).

Boc-l-Ala-d-Phe-OMe (6f)

Yellow solid (136 mg, 42%): mp 93–95 °C (CH2Cl2); [α]D25 −58.9 (c 0.99, CHCl3); νmax (solid/cm–1) 3283 (N–H), 3254 (N–H), 3134, 3060, 3024 (C–H), 1655 (C═O), 1599 (C═O), 1544 (C═O); δH (600 MHz, CDCl3) 1.27 (d, J 7.1, 3H), 1.42 (s, 9H), 3.06 (dd, J 13.8, 6.3, 1H), 3.13 (dd, J 13.8, 5.7, 1H), 3.70 (s, 3H), 4.18 (br t, J 7.1, 1H), 4.85 (m, 1H), 5.04 (br d, J 5.5, 1H), 6.70 (br s, 1H), 7.10 (d, J 7.1, 2H), 7.20–7.24 (m, 1H), 7.25–7.29 (m, 2H); δC (150 MHz, CDCl3) 18.6, 28.4, 38.0, 50.0, 52.5, 53.2, 80.2, 127.2, 128.7, 129.4, 135.9, 155.5, 171.9, 172.4; Found (ES) [M + Na]+ 373.1720 C18H26O5N2Na, requires 373.1739.

Boc-l-Ala-l-Phe-OMe (6g) (70)

Yellow solid (208 mg, 64%): mp 82–84 °C (CH2Cl2) [lit. (70) 85–86 °C]; [α]D25 +23.2 (c 1.01, CHCl3) [lit. (71) [α]D +23.0 (c 0.61, CHCl3)]; νmax (solid/cm–1) 3285 (N–H), 3061, 3030, 2926 (C–H), 1636 (C═O), 1547 (C═O); δH (400 MHz, CDCl3, 58 °C) 1.27 (d, J 7.0, 3H), 1.41 (s, 9H), 3.04 (dd, J 13.9, 6.6, 1H), 3.12 (dd, J 13.9, 6.1, 1H), 3.64 (s, 3H), 4.13 (quintet, J 7.0, 1H), 4.81 (dt, J 7.6, 6.3, 1H), 5.16 (br d, J 7.6, 1H), 6.71 (br d, J 7.3, 1H), 7.08–7.12 (m, 2H), 7.15–7.26 (m, 3H); δC (100 MHz, CDCl3, 58 °C) 18.1, 28.2, 38.0, 50.4, 51.9, 53.3, 79.9, 126.9, 128.4, 129.2, 136.0, 155.3, 171.7, 172.4.

Boc-l-Alanine pyrrolidine amide (6h) (22)

Colorless oil (135 mg, 59%): [α]D25–6.4 (c 1.1, CHCl3) [lit. (22) [α]D24 −6.8 (c 1.1, CHCl3)]; νmax (film/cm–1) 3300 (N–H), 2976, 2936, 2879 (C–H), 1705 (C═O), 1636 (C═O); δH (400 MHz, CDCl3) 1.24 (d, J 6.8, 3H), 1.36 (s, 9H), 1.76–1.84 (m, 2H), 1.91 (app qn, J 6.8, 2H), 3.31–3.39 (m, 2H), 3.41–3.49 (m, 1H), 3.51–3.58 (m, 1H), 4.37 (app qn, J 6.8, 1H), 5.50 (br d, J 7.8, 1H); δC (100 MHz, CDCl3) 18.6, 24.1, 26.0, 28.3, 45.9, 46.2, 47.8, 79.3, 155.1, 171.2; Found (EI) [M + H]+ 243.1713 C12H23O3N2, requires 243.1709; HPLC measured after conversion to the benzoyl derivative 6k (hexane/i-PrOH 90:10, 0.5 mL/min, Chiralcel Daicel OD) tR (D) = 15.79 min (<1%), tR (L) = 23.58 min (>99%).

Boc-l-Alanine thiomorpholine amide (6i)

Yellow solid (113 mg, 41%): mp 65–68 °C (CH2Cl2); [α]D25 −3.8 (c 1.03, CHCl3); νmax (solid/cm–1) 3317 (N–H), 2980, 2927 (C–H), 1699 (C═O), 1638 (C═O); δH (400 MHz, CDCl3) 1.29 (d, J 6.8, 3H), 1.43 (s, 9H), 2.53–2.61 (m, 2H), 2.63–2.76 (m, 2H), 3.65–3.75 (m, 2H), 3.80–3.89 (m, 1H), 3.99–4.08 (m, 1H), 4.59 (app qn, J 7.2, 1H), 5.52 (br d, J 8.0, 1H); δC (100 MHz, CDCl3) 19.3, 27.3, 27.9, 28.4, 44.8, 46.1, 48.1, 79.6, 155.0, 171.3; Found (EI) [M]+ 274.1352 C12H22O3N2S, requires 274.1346; HPLC measured after conversion to the benzoyl derivative 6l (hexane/i-PrOH 90:10, 0.5 mL/min, Chiralcel Daicel OD) tR (D) = 22.20 min (8%), tR (L) = 31.86 min (92%).

Boc-l-Phenylalanine pyrrolidine amide (6j) (22)

Colorless oil (115 mg, 37%): [α]D25 +37.2 (c 1.0, CHCl3) [lit. (22) [α]D20 +37.5 (c 1.0, CHCl3)]; νmax (film/cm–1) 3432 (N–H), 2979, 2880 (C–H), 1702 (C═O), 1631 (C═O); δH (400 MHz, CDCl3) 1.40 (s, 9H), 1.47–1.77 (m, 4H), 2.52–2.59 (m, 1H), 2.90–3.01 (m, 2H), 3.25–3.46 (m, 3H), 4.53–4.61 (m, 1H), 5.49 (br d, J 8.6, 1H), 7.16–7.28 (m, 5H); δC (100 MHz, CDCl3) 24.0, 25.7, 28.3, 40.2, 45.7, 46.2, 53.6, 79.5, 126.8, 128.3, 129.4, 136.6, 155.1, 170.0; HPLC (hexane/i-PrOH 90:10, 0.5 mL/min, Chiralcel Daicel OD) tR (D) = 10.09 min (4%), tR (L) = 13.21 (96%).

Benz-l-Alanine-pyrrolidine amide (6k)

White solid (118 mg, 49%): mp 89–91 °C (PE/EtOAc); νmax (solid/cm–1) 3301 (N–H), 3061, 2975, 2877 (C–H), 1724 (C═O), 1629 (C═O); δH (400 MHz, CDCl3) 1.42(d, J 6.8, 3H), 1.81–1.89 (m, 2H), 1.96 (quintet, J 6.7, 2H), 3.39–3.54 (m, 3H), 3.65 (dt, J 10.1, 6.7, 1H), 4.90 (quintet, J 7.0, 1H), 7.34–7.40 (m, 2H), 7.41–7.47 (m, 2H), 7.77–7.81 (m, 2H); δC (100 MHz, CDCl3) 18.3, 24.1, 26.0, 46.1, 46.4, 47.3, 127.1, 128.4, 131.5, 134.1, 166.4, 171.0; Found (ES) [M – H]+ 245.1290 C14H17N2O2, requires 245.1291; HPLC (hexane/i-PrOH 90:10, 0.5 mL/min, Chiralcel Daicel OD) tR (D) = 17.08 min (2%), tR (L) = 28.56 min (98%).

Benz-l-Alanine-thiomorpholine amide (6l)

White solid (120 mg, 45%): mp 137–138 °C (PE/EtOAc); νmax (solid/cm–1) 3310 (N–H), 3059, 2981, 2918 (C–H), 1631 (C═O); δH (400 MHz, CDCl3) 1.42 (d, J 6.8, 3H), 2.52–2.77 (m, 4H), 3.69–3.80 (m, 2H), 3.89 (ddd, J 2.8, 6.6, 14.0, 1H), 4.04 (ddd, J 2.8, 6.6, 13.3, 1H), 5.07 (quintet, J 7.0, 1H), 7.37–7.51 (m, 4H), 7.78–7.83 (m, 2H); δC (100 MHz, CDCl3)19.1, 27.4, 27.9, 44.9, 45.6, 48.2, 127.1, 128.5, 131.6, 134.0, 166.4, 171.1; Found (ES) [M – H]+ 277.1011 C14H17N2O2S, requires 277.1011; HPLC (hexane/i-PrOH 90:10, 0.5 mL/min, Chiralcel Daicel OD) tR (D) = 24.26 min (4%), tR (L) = 34.28 min (96%).

(S)-N-Benzyl-2-(4-isobutylphenyl)propanamide (6m) (9i)

Yellow solid (294 mg, 98%): mp 77–78 °C (CH2Cl2); [α]D25 +7.2 (c 0.88, CH2Cl2) [lit. (9i) [α]D20 +7.1 (c 0.88, CH2Cl2)]; νmax (solid/cm–1) 3304 (N–H), 2949, 2866 (C–H), 1638 (C═O); δH (600 MHz, CDCl3) 0.90 (d, J 6.6, 6H), 1.55 (d, J 7.2, 3H), 1.85 (app nonet, J 6.8, 1H), 2.45 (d, J 7.0, 2H), 3.58 (q, J 7.2, 1H), 4.37 (dd, J 15.1, 5.7, 1H), 4.41 (dd, J 15.1, 5.8, 1H), 5.66 (br s, 1H), 7.10–7.14 (m, 4H), 7.19–7.29 (m, 5H); δC (150 MHz, CDCl3) 18.6, 22.5, 30.3, 43.5, 45.1, 46.6, 127.3, 127.41, 127.43, 128.6, 129.6, 138.7, 138.8, 140.6, 174.7; HPLC (hexane/i-PrOH 100:0, 0.5 mL/min, Chiralcel Daicel AD) tR (S) = 5.01 min (>99%), tR (R) = 7.41 min (<1%).

N-Benzylformamide (7a) (72)

Mixture of rotamers (1:0.16). Data for major rotamer reported. White solid (139 mg, 98%): mp 63–64 °C (CH2Cl2) [lit. (72) 60–62 °C]; νmax (solid/cm–1) 3269 (N–H), 3089, 3056, 2925, 2886 (C–H), 1637 (C═O); δH (500 MHz, CDCl3) 4.41 (d, J 6.0, 2H), 6.41 (br s, 1H), 7.20–7.28 (m, 3H) 7.29–7.37 (m, 2H), 8.17 (s, 1H); δC (125 MHz, CDCl3) 42.3, 127.8, 127.9, 128.9, 137.6, 161.1.

N-Phenethylformamide (7b) (35)

Mixture of rotamers (1:0.22). Data for major rotamer reported. Colorless oil (152 mg, 99%): νmax (film/cm–1) 3273 (N–H), 3061, 3028, 2934, 2866 (C–H), 1656 (C═O); δH (400 MHz, CDCl3, 58 °C) 2.84 (t, J 7.1, 2H), 3.55 (app q, J 6.7, 2H), 5.96 (br s, 1H), 7.14–7.26 (m, 3H), 7.27–7.34 (m, 2H), 8.09 (s, 1H); δC (100 MHz, CDCl3, 58 °C) 35.5, 39.2, 126.5, 128.59, 128.63, 138.6, 161.1.

N-(4-Methoxybenzyl)formamide (7c) (73)

Mixture of rotamers (1:0.17). Data for major rotamer reported. Yellow solid (101 mg, 61%): mp 81–83 °C (CH2Cl2) [lit. (73) 79–80 °C]; νmax (solid/cm–1) 3283 (N–H), 3010, 2933, 2891 (C–H), 1642 (C═O); δH (600 MHz, CDCl3) 3.77 (s, 3H), 4.37 (d, J 5.9, 2H), 6.11 (br s, 1H), 6.83–6.86 (m, 2H), 7.17–7.20 (m, 2H), 8.18 (s, 1H); δC (150 MHz, CDCl3) 41.7, 55.4, 114.2, 129.2, 129.9, 159.1, 161.3.

(R)-N-(1-Phenylethyl)formamide (7d) (74)

Mixture of rotamers (1:0.19). Data for major rotamer reported. Pale yellow oil (129 mg, 85%): [α]D25 +160.9 (c 0.52, CHCl3) [lit. (74) [α]D20 +161.4 (c 0.50, CHCl3)]; νmax (film/cm–1) 3270 (N–H), 3032, 2977, 2931, 2829 (C–H), 1653 (C═O); δH (500 MHz, CDCl3) 1.45 (d, J 6.9, 3H), 5.13 (app quintet, J 7.2, 1H), 6.71 (br s, 1H), 7.21–7.35 (m, 5H), 8.04 (s, 1H); δC (125 MHz, CDCl3) 22.0, 47.7, 126.2, 127.4, 128.7, 143.0, 160.7; Found (EI) [M]+ 149.0833 C9H11ON, requires 149.0835.

N-(Cyclohexylmethyl)formamide (7e)

Mixture of rotamers (1:0.25). Data for major rotamer reported. Colorless oil (135 mg, 96%): νmax (film/cm–1) 3280 (N–H), 3060, 2922, 2851 (C–H), 1657 (C═O); δH (600 MHz, CDCl3) 0.77–0.88 (m, 2H), 1.00–1.18 (m, 3H), 1.34–1.42 (m, 1H), 1.53–1.68 (m, 5H) 3.01 (t, J 6.6, 2H), 6.71 (br s, 1H), 8.06 (s, 1H); δC (150 MHz, CDCl3) 25.8, 26.4, 30.8, 37.8, 44.4, 161.8; Found (EI) [M + H]+ 142.1227 C8H16NO, requires 142.1226.

N-Cyclohexylformamide (7f) (35)

Mixture of rotamers (1:0.30). Data for major rotamer reported. Brown oil (95 mg, 78%): νmax (film/cm–1) 3268 (N–H), 3050, 2929, 2854 (C–H), 1652 (C═O); δH (500 MHz, CDCl3) 1.09–1.39 (m, 5H), 1.53–1.63 (m, 1H), 1.64–1.76 (m, 2H), 1.82–1.95 (m, 2H), 3.78–3.86 (m, 1H), 5.78 (br s, 1H), 8.07 (s, 1H); δC (125 MHz, CDCl3) 24.8, 25.5, 33.1, 47.1, 160.5.

N-Butylformamide (7g)

Mixture of rotamers (1:0.23). Data for major rotamer reported. Yellow oil (31 mg, 30%): νmax (film/cm–1) 3280 (N–H), 3058, 2959, 2933, 2868 (C–H), 1655 (C═O); δH (500 MHz, CDCl3) 0.90 (t, J 7.2, 3H), 1.33 (sext, J 7.2, 2H), 1.48 (quintet, J 7.2, 2H), 3.26 (q, J 6.7, 2H), 5.95 (br s, 1H), 8.12 (s, 1H); δC (125 MHz, CDCl3) 13.7, 20.0, 31.5, 37.9, 161.5; Found (EI) [M]+ 101.0827 C5H11ON, requires 101.0835.

N-Phenylformamide (7h) (75)

Mixture of rotamers (1:0.93). Data for major rotamer reported. Yellow oil (25 mg, 21%): νmax (film/cm–1) 3273 (N–H), 3066, 2923, 2854 (C–H), 1682 (C═O); δH (600 MHz, CDCl3) 7.08–7.11 (m, 1H), 7.19 (t, J 7.5, 1H), 7.31–7.38 (m, 2H), 7.53–7.56 (m, 1H), 8.41 (br s, 1H), 8.71 (d, J 11.3, 1H); δC (150 MHz, CDCl3) 118.9, 125.4, 129.9, 136.8, 162.8.

1-Indolinecarbaldehyde (7i) (76)

Mixture of rotamers (1:0.22). Data for major rotamer reported. Brown solid (55 mg, 38%): mp 56–58 °C (CH2Cl2) [lit. (76) 58–61 °C]; νmax (solid/cm–1) 3053, 2960, 2921, 2854 (C–H), 1656 (C═O); δH (600 MHz, CDCl3) 3.14 (2H, t, J 8.6), 4.05 (2H, app td, J 8.5, 0.9), 7.04 (1H, td, J 7.2, 1.5), 7.14–7.22 (2H, m), 7.24 (1H, d, J 7.2) 8.92 (1H, s); δC (150 MHz, CDCl3) 27.3, 44.8, 109.5, 124.4, 126.2, 127.7, 132.1, 141.2, 157.7.

3,4-Dihydro-2(1H)-isoquinolinecarbaldehyde (7j) (77)

Mixture of rotamers (1:0.60). Data for major rotamer reported. Pale yellow oil (119 mg, 71%): νmax (film/cm–1) 3056, 3026, 2929, 2886 (C–H), 1646 (C═O); δH (500 MHz, CDCl3) 2.87 (t, J 5.9, 2H), 3.60 (t, J 5.9, 2H), 4.65 (s, 2H), 7.05–7.19 (m, 4H), 8.16 (s, 1H); δC (125 MHz, CDCl3) 29.8, 42.4, 43.3, 126.70, 126.71, 126.8, 129.0, 131.8, 133.7, 161.8.

Supporting Information

ARTICLE SECTIONS
Jump To

Copies of 1H, 13C NMR and HPLC spectra are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Tom D. Sheppard - Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London, WC1H 0AJ, U.K. Email: [email protected]
  • Authors
    • Rachel M. Lanigan - Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London, WC1H 0AJ, U.K.
    • Pavel Starkov - Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London, WC1H 0AJ, U.K.
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

We would like to thank the EPSRC (Advanced Research Fellowship EP/E052789/1 to T.D.S. and Ph.D. studentship to P.S.) and University College London (Impact Studentship to R.M.L.) for supporting this work. We would also like to acknowledge GlaxoSmithKline for providing samples of some of the carboxylic acids and amines used in this research.

References

ARTICLE SECTIONS
Jump To

This article references 77 other publications.

  1. 1
    Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. J. Comb. Chem. 1999, 1, 55 68
  2. 2
    (a) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337 2347
    (b) Amarnath, L.; Andrews, I.; Bandichhor, R.; Bhattacharya, A.; Dunn, P.; Hayler, J.; Hinkley, W.; Holub, N.; Hughes, D.; Humphreys, L.; Kaptein, B.; Krishnen, H.; Lorenz, K.; Mathew, S.; Nagaraju, G.; Rammeloo, T.; Richardson, P.; Wang, L.; Wells, A.; White, T. Org. Process Res. Dev. 2012, 16, 535 544

    and references cited therein

  3. 3
    Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L., Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411 420
  4. 4

    For recent reviews, see:

    (a) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827 10852
    (b) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606 631
    (c) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471 479
  5. 5
    Allen, C. L.; Chhatwal, A. R.; Williams, J. M. J. Chem. Commun. 2012, 48, 666 668
  6. 6
    Houlding, T. K.; Tchabanenko, K.; Rahman, Md. T.; Rebrov, E. V. Org. Biomol. Chem. 2013,  DOI: 10.1039/C2OB26930A
  7. 7
    Lundberg, H.; Tinnis, F.; Adolfsson, H. Synlett 2012, 23, 2201 2204
  8. 8
    Lundberg, H.; Tinnis, F.; Adolfsson, H. Chem.—Eur. J. 2012, 18, 3822 3826
  9. 9
    (a) Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. Chem. Commun. 2010, 46, 1813 1823
    (b) Maki, T.; Ishihara, K.; Yamamoto, H. Tetrahedron 2007, 63, 8645 8657
    (c) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196 4197
    (d) Tang, P. Org. Synth. 2005, 81, 262 272
    (e) Arnold, K.; Davies, B.; Giles, R. L.; Grosjean, C.; Smith, G. E.; Whiting, A. Adv. Synth. Catal. 2006, 348, 813 820
    (f) Arnold, K.; Batsanov, A. S.; Davies, B.; Whiting, A. Green Chem. 2008, 10, 124 134
    (g) Al-Zoubi, R. M.; Marion, O.; Hall, D. G. Angew. Chem., Int. Ed. 2008, 47, 2876 2879
    (h) Marcelli, T. Angew. Chem., Int. Ed. 2010, 49, 6840 6843
    (i) Gernigon, N.; Al-Zoubi, R. M.; Hall, D. G. J. Org. Chem. 2012, 77, 8386 8400
  10. 10
    Nelson, P.; Pelter, A. J. Chem. Soc. 1965, 5142 5144
  11. 11
    Tani, J.; Oine, T.; Inoue, I. Synthesis 1975, 714 715
  12. 12
    Collum, D. B.; Chen, S.-C.; Ganem, B. J. Org. Chem. 1978, 43, 4393 4394
  13. 13
    Starkov, P.; Sheppard, T. D. Org. Biomol. Chem. 2011, 9, 1320 1323
  14. 14
    Beckett, M. A.; Rugen-Hankey, M. P.; Strickland, G. C.; Varma, K. S. Phosphorus, Sulfur Silicon Relat. Elem. 2001, 169, 113 116
  15. 15
    Meller, A.; Wojnowska, M. Monatsh. Chem. 1969, 100, 1489 1493
  16. 16
    Yu, K. L.; Rajakumar, G.; Srivastava, L. K.; Mishra, R. K.; Johnson, R. L. J. Med. Chem. 1988, 31, 1430 1436
  17. 17

    For recent examples, see:

    (a) Held, I.; Larionov, E.; Bozler, C.; Wagner, F.; Zipse, H. Synthesis 2009, 2267 2277
    (b) Wu, X.; Li, Y.; Wang, C.; Zhou, L.; Lu, X.; Sun, J. Chem.—Eur. J. 2011, 17, 2846 2848
  18. 18
    Funasaki, N.; Hada, S.; Neya, S. Anal. Chem. 1993, 65, 1861 1867
  19. 19
    Ray, S.; Das, A. K.; Banerjee, A. Chem. Commun. 2006, 2816 2818
  20. 20
    Sandrin, E.; Boissonnas, R. A. Helv. Chim. Acta 1963, 46, 1637 1669
  21. 21
    Woodard, R. W. J. Org. Chem. 1985, 50, 4796 4799
  22. 22
    Saito, Y.; Ouchi, H.; Takahata, H. Tetrahedron 2008, 64, 11129 11135
  23. 23
    Xu, Y.; Córdova, A. Chem. Commun. 2006, 460 462
  24. 24
    De Costa, B. R.; Radesca, L.; Di Paolo, L.; Bowen, W. D. J. Med. Chem. 1992, 35, 38 47
  25. 25
    Senten, K.; Van der Veken, P.; De Meester, I.; Lambeir, A.-M.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2003, 46, 5005 5014
  26. 26
    Wallén, E. A. A.; Christiaans, J. A. M.; Jarho, E. M.; Forsberg, M. M.; Venäläinen, J. I.; Männistö, P. T.; Gynther, J. J. Med. Chem. 2003, 46, 4543 4551
  27. 27
    Han, B.; Liu, J. L.; Huan, Y.; Li, P.; Wu, Q.; Lin, Z. Y.; Shen, Z. F.; Yin, D. L.; Huang, H. H. Chin. Chem. Lett. 2012, 23, 297 300
  28. 28
    Li, J.; Luo, S.; Cheng, J.-P. J. Org. Chem. 2009, 74, 1747 1750
  29. 29
    Richmond, M. L.; Sprout, C. M.; Seto, C. T. J. Org. Chem. 2005, 70, 8835 8840
  30. 30
    Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2005, 127, 10504 10505
  31. 31
    Allen, C. L.; Atkinson, B. N.; Williams, J. M. J. Angew. Chem., Int. Ed. 2012, 51, 1383 1386
  32. 32
    Atkinson, B. N.; Chhatwal, A. R.; Lomax, H. V.; Walton, J. W.; Williams, J. M. J. Chem. Commun. 2012, 48, 11626 11628
  33. 33
    Zhang, M.; Imm, S.; Bähn, S.; Neubert, L.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2012, 51, 3905 3909
  34. 34
    Vanjari, R.; Allam, B. K.; Singh, K. N. RSC Adv. 2013, 3, 1691 1694
  35. 35
    Nguyen, T. B.; Sorres, J.; Tran, M. Q.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2012, 14, 3202 3205
  36. 36
    Tamura, M.; Tonomura, T.; Shimizu, K.-i.; Satsuma, A. Green Chem. 2012, 14, 717 724
  37. 37
    Rao, S. N.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2013,  DOI: 10.1021/ol4002625
  38. 38
    Joseph, S.; Das, P.; Srivastava, B.; Nizar, H.; Prasad, M. Tetrahedron Lett. 2013, 54, 929 931
  39. 39
    Majumdar, S.; De, J.; Hossain, J.; Basak, A. Tetrahedron Lett. 2013, 54, 262 266
  40. 40
    Brahmachari, G.; Laskar, S. Tetrahedron Lett. 2010, 51, 2319 2322
  41. 41
    Suchý, M.; Elmehriki, A. A. H.; Hudson, R. H. E. Org. Lett. 2011, 13, 3952 3955
  42. 42
    Molander, G. A.; Hiebel, M.-A. Org. Lett. 2010, 12, 4876 4879
  43. 43
    Feldman, K. S.; Vidulova, D. B.; Karatjas, A. G. J. Org. Chem. 2005, 70, 6429 6440
  44. 44
    York, M.; Evans, R. A. Tetrahedron Lett. 2010, 51, 4677 4680
  45. 45
    Chaudhari, P. S.; Salim, S. D.; Sawant, R. V.; Akamanchi, K. G. Green Chem. 2010, 12, 1707 1710
  46. 46
    Asinger, F.; Saus, A.; Hartig, J.; Rasche, P.; Wilms, E. Monatsh. Chem. 1979, 110, 767 789
  47. 47
    Bordwell, F. G.; Fried, H. E. J. Org. Chem. 1981, 46, 4327 4331
  48. 48
    Wei, W.; Hu, X.-Y.; Yan, X.-W.; Zhang, Q.; Cheng, M.; Ji, J.-X. Chem. Commun. 2012, 48, 305 307
  49. 49
    Shao, J.; Huang, X.; Wang, S.; Liu, B.; Xu, B. Tetrahedron 2012, 68, 573 579
  50. 50
    Joseph, B.; Darro, F.; Béhard, A.; Lesur, B.; Collignon, F.; Decaestecker, C.; Frydman, A.; Guillaumet, G.; Kiss, R. J. Med. Chem. 2002, 45, 2543 2555
  51. 51
    Shokova, E.; Mousoulou, T.; Luzikov, Y.; Kovalev, V. Synthesis 1997, 1034 1040
  52. 52
    Satoh, T.; Unno, H.; Mizu, Y.; Hayashi, Y. Tetrahedron 1997, 53, 7843 7854
  53. 53
    Eckstein, Z.; Jeleński, P.; Kowal, J.; Rusek, D. Synth. Commun. 1982, 12, 201 208
  54. 54
    Sudrik, S. G.; Chavan, Sa. P.; Chandrakumar, K. R. S.; Pal, S.; Date, S. K.; Chavan, Su. P.; Sonawane, H. R. J. Org. Chem. 2002, 67, 1574 1579
  55. 55
    Ignatenko, V. A.; Deligonul, N.; Viswanathan, R. Org. Lett. 2010, 12, 3594 3597
  56. 56
    Hajipour, A. R.; Ghasemi, M. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2001, 40, 504 507
  57. 57
    Dam, J. H.; Osztrovszky, G.; Nordstrøm, L. U.; Madsen, R. Chem.—Eur. J. 2010, 16, 6820 6827
  58. 58
    Paruszewski, R.; Rostafinska-Suchar, G.; Strupinska, M.; Jaworski, P.; Winiecka, I.; Stables, J. P. Pharmazie 1996, 51, 212 215
  59. 59
    Ono, T.; Kukhar, V. P.; Soloshonok, V. A. J. Org. Chem. 1996, 61, 6563 6569
  60. 60
    Martinelli, J. R.; Clark, T. P.; Watson, D. A.; Munday, R. H.; Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 8460 8463
  61. 61
    Prosser, A. R.; Banning, J. E.; Rubina, M.; Rubin, M. Org. Lett. 2010, 12, 3968 3971
  62. 62
    Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421 7428
  63. 63
    Kunishima, M.; Kikuchi, K.; Kawai, Y.; Hioki, K. Angew. Chem., Int. Ed. 2012, 51, 2080 2083
  64. 64
    Woon, E. C. Y.; Demetriades, M.; Bagg, E. A. L.; Aik, W.; Krylova, S. M.; Ma, J. H. Y.; Chan, M.; Walport, L. J.; Wegman, D. W.; Dack, K. N.; McDonough, M. A.; Krylov, S. N.; Schofield, C. J. J. Med. Chem. 2012, 55, 2173 2184
  65. 65
    Narahari, S. R.; Reguri, B. R.; Mukkanti, K. Tetrahedron Lett. 2011, 52, 4888 4891
  66. 66
    Trincado, M.; Kühlein, K.; Grützmacher, H. Chem.—Eur. J. 2011, 17, 11905 11913
  67. 67
    Ohshima, T.; Hayashi, Y.; Agura, K.; Fujii, Y.; Yoshiyama, A.; Mashima, K. Chem. Commun. 2012, 48, 5434 5436
  68. 68
    Tessaro, D.; Cerioli, L.; Servi, S.; Viani, F.; D’Arrigo, P. Adv. Synth. Catal. 2011, 353, 2333 2338
  69. 69
    Kawai, M.; Omori, Y.; Yamamura, H.; Butsugan, Y.; Taga, T.; Miwa, Y. J. Chem. Soc., Perkin Trans. 1 1995, 2115 2122
  70. 70
    Nagamine, T.; Inomata, K.; Endo, Y. Heterocycles 2008, 76, 1191 1204
  71. 71
    Beugelmans, R.; Neuville, L.; Bois-Choussy, M.; Chastanet, J.; Zhu, J. Tetrahedron Lett. 1995, 36, 3129 3132
  72. 72
    Ma’mani, L.; Sheykhan, M.; Heydari, A.; Faraji, M.; Yamini, Y. Appl. Catal., A 2010, 377, 64 69
  73. 73
    Moreno, E.; Plano, D.; Lamberto, I.; Font, M.; Encío, I.; Palop, J. A.; Sanmartín, C. Eur. J. Med. Chem. 2012, 47, 283 298
  74. 74
    Fowler, B. S.; Mikochik, P. J.; Miller, S. J. J. Am. Chem. Soc. 2010, 132, 2870 2871
  75. 75
    Ma, F.; Xie, X.; Zhang, L.; Peng, Z.; Ding, L.; Fu, L.; Zhang, Z. J. Org. Chem. 2012, 77, 5279 5285
  76. 76
    Wang, Z.; Wan, W.; Jiang, H.; Hao, J. J. Org. Chem. 2007, 72, 9364 9367
  77. 77
    Kulkarni, A.; Gianatassio, R.; Török, B. Synthesis 2011, 1227 1232

Cited By

This article is cited by 188 publications.

  1. Hojun Lee, Jeong-Yun Sun. Strong and Facile Adhesives Based on Phase Transitional Poly(acrylic acid)/Poly(ethylenimine) Complexes. ACS Applied Engineering Materials 2023, 1 (1) , 229-240. https://doi.org/10.1021/acsaenm.2c00048
  2. Qi Li, Wang Zhang, Chen Zhu, Hong Pan, Kang-Yue Shi, Yicheng Zhang, Man-Yi Han, Choon-Hong Tan. Organobase-Catalyzed Umpolung of Amides: The Generation and Transfer of Carbamoyl Anion. The Journal of Organic Chemistry 2023, 88 (2) , 1245-1255. https://doi.org/10.1021/acs.joc.2c02487
  3. Lin Zhang, Jian Jiang, Linlin Li, Qian Chen, Ling Zhang, Hao Sun, Chun Li. Sustainable Synthesis of Amides from Carboxylic Acids and Equivalent Amounts of Amines Using a Reusable Brønsted Acidic Ionic Liquid as a Catalyst and a Solvent. ACS Sustainable Chemistry & Engineering 2022, 10 (26) , 8433-8442. https://doi.org/10.1021/acssuschemeng.2c01434
  4. D. Christopher Braddock, Joshua J. Davies, Paul D. Lickiss. Methyltrimethoxysilane (MTM) as a Reagent for Direct Amidation of Carboxylic Acids. Organic Letters 2022, 24 (5) , 1175-1179. https://doi.org/10.1021/acs.orglett.1c04265
  5. Supratik Kar, Hans Sanderson, Kunal Roy, Emilio Benfenati, Jerzy Leszczynski. Green Chemistry in the Synthesis of Pharmaceuticals. Chemical Reviews 2022, 122 (3) , 3637-3710. https://doi.org/10.1021/acs.chemrev.1c00631
  6. Jitender Singh, Shivani Sharma, Anuj Sharma. Photocatalytic Carbonylation Strategies: A Recent Trend in Organic Synthesis. The Journal of Organic Chemistry 2021, 86 (1) , 24-48. https://doi.org/10.1021/acs.joc.0c02205
  7. Sudripet Sharma, Nicklas W. Buchbinder, Wilfried M. Braje, Sachin Handa. Fast Amide Couplings in Water: Extraction, Column Chromatography, and Crystallization Not Required. Organic Letters 2020, 22 (15) , 5737-5740. https://doi.org/10.1021/acs.orglett.0c01676
  8. Chun Li, Mengna Wang, Xunhua Lu, Ling Zhang, Jian Jiang, Lin Zhang. Reusable Brønsted Acidic Ionic Liquid Efficiently Catalyzed N-Formylation and N-Acylation of Amines. ACS Sustainable Chemistry & Engineering 2020, 8 (11) , 4353-4361. https://doi.org/10.1021/acssuschemeng.9b06591
  9. Tridev Ghosh, Snehasish Jana, Jyotirmayee Dash. KOtBu-Promoted Transition-Metal-Free Transamidation of Primary and Tertiary Amides with Amines. Organic Letters 2019, 21 (17) , 6690-6694. https://doi.org/10.1021/acs.orglett.9b02306
  10. Jiawen Yin, Jingyu Zhang, Changqun Cai, Guo-Jun Deng, Hang Gong. Catalyst-Free Transamidation of Aromatic Amines with Formamide Derivatives and Tertiary Amides with Aliphatic Amines. Organic Letters 2019, 21 (2) , 387-392. https://doi.org/10.1021/acs.orglett.8b03542
  11. Xianjun Xu, Huangdi Feng, Liliang Huang, Xiaohui Liu. Direct Amidation of Carboxylic Acids through an Active α-Acyl Enol Ester Intermediate. The Journal of Organic Chemistry 2018, 83 (15) , 7962-7969. https://doi.org/10.1021/acs.joc.8b00819
  12. Folake A. Egbewande, Martin C. Sadowski, Claire Levrier, Kaylyn D. Tousignant, Jonathan M. White, Mark J. Coster, Colleen C. Nelson, Rohan A. Davis. Identification of Gibberellic Acid Derivatives That Deregulate Cholesterol Metabolism in Prostate Cancer Cells. Journal of Natural Products 2018, 81 (4) , 838-845. https://doi.org/10.1021/acs.jnatprod.7b00929
  13. Rakesh K. Sharma, Aditi Sharma, Shivani Sharma, Sriparna Dutta. Unprecedented Ester–Amide Exchange Reaction Using Highly Versatile Two-Dimensional Graphene Oxide Supported Base Metal Nanocatalyst. Industrial & Engineering Chemistry Research 2018, 57 (10) , 3617-3627. https://doi.org/10.1021/acs.iecr.8b00498
  14. D. Christopher Braddock, Paul D. Lickiss, Ben C. Rowley, David Pugh, Teresa Purnomo, Gajan Santhakumar, and Steven J. Fussell . Tetramethyl Orthosilicate (TMOS) as a Reagent for Direct Amidation of Carboxylic Acids. Organic Letters 2018, 20 (4) , 950-953. https://doi.org/10.1021/acs.orglett.7b03841
  15. Chenikkayala Balachandra and Nagendra K. Sharma . Direct/Reversible Amidation of Troponyl Alkylglycinates via Cationic Troponyl Lactones and Mechanistic Insights. ACS Omega 2018, 3 (1) , 997-1013. https://doi.org/10.1021/acsomega.7b01540
  16. Elizabeth M. Lane, Katherine B. Uttley, Nilay Hazari, and Wesley Bernskoetter . Iron-Catalyzed Amide Formation from the Dehydrogenative Coupling of Alcohols and Secondary Amines. Organometallics 2017, 36 (10) , 2020-2025. https://doi.org/10.1021/acs.organomet.7b00258
  17. Surya Adhikari, Gengjie Lin, and Lei Li . Reversible Hydrolysis Reaction with the Spore Photoproduct under Alkaline Conditions. The Journal of Organic Chemistry 2016, 81 (18) , 8570-8576. https://doi.org/10.1021/acs.joc.6b01846
  18. Daniel Best, Mickaël Jean, and Pierre van de Weghe . Modular Synthesis of Arylacetic Acid Esters, Thioesters, and Amides from Aryl Ethers via Rh(II)-Catalyzed Diazo Arylation. The Journal of Organic Chemistry 2016, 81 (17) , 7760-7770. https://doi.org/10.1021/acs.joc.6b01426
  19. Luana Silva, Ricardo F. Affeldt, and Diogo S. Lüdtke . Synthesis of Glycosyl Amides Using Selenocarboxylates as Traceless Reagents for Amide Bond Formation. The Journal of Organic Chemistry 2016, 81 (13) , 5464-5473. https://doi.org/10.1021/acs.joc.6b00832
  20. Joshua R. Dunetz, Javier Magano, and Gerald A. Weisenburger . Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Organic Process Research & Development 2016, 20 (2) , 140-177. https://doi.org/10.1021/op500305s
  21. Jonathan T. Reeves, Michael D. Visco, Maurice A. Marsini, Nelu Grinberg, Carl A. Busacca, Anita E. Mattson, and Chris H. Senanayake . A General Method for Imine Formation Using B(OCH2CF3)3. Organic Letters 2015, 17 (10) , 2442-2445. https://doi.org/10.1021/acs.orglett.5b00949
  22. Rohitesh Kumar, Martin C. Sadowski, Claire Levrier, Colleen C. Nelson, Amy J. Jones, John P. Holleran, Vicky M. Avery, Peter C. Healy, and Rohan A. Davis . Design and Synthesis of a Screening Library Using the Natural Product Scaffold 3-Chloro-4-hydroxyphenylacetic Acid. Journal of Natural Products 2015, 78 (4) , 914-918. https://doi.org/10.1021/np500856u
  23. Charlotte E. Allen, Peter R. Curran, Andrew S. Brearley, Valerie Boissel, Lilya Sviridenko, Neil J. Press, Jeffrey P. Stonehouse, and Alan Armstrong . Efficient and Facile Synthesis of Acrylamide Libraries for Protein-Guided Tethering. Organic Letters 2015, 17 (3) , 458-460. https://doi.org/10.1021/ol503486t
  24. Zhiwei Ma, Jintao Jiang, Shi Luo, Yu Cai, Joseph M. Cardon, Benjamin M. Kay, Daniel H. Ess, and Steven L. Castle . Selective Access to E- and Z-ΔIle-Containing Peptides via a Stereospecific E2 Dehydration and an O → N Acyl Transfer. Organic Letters 2014, 16 (15) , 4044-4047. https://doi.org/10.1021/ol5018933
  25. Liliana Becerra-Figueroa, Andrea Ojeda-Porras, and Diego Gamba-Sánchez . Transamidation of Carboxamides Catalyzed by Fe(III) and Water. The Journal of Organic Chemistry 2014, 79 (10) , 4544-4552. https://doi.org/10.1021/jo500562w
  26. Hiroyuki Morimoto, Risa Fujiwara, Yuhei Shimizu, Kazuhiro Morisaki, and Takashi Ohshima . Lanthanum(III) Triflate Catalyzed Direct Amidation of Esters. Organic Letters 2014, 16 (7) , 2018-2021. https://doi.org/10.1021/ol500593v
  27. Trinadh Kaicharla, Manikandan Thangaraj, and Akkattu T. Biju . Practical Synthesis of Phthalimides and Benzamides by a Multicomponent Reaction Involving Arynes, Isocyanides, and CO2/H2O. Organic Letters 2014, 16 (6) , 1728-1731. https://doi.org/10.1021/ol500403x
  28. Jianfei Bai, Bartosz K. Zambroń, and Pierre Vogel . Amides in One Pot from Carboxylic Acids and Amines via Sulfinylamides. Organic Letters 2014, 16 (2) , 604-607. https://doi.org/10.1021/ol403508j
  29. K. S. Savitha, M. Senthil Kumar, R. L. Jagadish. Systematic approach in enhancing the selectivity of titanium tetrabutoxide towards high molecular weight poly(butylene succinate) synthesis. Polymers for Advanced Technologies 2023, 34 (7) , 2335-2339. https://doi.org/10.1002/pat.6054
  30. Kevin Timothy Fridianto, Ya-Ping Wen, Lee-Chiang Lo, Yulin Lam. Development of fluorous boronic acid catalysts integrated with sulfur for enhanced amidation efficiency. RSC Advances 2023, 13 (25) , 17420-17426. https://doi.org/10.1039/D3RA03300G
  31. Fenghua Mao, Can Jin, Jie Wang, Hui Yang, Xinhuan Yan, Xiaoqing Li, Xiangsheng Xu. A one-step base-free synthesis of N -arylamides via modified pivaloyl mixed anhydride mediated amide coupling. Organic & Biomolecular Chemistry 2023, 21 (18) , 3825-3828. https://doi.org/10.1039/D3OB00452J
  32. Jamelah S. Al-Otaibi, Y. Sheena Mary, Y. Shyma Mary, M. Thirunavukkarasu, Ravi Trivedi, Brahmananda Chakraborty. Conformational, Reactivity Analysis, Wavefunction-Based Properties, Molecular Docking and Simulations of a Benzamide Derivative with Potential Antitumor Activity-DFT and MD Simulations. Polycyclic Aromatic Compounds 2023, 43 (3) , 2015-2031. https://doi.org/10.1080/10406638.2022.2039229
  33. Masaya Sawamura, Yohei Shimizu. Boron Catalysis in the Transformation of Carboxylic Acids and Carboxylic Acid Derivatives. European Journal of Organic Chemistry 2023, 26 (1) https://doi.org/10.1002/ejoc.202201249
  34. Paola Acosta‐Guzmán, John Corredor‐Barinas, Diego Gamba‐Sánchez. Transamidation of Carboxamides and Amide Derivatives: Mechanistic Insights, Concepts, and Reactions. 2022, 187-219. https://doi.org/10.1002/9783527830251.ch6
  35. Sushobhan Chowdhury, Gunjan Chauhan, Ajay Kumar, Bipin Chaturvedi, Chinmaya Behera. Copper‐Mediated Intramolecular Amidation/C−N‐Coupling Cascade Sequence: Straightforward One‐Pot Synthesis of N‐Aryl γ‐ and δ‐Lactams by Using Amino Acids as Precursors. European Journal of Organic Chemistry 2022, 2022 (41) https://doi.org/10.1002/ejoc.202200850
  36. Jingning Zhou, Marco Paladino, Dennis G. Hall. Direct Boronic Acid Promoted Amidation of Carboxylic Acids with Poorly Nucleophilic Amines. European Journal of Organic Chemistry 2022, 2022 (41) https://doi.org/10.1002/ejoc.202201050
  37. Pinaki Nad, Kriti Gupta, Anik Sen, Arup Mukherjee. Mechanistic Understanding of KO t Bu‐Mediated Direct Amidation of Esters with Anilines: An Experimental Study and Computational Approach. Chemistry – An Asian Journal 2022, 17 (21) https://doi.org/10.1002/asia.202200800
  38. Kishor Kumar Chouhan, Deep Chowdhury, Arup Mukherjee. Transamidation of aromatic amines with formamides using cyclic dihydrogen tetrametaphosphate. Organic & Biomolecular Chemistry 2022, 20 (40) , 7929-7935. https://doi.org/10.1039/D2OB00882C
  39. Mehmet Mart, Janusz Jurczak, Idris Karakaya. Efficient catalyst-free direct amidation of non-activated carboxylic acids from carbodiimides. Organic & Biomolecular Chemistry 2022, 20 (40) , 7900-7906. https://doi.org/10.1039/D2OB01322C
  40. Karima Abdelouahdi, Abderrahim Bouaid, Abdellatif Barakat, Abderrahim Solhy. Natural Phosphates and Their Catalytic Applications. 2022, 481-531. https://doi.org/10.1002/9783527830190.ch14
  41. Li Yingxian, Chen Wei, Zhao Linchun, Zhang Ji-Quan, Zhao Yonglong, Li Chun, Guo Bing, Tang Lei, Yang Yuan-Yong. Catalytic N -methyl amidation of carboxylic acids under cooperative conditions. RSC Advances 2022, 12 (32) , 20550-20554. https://doi.org/10.1039/D2RA03255D
  42. Marion Rauter, Daniela Nietz, Gotthard Kunze. Cutinase ACut2 from Blastobotrys raffinosifermentans for the Selective Desymmetrization of the Symmetric Diester Diethyl Adipate to the Monoester Monoethyl Adipate. Microorganisms 2022, 10 (7) , 1316. https://doi.org/10.3390/microorganisms10071316
  43. Lulu Wang, Minjie Liu, Meifen Jiang, Li Wan, Weijian Li, Dang Cheng, Fener Chen. Six‐Step Continuous Flow Synthesis of Diclofenac Sodium via Cascade Etherification/Smiles Rearrangement Strategy: Tackling the Issues of Batch Processing. Chemistry – A European Journal 2022, 128 https://doi.org/10.1002/chem.202201420
  44. Devi Govindaraj, Buvaneswari Gopal. Investigation of the catalytic activity of metallic copper and copper dispersed SiO2 for the reductive acetylation of aromatic nitro compounds. Research on Chemical Intermediates 2022, 14 https://doi.org/10.1007/s11164-022-04703-y
  45. Zechao Wang, Xiao‐Feng Wu. Applications of DMF as a Reagent in Organic Synthesis. 2022, 1439-1474. https://doi.org/10.1002/9783527831883.ch33
  46. Antonella Ilenia Alfano, Heiko Lange, Margherita Brindisi. Amide Bonds Meet Flow Chemistry: A Journey into Methodologies and Sustainable Evolution. ChemSusChem 2022, 15 (6) https://doi.org/10.1002/cssc.202102708
  47. Zijuan Yan, Feipeng Liu, Xuchao Wang, Qing Qiang, Yongjie Li, Yao Zhang, Zi-Qiang Rong. Redox-neutral dehydrogenative cross-coupling of alcohols and amines enabled by nickel catalysis. Organic Chemistry Frontiers 2022, 9 (6) , 1703-1710. https://doi.org/10.1039/D2QO00004K
  48. Pengcheng Lian, Ruyi Li, Xiao Wan, Zixin Xiang, Hang Liu, Zhiyu Cao, Xiaobing Wan. Acetylation of alcohols and amines under visible light irradiation: diacetyl as an acylation reagent and photosensitizer. Organic Chemistry Frontiers 2022, 9 (2) , 311-319. https://doi.org/10.1039/D1QO01613J
  49. Jian Jiang, Linlin Li, Ling Zhang, Qian Chen, Hao Sun, Shanggao Liao, Chun Li, Lin Zhang. Organophosphoric Acid Promoted Transamidation: Using N , N ‐Dimethylformamide and N , N ‐Dimethylacetamide as the Acyl Sources. ChemistrySelect 2021, 6 (45) , 12834-12837. https://doi.org/10.1002/slct.202103932
  50. Suman Yadav, Noor U Din Reshi, Saikat Pal, Jitendra K. Bera. Aerobic oxidation of primary amines to amides catalyzed by an annulated mesoionic carbene (MIC) stabilized Ru complex. Catalysis Science & Technology 2021, 11 (21) , 7018-7028. https://doi.org/10.1039/D1CY01541A
  51. William I. Nicholson, Fabien Barreteau, Jamie A. Leitch, Riley Payne, Ian Priestley, Edouard Godineau, Claudio Battilocchio, Duncan L. Browne. Direct Amidation of Esters by Ball Milling**. Angewandte Chemie International Edition 2021, 60 (40) , 21868-21874. https://doi.org/10.1002/anie.202106412
  52. William I. Nicholson, Fabien Barreteau, Jamie A. Leitch, Riley Payne, Ian Priestley, Edouard Godineau, Claudio Battilocchio, Duncan L. Browne. Direct Amidation of Esters by Ball Milling**. Angewandte Chemie 2021, 133 (40) , 22039-22045. https://doi.org/10.1002/ange.202106412
  53. Hamid Aziz, Aamer Saeed, Farukh Jabeen, Nazif Ullah, Ashfaq Ur Rehman. Synthesis, characterization, in vitro biological and molecular docking evaluation of N,N'-(ethane-1,2-diyl)bis(benzamides). Journal of the Iranian Chemical Society 2021, 18 (9) , 2425-2436. https://doi.org/10.1007/s13738-021-02199-8
  54. Arun Kumar, Pankaj Sharma, Nidhi Sharma, Yashwant Kumar, Dinesh Mahajan. Catalyst free N -formylation of aromatic and aliphatic amines exploiting reductive formylation of CO 2 using NaBH 4. RSC Advances 2021, 11 (41) , 25777-25787. https://doi.org/10.1039/D1RA04848A
  55. Anil S. Mali, Krishna Indalkar, Ganesh U. Chaturbhuj. Solvent-free, Efficient Transamidation of Carboxamides with Amines Catalyzed by Recyclable Sulfated Polyborate Catalyst. Organic Preparations and Procedures International 2021, 53 (4) , 369-378. https://doi.org/10.1080/00304948.2021.1908047
  56. Tsai-Wei Chuo, Jyun-Ting Hou, Ying-Ling Liu. Preparation of polymers possessing dynamic N-hindered amide bonds through ketene-based chemistry for repairable anticorrosion coatings. Materials Advances 2021, 2 (12) , 3993-3999. https://doi.org/10.1039/D1MA00349F
  57. Shinichiro Fuse, Keiji Komuro, Yuma Otake, Hisashi Masui, Hiroyuki Nakamura. Rapid and Mild Lactamization Using Highly Electrophilic Triphosgene in a Microflow Reactor. Chemistry – A European Journal 2021, 27 (27) , 7525-7532. https://doi.org/10.1002/chem.202100059
  58. Chalathan Saengruengrit, Apoorva Sharma, Dmytro Solonenko, Patchanita Thamyongkit, Trin Saetan, Sumrit Wacharasindhu, Stefan Krause, Suchinda Sattayaporn, Georgeta Salvan, Dietrich R.T. Zahn, Numpon Insin. Iron oxide nanospheres and nanocubes modified with carboxyphenyl porphyrin and their magnetic, optical properties and photocatalytic activities in room temperature amide synthesis. Journal of Magnetism and Magnetic Materials 2021, 521 , 167515. https://doi.org/10.1016/j.jmmm.2020.167515
  59. Özgür Yılmaz, Pınar Küce Çevik, Mustafa Kemal Yılmaz. Synthesis of New Substituted Diamides. Investigation of Their Antioxidant and Antibacterial Properties. Russian Journal of Bioorganic Chemistry 2021, 47 (2) , 543-551. https://doi.org/10.1134/S1068162021020278
  60. Luana Silva, Alisson R. Rosário, Bianca M. Machado, Diogo S. Lüdtke. Traceless selenocarboxylates for the one-pot synthesis of amides and derivatives. Tetrahedron 2021, 79 , 131834. https://doi.org/10.1016/j.tet.2020.131834
  61. Subbarayan Vijayapritha, Periasamy Viswanathamurthi. New half-sandwich (η6-p-cymene)ruthenium(II) complexes with benzothiazole hydrazone Schiff base ligand: Synthesis, structural characterization and catalysis in transamidation of carboxamide with primary amines. Journal of Organometallic Chemistry 2020, 929 , 121555. https://doi.org/10.1016/j.jorganchem.2020.121555
  62. Mina Amirsoleimani, Mohammad A. Khalilzadeh, Daryoush Zareyee. Nano-sized clinoptilolite as a green catalyst for the rapid and chemoselective N-formylation of amines. Reaction Kinetics, Mechanisms and Catalysis 2020, 131 (2) , 859-873. https://doi.org/10.1007/s11144-020-01886-6
  63. Parmita Phukan, Soniya Agarwal, Kalyanjyoti Deori, Diganta Sarma. Zinc Oxide Nanoparticles Catalysed One-Pot Three-Component Reaction: A Facile Synthesis of 4-Aryl-NH-1,2,3-Triazoles. Catalysis Letters 2020, 150 (8) , 2208-2219. https://doi.org/10.1007/s10562-020-03143-w
  64. Yiwen Xu, Xiuzhi Xu, Bin Wu, Chenling Gan, Xiaoyan Lin, Jin Wang, Fang Ke. Transition‐Metal‐Free, Visible‐Light‐Mediated N ‐acylation: An Efficient Route to Amides in Water. Asian Journal of Organic Chemistry 2020, 9 (7) , 1032-1035. https://doi.org/10.1002/ajoc.202000237
  65. Zongjie Gan, Binghua Tian, Jianyong Yuan, Dongzhi Ran, Lin Zhang, Gang Dong, Tao Pan, Yixin Zeng, Yu Yu. A KHSO4 promoted tandem synthesis of 1,3,4-thiadiazoles from thiohydrazides and DMF derivatives. Tetrahedron Letters 2020, 61 (31) , 152195. https://doi.org/10.1016/j.tetlet.2020.152195
  66. Jyoti Omprakash Rathi, Ganapati Subray Shankarling. Recent Advances in the Protection of Amine Functionality: A Review. ChemistrySelect 2020, 5 (23) , 6861-6893. https://doi.org/10.1002/slct.202000764
  67. Kantharaju Kamanna, S.Y. Khatavi, P.B. Hiremath. Microwave-assisted One-pot Synthesis of Amide Bond using WEB. Current Microwave Chemistry 2020, 7 (1) , 50-59. https://doi.org/10.2174/2213335606666190828114344
  68. A. Rosie Chhatwal, Helen V. Lomax, A. John Blacker, Jonathan M. J. Williams, Patricia Marcé. Direct synthesis of amides from nonactivated carboxylic acids using urea as nitrogen source and Mg(NO 3 ) 2 or imidazole as catalysts. Chemical Science 2020, 11 (22) , 5808-5818. https://doi.org/10.1039/D0SC01317J
  69. Enrique Barragan, Anurag Noonikara‐Poyil, Alejandro Bugarin. π‐Conjugated Triazenes and Nitriles: Simple Photoinduced Synthesis of Anilides Using Mild and Metal‐Free Conditions. Asian Journal of Organic Chemistry 2020, 9 (4) , 593-599. https://doi.org/10.1002/ajoc.201900721
  70. Sk. Sheriff Shah, Maniklal Shee, Yarra Venkatesh, Amit Kumar Singh, Samya Samanta, N. D. Pradeep Singh. Organophotoredox‐Mediated Amide Synthesis by Coupling Alcohol and Amine through Aerobic Oxidation of Alcohol. Chemistry – A European Journal 2020, 26 (17) , 3703-3708. https://doi.org/10.1002/chem.201904924
  71. Başak Koşar Kırca, Şükriye Çakmak, Hasan Yakan, Mustafa Odabaşoğlu, Orhan Büyükgüngör, Halil Kütük. Two new benzamides: Synthesis, spectroscopic characterization, X-ray diffraction, and electronic structure analyses. Journal of Molecular Structure 2020, 1203 , 127314. https://doi.org/10.1016/j.molstruc.2019.127314
  72. Özgür YILMAZ. Synthesis of trans-diamide derivatives from fumaryl chloride and determination of DPPH scavenging activity of synthesized molecules. Journal of the Turkish Chemical Society Section A: Chemistry 2020, 7 (1) , 143-150. https://doi.org/10.18596/jotcsa.627805
  73. Priyanka Basu, Tusar Kanto Dey, Aniruddha Ghosh, Surajit Biswas, Aslam Khan, Sk. Manirul Islam. An efficient one-pot synthesis of industrially valuable primary organic carbamates and N -substituted ureas by a reusable Merrifield anchored iron( ii )-anthra catalyst [FeII(Anthra-Merf)] using urea as a sustainable carbonylation source. New Journal of Chemistry 2020, 44 (6) , 2630-2643. https://doi.org/10.1039/C9NJ05675K
  74. G. Lakshmi Teja, T. Rekha, G. Sravya, V. Padmavathi. Synthesis of carboxamide and sulfonyl carboxamide linked azoles under green conditions. 2020, 040050. https://doi.org/10.1063/5.0018630
  75. Madiha Kazmi, Aliya Ibrar, Hafiz Saqib Ali, Mehreen Ghufran, Abdul Wadood, Ulrich Flörke, Jim Simpson, Aamer Saeed, Antonio Frontera, Imtiaz Khan. A combined experimental and theoretical analysis of the solid-state supramolecular self-assembly of N-(2,4-dichlorophenyl)-1-naphthamide: Synthesis, anticholinesterase potential and molecular docking analysis. Journal of Molecular Structure 2019, 1197 , 458-470. https://doi.org/10.1016/j.molstruc.2019.07.077
  76. Feng Zhang, Lesong Li, Juan Ma, Hang Gong. MoS2-Catalyzed transamidation reaction. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-39210-5
  77. Xiaohong Yang, Haitao Fu, Yang Tian, Qiang Xie, Shixian Xiong, Dezhi Han, Hao Zhang, Xizhong An. Au decorated In2O3 hollow nanospheres: A novel sensing material toward amine. Sensors and Actuators B: Chemical 2019, 296 , 126696. https://doi.org/10.1016/j.snb.2019.126696
  78. Helena Lundberg, Fredrik Tinnis, Hans Adolfsson. Zirconium catalyzed amide formation without water scavenging. Applied Organometallic Chemistry 2019, 33 (9) https://doi.org/10.1002/aoc.5062
  79. Paige E. Piszel, Aristidis Vasilopoulos, Shannon S. Stahl. Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines Using Aerobic Copper/Nitroxyl Catalysis. Angewandte Chemie International Edition 2019, 58 (35) , 12211-12215. https://doi.org/10.1002/anie.201906130
  80. Paige E. Piszel, Aristidis Vasilopoulos, Shannon S. Stahl. Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines Using Aerobic Copper/Nitroxyl Catalysis. Angewandte Chemie 2019, 131 (35) , 12339-12343. https://doi.org/10.1002/ange.201906130
  81. Charlotte E. Coomber, Victor Laserna, Liam T. Martin, Peter D. Smith, Helen C. Hailes, Michael J. Porter, Tom D. Sheppard. Catalytic direct amidations in tert -butyl acetate using B(OCH 2 CF 3 ) 3. Organic & Biomolecular Chemistry 2019, 17 (26) , 6465-6469. https://doi.org/10.1039/C9OB01012B
  82. David Roy, Stuart L. James, Deborah E. Crawford. Solvent-free sonochemistry as a route to pharmaceutical co-crystals. Chemical Communications 2019, 55 (38) , 5463-5466. https://doi.org/10.1039/C9CC00013E
  83. Zhuo-Wei Xu, Wen-Yi Xu, Xiao-Jun Pei, Fei Tang, Yi-Si Feng. An efficient method for the N-formylation of amines under catalyst- and additive-free conditions. Tetrahedron Letters 2019, 60 (18) , 1254-1258. https://doi.org/10.1016/j.tetlet.2019.03.071
  84. Jiahui Chen, Jing Jia, Ziyi Guo, Jitan Zhang, Meihua Xie. NH4I-promoted N-acylation of amines via the transamidation of DMF and DMA under metal-free conditions. Tetrahedron Letters 2019, 60 (21) , 1426-1429. https://doi.org/10.1016/j.tetlet.2019.04.040
  85. Perumal Sathiyachandran, Jabastin Jayamanoharan, Vladimir N. Nesterov, Karnam Jayarampillai Rajendra Prasad. Convenient framework of poly functionalized (E)-2-benzylideno-(Z)-carbazolylideno cyanoacetamides via rearrangements as an efficient antibiofilm inhibitors with SAR study. Bioorganic & Medicinal Chemistry 2019, 27 (5) , 777-784. https://doi.org/10.1016/j.bmc.2019.01.015
  86. Diya Zhu, James H. W. LaFortune, Rebecca L. Melen, Douglas W. Stephan. Electrophilic boron carboxylate and phosphinate complexes. Dalton Transactions 2019, 48 (6) , 2038-2045. https://doi.org/10.1039/C8DT04818E
  87. Marzban Arefi, Maryam Kazemi Miraki, Ramin Mostafalu, Mohammad Satari, Akbar Heydari. Citric acid stabilized on the surface of magnetic nanoparticles as an efficient and recyclable catalyst for transamidation of carboxamides, phthalimide, urea and thiourea with amines under neat conditions. Journal of the Iranian Chemical Society 2019, 16 (2) , 393-400. https://doi.org/10.1007/s13738-018-1523-8
  88. Nagaraju Vodnala, Raghuram Gujjarappa, Chinmoy K. Hazra, Dhananjaya Kaldhi, Arup. K. Kabi, Uwe Beifuss, Chandi C. Malakar. Copper‐Catalyzed Site‐Selective Oxidative C−C Bond Cleavage of Simple Ketones for the Synthesis of Anilides and Paracetamol. Advanced Synthesis & Catalysis 2019, 361 (1) , 135-145. https://doi.org/10.1002/adsc.201801096
  89. Ugo Azzena, Massimo Carraro, Luisa Pisano, Serena Monticelli, Roberta Bartolotta, Vittorio Pace. Cyclopentyl Methyl Ether: An Elective Ecofriendly Ethereal Solvent in Classical and Modern Organic Chemistry. ChemSusChem 2019, 12 (1) , 40-70. https://doi.org/10.1002/cssc.201801768
  90. Vishal Srivastava, Pravin K. Singh, Praveen P. Singh. Visible light photoredox catalysed amidation of carboxylic acids with amines. Tetrahedron Letters 2019, 60 (1) , 40-43. https://doi.org/10.1016/j.tetlet.2018.11.050
  91. Carlos E. Puerto Galvis, Vladimir V. Kouznetsov. Synthesis of zanthoxylamide protoalkaloids and their in silico ADME-Tox screening and in vivo toxicity assessment in zebrafish embryos. European Journal of Pharmaceutical Sciences 2019, 127 , 291-299. https://doi.org/10.1016/j.ejps.2018.10.028
  92. Juan Ma, Jingyu Zhang, Xiao Zhou, Jiawei Wang, Hang Gong. N-formylation of amine using graphene oxide as a sole recyclable metal-free carbocatalyst. Journal of the Iranian Chemical Society 2018, 15 (12) , 2851-2860. https://doi.org/10.1007/s13738-018-1471-3
  93. Reza Tabaraki, Negar Sadeghinejad. Comparison of magnetic Fe3O4/chitosan and arginine-modified magnetic Fe3O4/chitosan nanoparticles in simultaneous multidye removal: Experimental design and multicomponent analysis. International Journal of Biological Macromolecules 2018, 120 , 2313-2323. https://doi.org/10.1016/j.ijbiomac.2018.08.168
  94. Zongjie Gan, Qingqiang Tian, Suqin Shang, Wen Luo, Zeshu Dai, Huajun Wang, Dan Li, Xuetong Wang, Jianyong Yuan. Imidazolium chloride-catalyzed synthesis of benzimidazoles and 2-substituted benzimidazoles from o-phenylenediamines and DMF derivatives. Tetrahedron 2018, 74 (52) , 7450-7456. https://doi.org/10.1016/j.tet.2018.11.014
  95. Santoshkumar M. Potadar, Anil S. Mali, Krishnakant T. Waghmode, Ganesh U. Chaturbhuj. Repurposing n-butyl stannoic acid as highly efficient catalyst for direct amidation of carboxylic acids with amines. Tetrahedron Letters 2018, 59 (52) , 4582-4586. https://doi.org/10.1016/j.tetlet.2018.11.036
  96. Seema A. Ghorpade, Dinesh N. Sawant, Nagaiyan Sekar. Triphenyl borate catalyzed synthesis of amides from carboxylic acids and amines. Tetrahedron 2018, 74 (48) , 6954-6958. https://doi.org/10.1016/j.tet.2018.10.030
  97. Joshua P. Barham, Souma Tamaoki, Hiromichi Egami, Noriyuki Ohneda, Tadashi Okamoto, Hiromichi Odajima, Yoshitaka Hamashima. C -Alkylation of N -alkylamides with styrenes in air and scale-up using a microwave flow reactor. Organic & Biomolecular Chemistry 2018, 16 (41) , 7568-7573. https://doi.org/10.1039/C8OB02282H
  98. Mohana Reddy Mutra, Ganesh Kumar Dhandabani, Jeh-Jeng Wang. Mild Access to N-Formylation of Primary Amines using Ethers as C1 Synthons under Metal-Free Conditions. Advanced Synthesis & Catalysis 2018, 360 (20) , 3960-3968. https://doi.org/10.1002/adsc.201800783
  99. B. S. Balaji, Neha Dalal. An expedient and rapid green chemical synthesis of N-chloroacetanilides and amides using acid chlorides under metal-free neutral conditions. Green Chemistry Letters and Reviews 2018, 11 (4) , 552-558. https://doi.org/10.1080/17518253.2018.1545874
  100. Juan Ma, Feng Zhang, Jingyu Zhang, Hang Gong. Cobalt(II)-Catalyzed N -Acylation of Amines through a Transamidation Reaction. European Journal of Organic Chemistry 2018, 2018 (35) , 4940-4948. https://doi.org/10.1002/ejoc.201800253
Load all citations
  • Abstract

    Scheme 1

    Scheme 1. Synthesis of B(OCH2CF3)3 from (a) BBr3 and (b) B2O3

    Figure 1

    Figure 1. Solid phase workup of amidation reactions.

    Figure 2

    Figure 2. Scope of phenylacetamide synthesis with different amines. All reactions were carried out at 80 °C for 5 h, and the solid phase workup procedure was used unless otherwise stated. (a) Aqueous workup procedure; (b) 80 °C for 15 h; (c) 100 °C for 15 h in a sealed tube; (d) purified by column chromatography; (e) from 1 equiv of Me2NH·HCl, 1 equiv of DIPEA; (f) from 2 equiv of Me2NH·HCl, 2 equiv of DIPEA; (g) from 3 equiv of Me2NH·HCl, 3 equiv of DIPEA; (h) 6% of 2a was also isolated; (i) 100 °C for 24 h in a sealed tube.

    Figure 3

    Figure 3. Scope of N-benzylamide synthesis using different carboxylic acids. All reactions were carried out at 80 °C for 5 h, and the solid phase workup procedure was used unless otherwise stated. (a) Aqueous workup procedure; (b) 80 °C for 15 h; (c) 100 °C for 15 h in a sealed tube.

    Figure 4

    Figure 4. Further scope of the amidation reaction. All reactions were carried out at 80 °C for 15 h and purified by solid phase workup unless otherwise stated. (a) Aqueous workup procedure; (b) 80 °C for 5 h; (c) purified by column chromatography.

    Figure 5

    Figure 5. Lactamization reactions. All reactions were carried out at 80 °C for 5 h unless otherwise stated and purified by solid phase workup. (a) Yield without B(OCH2CF3)3; (b) 100 °C for 5 h in a sealed tube; (c) 80 °C for 15 h; (d) [α]D25 −9.5 (c 1.22, MeOH) [lit. (16) [α]D20 −10.6 (c 1.22, MeOH)].

    Scheme 2

    Scheme 2. Gram Scale Amidation Reactions

    Figure 6

    Figure 6. Coupling of acids containing adjacent chiral centers. All reactions were carried out at 80 °C for 15 h unless otherwise stated and purified by solid phase workup. (a) 80 °C for 8 h; (b) 100 °C for 24 h in a sealed tube; (c) er measured after conversion to the N-benzoyl amide derivative; (d) 100 °C for 8 h in a sealed tube; (e) 80 °C for 5 h.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 77 other publications.

    1. 1
      Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. J. Comb. Chem. 1999, 1, 55 68
    2. 2
      (a) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337 2347
      (b) Amarnath, L.; Andrews, I.; Bandichhor, R.; Bhattacharya, A.; Dunn, P.; Hayler, J.; Hinkley, W.; Holub, N.; Hughes, D.; Humphreys, L.; Kaptein, B.; Krishnen, H.; Lorenz, K.; Mathew, S.; Nagaraju, G.; Rammeloo, T.; Richardson, P.; Wang, L.; Wells, A.; White, T. Org. Process Res. Dev. 2012, 16, 535 544

      and references cited therein

    3. 3
      Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L., Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411 420
    4. 4

      For recent reviews, see:

      (a) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827 10852
      (b) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606 631
      (c) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471 479
    5. 5
      Allen, C. L.; Chhatwal, A. R.; Williams, J. M. J. Chem. Commun. 2012, 48, 666 668
    6. 6
      Houlding, T. K.; Tchabanenko, K.; Rahman, Md. T.; Rebrov, E. V. Org. Biomol. Chem. 2013,  DOI: 10.1039/C2OB26930A
    7. 7
      Lundberg, H.; Tinnis, F.; Adolfsson, H. Synlett 2012, 23, 2201 2204
    8. 8
      Lundberg, H.; Tinnis, F.; Adolfsson, H. Chem.—Eur. J. 2012, 18, 3822 3826
    9. 9
      (a) Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. Chem. Commun. 2010, 46, 1813 1823
      (b) Maki, T.; Ishihara, K.; Yamamoto, H. Tetrahedron 2007, 63, 8645 8657
      (c) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196 4197
      (d) Tang, P. Org. Synth. 2005, 81, 262 272
      (e) Arnold, K.; Davies, B.; Giles, R. L.; Grosjean, C.; Smith, G. E.; Whiting, A. Adv. Synth. Catal. 2006, 348, 813 820
      (f) Arnold, K.; Batsanov, A. S.; Davies, B.; Whiting, A. Green Chem. 2008, 10, 124 134
      (g) Al-Zoubi, R. M.; Marion, O.; Hall, D. G. Angew. Chem., Int. Ed. 2008, 47, 2876 2879
      (h) Marcelli, T. Angew. Chem., Int. Ed. 2010, 49, 6840 6843
      (i) Gernigon, N.; Al-Zoubi, R. M.; Hall, D. G. J. Org. Chem. 2012, 77, 8386 8400
    10. 10
      Nelson, P.; Pelter, A. J. Chem. Soc. 1965, 5142 5144
    11. 11
      Tani, J.; Oine, T.; Inoue, I. Synthesis 1975, 714 715
    12. 12
      Collum, D. B.; Chen, S.-C.; Ganem, B. J. Org. Chem. 1978, 43, 4393 4394
    13. 13
      Starkov, P.; Sheppard, T. D. Org. Biomol. Chem. 2011, 9, 1320 1323
    14. 14
      Beckett, M. A.; Rugen-Hankey, M. P.; Strickland, G. C.; Varma, K. S. Phosphorus, Sulfur Silicon Relat. Elem. 2001, 169, 113 116
    15. 15
      Meller, A.; Wojnowska, M. Monatsh. Chem. 1969, 100, 1489 1493
    16. 16
      Yu, K. L.; Rajakumar, G.; Srivastava, L. K.; Mishra, R. K.; Johnson, R. L. J. Med. Chem. 1988, 31, 1430 1436
    17. 17

      For recent examples, see:

      (a) Held, I.; Larionov, E.; Bozler, C.; Wagner, F.; Zipse, H. Synthesis 2009, 2267 2277
      (b) Wu, X.; Li, Y.; Wang, C.; Zhou, L.; Lu, X.; Sun, J. Chem.—Eur. J. 2011, 17, 2846 2848
    18. 18
      Funasaki, N.; Hada, S.; Neya, S. Anal. Chem. 1993, 65, 1861 1867
    19. 19
      Ray, S.; Das, A. K.; Banerjee, A. Chem. Commun. 2006, 2816 2818
    20. 20
      Sandrin, E.; Boissonnas, R. A. Helv. Chim. Acta 1963, 46, 1637 1669
    21. 21
      Woodard, R. W. J. Org. Chem. 1985, 50, 4796 4799
    22. 22
      Saito, Y.; Ouchi, H.; Takahata, H. Tetrahedron 2008, 64, 11129 11135
    23. 23
      Xu, Y.; Córdova, A. Chem. Commun. 2006, 460 462
    24. 24
      De Costa, B. R.; Radesca, L.; Di Paolo, L.; Bowen, W. D. J. Med. Chem. 1992, 35, 38 47
    25. 25
      Senten, K.; Van der Veken, P.; De Meester, I.; Lambeir, A.-M.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2003, 46, 5005 5014
    26. 26
      Wallén, E. A. A.; Christiaans, J. A. M.; Jarho, E. M.; Forsberg, M. M.; Venäläinen, J. I.; Männistö, P. T.; Gynther, J. J. Med. Chem. 2003, 46, 4543 4551
    27. 27
      Han, B.; Liu, J. L.; Huan, Y.; Li, P.; Wu, Q.; Lin, Z. Y.; Shen, Z. F.; Yin, D. L.; Huang, H. H. Chin. Chem. Lett. 2012, 23, 297 300
    28. 28
      Li, J.; Luo, S.; Cheng, J.-P. J. Org. Chem. 2009, 74, 1747 1750
    29. 29
      Richmond, M. L.; Sprout, C. M.; Seto, C. T. J. Org. Chem. 2005, 70, 8835 8840
    30. 30
      Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2005, 127, 10504 10505
    31. 31
      Allen, C. L.; Atkinson, B. N.; Williams, J. M. J. Angew. Chem., Int. Ed. 2012, 51, 1383 1386
    32. 32
      Atkinson, B. N.; Chhatwal, A. R.; Lomax, H. V.; Walton, J. W.; Williams, J. M. J. Chem. Commun. 2012, 48, 11626 11628
    33. 33
      Zhang, M.; Imm, S.; Bähn, S.; Neubert, L.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2012, 51, 3905 3909
    34. 34
      Vanjari, R.; Allam, B. K.; Singh, K. N. RSC Adv. 2013, 3, 1691 1694
    35. 35
      Nguyen, T. B.; Sorres, J.; Tran, M. Q.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2012, 14, 3202 3205
    36. 36
      Tamura, M.; Tonomura, T.; Shimizu, K.-i.; Satsuma, A. Green Chem. 2012, 14, 717 724
    37. 37
      Rao, S. N.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2013,  DOI: 10.1021/ol4002625
    38. 38
      Joseph, S.; Das, P.; Srivastava, B.; Nizar, H.; Prasad, M. Tetrahedron Lett. 2013, 54, 929 931
    39. 39
      Majumdar, S.; De, J.; Hossain, J.; Basak, A. Tetrahedron Lett. 2013, 54, 262 266
    40. 40
      Brahmachari, G.; Laskar, S. Tetrahedron Lett. 2010, 51, 2319 2322
    41. 41
      Suchý, M.; Elmehriki, A. A. H.; Hudson, R. H. E. Org. Lett. 2011, 13, 3952 3955
    42. 42
      Molander, G. A.; Hiebel, M.-A. Org. Lett. 2010, 12, 4876 4879
    43. 43
      Feldman, K. S.; Vidulova, D. B.; Karatjas, A. G. J. Org. Chem. 2005, 70, 6429 6440
    44. 44
      York, M.; Evans, R. A. Tetrahedron Lett. 2010, 51, 4677 4680
    45. 45
      Chaudhari, P. S.; Salim, S. D.; Sawant, R. V.; Akamanchi, K. G. Green Chem. 2010, 12, 1707 1710
    46. 46
      Asinger, F.; Saus, A.; Hartig, J.; Rasche, P.; Wilms, E. Monatsh. Chem. 1979, 110, 767 789
    47. 47
      Bordwell, F. G.; Fried, H. E. J. Org. Chem. 1981, 46, 4327 4331
    48. 48
      Wei, W.; Hu, X.-Y.; Yan, X.-W.; Zhang, Q.; Cheng, M.; Ji, J.-X. Chem. Commun. 2012, 48, 305 307
    49. 49
      Shao, J.; Huang, X.; Wang, S.; Liu, B.; Xu, B. Tetrahedron 2012, 68, 573 579
    50. 50
      Joseph, B.; Darro, F.; Béhard, A.; Lesur, B.; Collignon, F.; Decaestecker, C.; Frydman, A.; Guillaumet, G.; Kiss, R. J. Med. Chem. 2002, 45, 2543 2555
    51. 51
      Shokova, E.; Mousoulou, T.; Luzikov, Y.; Kovalev, V. Synthesis 1997, 1034 1040
    52. 52
      Satoh, T.; Unno, H.; Mizu, Y.; Hayashi, Y. Tetrahedron 1997, 53, 7843 7854
    53. 53
      Eckstein, Z.; Jeleński, P.; Kowal, J.; Rusek, D. Synth. Commun. 1982, 12, 201 208
    54. 54
      Sudrik, S. G.; Chavan, Sa. P.; Chandrakumar, K. R. S.; Pal, S.; Date, S. K.; Chavan, Su. P.; Sonawane, H. R. J. Org. Chem. 2002, 67, 1574 1579
    55. 55
      Ignatenko, V. A.; Deligonul, N.; Viswanathan, R. Org. Lett. 2010, 12, 3594 3597
    56. 56
      Hajipour, A. R.; Ghasemi, M. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2001, 40, 504 507
    57. 57
      Dam, J. H.; Osztrovszky, G.; Nordstrøm, L. U.; Madsen, R. Chem.—Eur. J. 2010, 16, 6820 6827
    58. 58
      Paruszewski, R.; Rostafinska-Suchar, G.; Strupinska, M.; Jaworski, P.; Winiecka, I.; Stables, J. P. Pharmazie 1996, 51, 212 215
    59. 59
      Ono, T.; Kukhar, V. P.; Soloshonok, V. A. J. Org. Chem. 1996, 61, 6563 6569
    60. 60
      Martinelli, J. R.; Clark, T. P.; Watson, D. A.; Munday, R. H.; Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 8460 8463
    61. 61
      Prosser, A. R.; Banning, J. E.; Rubina, M.; Rubin, M. Org. Lett. 2010, 12, 3968 3971
    62. 62
      Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421 7428
    63. 63
      Kunishima, M.; Kikuchi, K.; Kawai, Y.; Hioki, K. Angew. Chem., Int. Ed. 2012, 51, 2080 2083
    64. 64
      Woon, E. C. Y.; Demetriades, M.; Bagg, E. A. L.; Aik, W.; Krylova, S. M.; Ma, J. H. Y.; Chan, M.; Walport, L. J.; Wegman, D. W.; Dack, K. N.; McDonough, M. A.; Krylov, S. N.; Schofield, C. J. J. Med. Chem. 2012, 55, 2173 2184
    65. 65
      Narahari, S. R.; Reguri, B. R.; Mukkanti, K. Tetrahedron Lett. 2011, 52, 4888 4891
    66. 66
      Trincado, M.; Kühlein, K.; Grützmacher, H. Chem.—Eur. J. 2011, 17, 11905 11913
    67. 67
      Ohshima, T.; Hayashi, Y.; Agura, K.; Fujii, Y.; Yoshiyama, A.; Mashima, K. Chem. Commun. 2012, 48, 5434 5436
    68. 68
      Tessaro, D.; Cerioli, L.; Servi, S.; Viani, F.; D’Arrigo, P. Adv. Synth. Catal. 2011, 353, 2333 2338
    69. 69
      Kawai, M.; Omori, Y.; Yamamura, H.; Butsugan, Y.; Taga, T.; Miwa, Y. J. Chem. Soc., Perkin Trans. 1 1995, 2115 2122
    70. 70
      Nagamine, T.; Inomata, K.; Endo, Y. Heterocycles 2008, 76, 1191 1204
    71. 71
      Beugelmans, R.; Neuville, L.; Bois-Choussy, M.; Chastanet, J.; Zhu, J. Tetrahedron Lett. 1995, 36, 3129 3132
    72. 72
      Ma’mani, L.; Sheykhan, M.; Heydari, A.; Faraji, M.; Yamini, Y. Appl. Catal., A 2010, 377, 64 69
    73. 73
      Moreno, E.; Plano, D.; Lamberto, I.; Font, M.; Encío, I.; Palop, J. A.; Sanmartín, C. Eur. J. Med. Chem. 2012, 47, 283 298
    74. 74
      Fowler, B. S.; Mikochik, P. J.; Miller, S. J. J. Am. Chem. Soc. 2010, 132, 2870 2871
    75. 75
      Ma, F.; Xie, X.; Zhang, L.; Peng, Z.; Ding, L.; Fu, L.; Zhang, Z. J. Org. Chem. 2012, 77, 5279 5285
    76. 76
      Wang, Z.; Wan, W.; Jiang, H.; Hao, J. J. Org. Chem. 2007, 72, 9364 9367
    77. 77
      Kulkarni, A.; Gianatassio, R.; Török, B. Synthesis 2011, 1227 1232
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Copies of 1H, 13C NMR and HPLC spectra are provided. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect