ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVFeatured ArticleNEXT

Salinipostins A–K, Long-Chain Bicyclic Phosphotriesters as a Potent and Selective Antimalarial Chemotype

View Author Information
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States
Cite this: J. Org. Chem. 2015, 80, 3, 1312–1320
Publication Date (Web):January 13, 2015
https://doi.org/10.1021/jo5024409
Copyright © 2015 American Chemical Society

    Article Views

    1887

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Despite significant advances in antimalarial chemotherapy over the past 30 years, development of resistance to frontline drugs remains a significant challenge that limits efforts to eradicate the disease. We now report the discovery of a new class of antimalarials, salinipostins A–K, with low nanomolar potencies and high selectivity indices against mammalian cells (salinipostin A: Plasmodium falciparum EC50 50 nM, HEK293T cytotoxicity EC50 > 50 μM). These compounds were isolated from a marine-derived Salinospora sp. bacterium and contain a bicyclic phosphotriester core structure, which is a rare motif among natural products. This scaffold differs significantly from the structures of known antimalarial compounds and represents a new lead structure for the development of therapeutic targets in malaria. Examination of the growth stage specificity of salinipostin A indicates that it exhibits growth stage-specific effects that differ from compounds that inhibit heme polymerization, while resistance selection experiments were unable to identify parasite populations that exhibited significant resistance against this compound class.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    HPLC trace for salinipostin A–K isolation; comparison of key NMR chemical shifts for salinipostin A, 2-epicyclipostin P and cyclipostin P; 1H, 13C, COSY, HSQC, HMBC, and 31P NMR data and MS2 data for salinipostin A; 1H, 13C, COSY, and MS2 data for salinipostins B and C; 1H, COSY, and MS2 spectra for salinipostins D–K; VCD data for configurational determination of salinipostin A; NMR table for salinipostins A–K; growth curves for mammalian cell lines This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 57 publications.

    1. Zhi-Chao Qi, Yuke Li, Juan Wang, Lan Ma, Gang-Wei Wang, Shang-Dong Yang. Electrophilic Selenium-Catalyzed Desymmetrizing Cyclization to Access P-Stereogenic Heterocycles. ACS Catalysis 2023, 13 (20) , 13301-13309. https://doi.org/10.1021/acscatal.3c03524
    2. Barbara Forte, Sabine Ottilie, Andrew Plater, Brice Campo, Koen J. Dechering, Francisco Javier Gamo, Daniel E. Goldberg, Eva S. Istvan, Marcus Lee, Amanda K. Lukens, Case W. McNamara, Jacquin C. Niles, John Okombo, Charisse Flerida A. Pasaje, Miles G. Siegel, Dyann Wirth, Susan Wyllie, David A. Fidock, Beatriz Baragaña, Elizabeth A. Winzeler, Ian H. Gilbert. Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases 2021, 7 (10) , 2764-2776. https://doi.org/10.1021/acsinfecdis.1c00322
    3. Tanja C. Knaab, Jana Held, Bjoern B. Burckhardt, Kelly Rubiano, John Okombo, Tomas Yeo, Sachel Mok, Anne-Catrin Uhlemann, Beate Lungerich, Christoph Fischli, Lais Pessanha de Carvalho, Benjamin Mordmüller, Sergio Wittlin, David A. Fidock, Thomas Kurz. 3-Hydroxy-propanamidines, a New Class of Orally Active Antimalarials Targeting Plasmodium falciparum. Journal of Medicinal Chemistry 2021, 64 (6) , 3035-3047. https://doi.org/10.1021/acs.jmedchem.0c01744
    4. Yuta Kudo, Takayoshi Awakawa, Yi-Ling Du, Peter A. Jordan, Kaitlin E. Creamer, Paul R. Jensen, Roger G. Linington, Katherine S. Ryan, Bradley S. Moore. Expansion of Gamma-Butyrolactone Signaling Molecule Biosynthesis to Phosphotriester Natural Products. ACS Chemical Biology 2020, 15 (12) , 3253-3261. https://doi.org/10.1021/acschembio.0c00824
    5. Abdeldjalil Madani, Jeremy N. Ridenour, Benjamin P. Martin, Rishi R. Paudel, Anosha Abdul Basir, Vincent Le Moigne, Jean-Louis Herrmann, Stéphane Audebert, Luc Camoin, Laurent Kremer, Christopher D. Spilling, Stéphane Canaan, Jean-François Cavalier. Cyclipostins and Cyclophostin Analogues as Multitarget Inhibitors That Impair Growth of Mycobacterium abscessus. ACS Infectious Diseases 2019, 5 (9) , 1597-1608. https://doi.org/10.1021/acsinfecdis.9b00172
    6. Nicholas Lorig-Roach, Patrick C. Still, David Coppage, Jennifer E. Compton, Mitchell S. Crews, Gabriel Navarro, Karen Tenney, and Phillip Crews . Evaluating Nitrogen-Containing Biosynthetic Products Produced by Saltwater Culturing of Several California Littoral Zone Gram-Negative Bacteria. Journal of Natural Products 2017, 80 (8) , 2304-2310. https://doi.org/10.1021/acs.jnatprod.7b00302
    7. Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey, and Sylvain Jugé . Modular P-Chirogenic Phosphine-Sulfide Ligands: Clear Evidence for Both Electronic Effect and P-Chirality Driving Enantioselectivity in Palladium-Catalyzed Allylations. Organometallics 2015, 34 (17) , 4340-4358. https://doi.org/10.1021/acs.organomet.5b00585
    8. Arthur James Rathinam, Henciya Santhaseelan, Hans-Uwe Dahms, Vengateshwaran Thasu Dinakaran, Santhosh Gokul Murugaiah. Bioprospecting of unexplored halophilic actinobacteria against human infectious pathogens. 3 Biotech 2023, 13 (12) https://doi.org/10.1007/s13205-023-03812-8
    9. Xin‐Xin Yang, Ming‐Ying Wu, Shao‐Qiu Wang, Shang‐Dong Yang. Eight‐Membered Palladacycle Intermediate Enabled Synthesis of Cyclic Biarylphosphonates. Chemistry – A European Journal 2023, 115 https://doi.org/10.1002/chem.202302416
    10. Brodie L. Bailey, William Nguyen, Alan F. Cowman, Brad E. Sleebs. Chemo‐proteomics in antimalarial target identification and engagement. Medicinal Research Reviews 2023, 43 (6) , 2303-2351. https://doi.org/10.1002/med.21975
    11. Alexandre Le Loarer, Rémy Marcellin-Gros, Laurent Dufossé, Jérôme Bignon, Michel Frédérich, Allison Ledoux, Emerson Ferreira Queiroz, Jean-Luc Wolfender, Anne Gauvin-Bialecki, Mireille Fouillaud. Prioritization of Microorganisms Isolated from the Indian Ocean Sponge Scopalina hapalia Based on Metabolomic Diversity and Biological Activity for the Discovery of Natural Products. Microorganisms 2023, 11 (3) , 697. https://doi.org/10.3390/microorganisms11030697
    12. Ravi Kumar Dhanalakshmi, Venkatesan Dharani, Valayutham Ravichandiran, Subhendu Bhowmik, Vajiravelu Sivamurugan. A Bird’s Eye View on Evaluation of Anti-Plasmodial Efficacy of Natural Products Isolated from Marine Sources. Current Bioactive Compounds 2023, 19 (2) https://doi.org/10.2174/1573407218666220516143742
    13. Walaa A. Negm, Shahira M. Ezzat, Ahmed Zayed. Marine organisms as potential sources of natural products for the prevention and treatment of malaria. RSC Advances 2023, 13 (7) , 4436-4475. https://doi.org/10.1039/D2RA07977A
    14. Huijuan Hu, Qiaoli Yan, Xiaogang Lu, Qifan Yang, Chengxin Pei, Hongmei Wang, Runli Gao. Kinetic Resolution of Racemic P -Chiral α -Hydroxymethylphos-phonates Catalyzed by Lipase from Porcine Pancreas. Chinese Journal of Organic Chemistry 2023, 43 (8) , 2815. https://doi.org/10.6023/cjoc202212005
    15. Cherish Prashar, Narsinh Thakur, Soumyananda Chakraborti, Syed Shah Areeb Hussain, Kapil Vashisht, Kailash C. Pandey. The landscape of nature-derived antimalarials-potential of marine natural products in countering the evolving Plasmodium. Frontiers in Drug Discovery 2022, 2 https://doi.org/10.3389/fddsv.2022.1065231
    16. Yuta Kudo, Keiichi Konoki, Mari Yotsu-Yamashita. Mass spectrometry–guided discovery of new analogs of bicyclic phosphotriester salinipostin and evaluation of their monoacylglycerol lipase inhibitory activity. Bioscience, Biotechnology, and Biochemistry 2022, 86 (10) , 1333-1342. https://doi.org/10.1093/bbb/zbac131
    17. Mingyu Liu, Xingwang Zhang, Guoqiang Li. Structural and Biological Insights into the Hot‐Spot Marine Natural Products Reported from 2012 to 2021. Chinese Journal of Chemistry 2022, 40 (15) , 1867-1889. https://doi.org/10.1002/cjoc.202200129
    18. Yang Hai, Zi-Mu Cai, Peng-Jie Li, Mei-Yan Wei, Chang-Yun Wang, Yu-Cheng Gu, Chang-Lun Shao. Trends of antimalarial marine natural products: progresses, challenges and opportunities. Natural Product Reports 2022, 39 (5) , 969-990. https://doi.org/10.1039/D1NP00075F
    19. Franco Della-Felice, Aloisio de Andrade Bartolomeu, Ronaldo Aloise Pilli. The phosphate ester group in secondary metabolites. Natural Product Reports 2022, 39 (5) , 1066-1107. https://doi.org/10.1039/D1NP00078K
    20. Huichuang Guo, Yulong Zhang, Zhenya Li, Peichao Zhao, Ning Li, Enxue Shi. Synthesis of enol phosphates directly from ketones via a modified one-pot Perkow reaction. RSC Advances 2022, 12 (23) , 14844-14848. https://doi.org/10.1039/D2RA02340G
    21. Ya-Qian Zhang, Xue-Yu Han, Yue Wu, Peng-Jia Qi, Qing Zhang, Qing-Wei Zhang. Ni-catalyzed asymmetric hydrophosphinylation of conjugated enynes and mechanistic studies. Chemical Science 2022, 13 (14) , 4095-4102. https://doi.org/10.1039/D2SC00091A
    22. Amal Mohamed Shawky, Omnia Mohamed Abdallah, Dina Hatem Amin. Traditional Screening and Genome-Guided Screening of Natural Products from Actinobacteria. 2022, 59-76. https://doi.org/10.1007/978-981-16-5835-8_3
    23. David G. I. Kingston, Maria Belen Cassera. Antimalarial Natural Products. 2022, 1-106. https://doi.org/10.1007/978-3-030-89873-1_1
    24. Mariana Girão, Inês Ribeiro, Maria de Fátima Carvalho. Actinobacteria from Marine Environments: A Unique Source of Natural Products. 2022, 1-45. https://doi.org/10.1007/978-981-16-6132-7_1
    25. Kuan‐Yi Lu, Christopher R. Mansfield, Michael C. Fitzgerald, Emily R. Derbyshire. Chemoproteomics for Plasmodium Parasite Drug Target Discovery. ChemBioChem 2021, 22 (16) , 2591-2599. https://doi.org/10.1002/cbic.202100155
    26. Kaitlin E. Creamer, Yuta Kudo, Bradley S. Moore, Paul R. Jensen. Phylogenetic analysis of the salinipostin γ-butyrolactone gene cluster uncovers new potential for bacterial signalling-molecule diversity. Microbial Genomics 2021, 7 (5) https://doi.org/10.1099/mgen.0.000568
    27. Qiu-Hong Huang, Qian-Yi Zhou, Chen Yang, Li Chen, Jin-Pei Cheng, Xin Li. Access to P -stereogenic compounds via desymmetrizing enantioselective bromination. Chemical Science 2021, 12 (12) , 4582-4587. https://doi.org/10.1039/D0SC07008D
    28. Jean-François Cavalier, Christopher D. Spilling, Thierry Durand, Luc Camoin, Stéphane Canaan. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. European Journal of Medicinal Chemistry 2021, 209 , 112908. https://doi.org/10.1016/j.ejmech.2020.112908
    29. V. A. Stonik, T. N. Makarieva, L. K. Shubina. Antibiotics from Marine Bacteria. Biochemistry (Moscow) 2020, 85 (11) , 1362-1373. https://doi.org/10.1134/S0006297920110073
    30. Nagarajan Manivel, Sanjeev Kumar Shukla, Sundararaman Muthuraman. Nanogram and Nanomolar Active Marine Antiplasmodial Antibiotics. 2020, 2365-2409. https://doi.org/10.1002/9781119143802.ch107
    31. José Diogo Santos, Inês Vitorino, Fernando Reyes, Francisca Vicente, Olga Maria Lage. From Ocean to Medicine: Pharmaceutical Applications of Metabolites from Marine Bacteria. Antibiotics 2020, 9 (8) , 455. https://doi.org/10.3390/antibiotics9080455
    32. Christian Schlawis, Tim Harig, Stephanie Ehlers, Dulce G. Guillen‐Matus, Kaitlin E. Creamer, Paul R. Jensen, Stefan Schulz. Extending the Salinilactone Family. ChemBioChem 2020, 21 (11) , 1629-1632. https://doi.org/10.1002/cbic.201900764
    33. Gyana Prakash Mahapatra, Surabhi Raman, Suman Nayak, Sushanto Gouda, Gitishree Das, Jayanta Kumar Patra. Metagenomics Approaches in Discovery and Development of New Bioactive Compounds from Marine Actinomycetes. Current Microbiology 2020, 77 (4) , 645-656. https://doi.org/10.1007/s00284-019-01698-5
    34. Raúl G. Saraiva, George Dimopoulos. Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Natural Product Reports 2020, 37 (3) , 338-354. https://doi.org/10.1039/C9NP00042A
    35. Justus Amuche Nweze, Florence N. Mbaoji, Gang Huang, Yanming Li, Liyan Yang, Yunkai Zhang, Shushi Huang, Lixia Pan, Dengfeng Yang. Antibiotics Development and the Potentials of Marine-Derived Compounds to Stem the Tide of Multidrug-Resistant Pathogenic Bacteria, Fungi, and Protozoa. Marine Drugs 2020, 18 (3) , 145. https://doi.org/10.3390/md18030145
    36. Euna Yoo, Christopher J. Schulze, Barbara H. Stokes, Ouma Onguka, Tomas Yeo, Sachel Mok, Nina F. Gnädig, Yani Zhou, Kenji Kurita, Ian T. Foe, Stephanie M. Terrell, Michael J. Boucher, Piotr Cieplak, Krittikorn Kumpornsin, Marcus C.S. Lee, Roger G. Linington, Jonathan Z. Long, Anne-Catrin Uhlemann, Eranthie Weerapana, David A. Fidock, Matthew Bogyo. The Antimalarial Natural Product Salinipostin A Identifies Essential α/β Serine Hydrolases Involved in Lipid Metabolism in P. falciparum Parasites. Cell Chemical Biology 2020, 27 (2) , 143-157.e5. https://doi.org/10.1016/j.chembiol.2020.01.001
    37. Daniel Lucy, Leran Zhang, Edward W. Tate. A Natural Product Puts Malaria on a Low-Fat Diet. Cell Chemical Biology 2020, 27 (2) , 137-139. https://doi.org/10.1016/j.chembiol.2020.02.001
    38. Chengfang Yang, Rui Qian, Yao Xu, Junxi Yi, Yiwen Gu, Xiaoyu Liu, Haobing Yu, Binghua Jiao, Xiaoling Lu, Wei Zhang. Marine Actinomycetes-derived Natural Products. Current Topics in Medicinal Chemistry 2020, 19 (31) , 2868-2918. https://doi.org/10.2174/1568026619666191114102359
    39. Soumya Nair, Jayanthi Abraham. Natural Products from Actinobacteria for Drug Discovery. 2020, 333-363. https://doi.org/10.1007/978-981-15-2195-9_23
    40. Nasir Tajuddeen, Fanie R. Van Heerden. Antiplasmodial natural products: an update. Malaria Journal 2019, 18 (1) https://doi.org/10.1186/s12936-019-3026-1
    41. Hironori Okamura, Takanobu Fujioka, Naoki Mori, Tohru Taniguchi, Kenji Monde, Hidenori Watanabe, Hirosato Takikawa. First enantioselective synthesis of salinipostin A, a marine cyclic enol-phosphotriester isolated from Salinispora sp. Tetrahedron Letters 2019, 60 (32) , 150917. https://doi.org/10.1016/j.tetlet.2019.07.008
    42. Christopher D. Spilling. The Chemistry and Biology of Cyclophostin, the Cyclipostins and Related Compounds. Molecules 2019, 24 (14) , 2579. https://doi.org/10.3390/molecules24142579
    43. Subramani, Sipkema. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Marine Drugs 2019, 17 (5) , 249. https://doi.org/10.3390/md17050249
    44. José D. Santos, Inês Vitorino, Mercedes De la Cruz, Caridad Díaz, Bastien Cautain, Frederick Annang, Guiomar Pérez-Moreno, Ignacio Gonzalez Martinez, Jose R. Tormo, Jesús M. Martín, Ralph Urbatzka, Francisca M. Vicente, Olga M. Lage. Bioactivities and Extract Dereplication of Actinomycetales Isolated From Marine Sponges. Frontiers in Microbiology 2019, 10 https://doi.org/10.3389/fmicb.2019.00727
    45. Jean Fotie. Marine natural products as strategic prototypes in the development of a new generation of antimalarial agents. 2019, 7-47. https://doi.org/10.1016/B978-0-12-815723-7.00002-X
    46. Christian Schlawis, Simone Kern, Yuta Kudo, Jörg Grunenberg, Bradley S. Moore, Stefan Schulz. Structural Elucidation of Trace Components Combining GC/MS, GC/IR, DFT‐Calculation and Synthesis—Salinilactones, Unprecedented Bicyclic Lactones from Salinispora Bacteria. Angewandte Chemie International Edition 2018, 57 (45) , 14921-14925. https://doi.org/10.1002/anie.201807923
    47. Christian Schlawis, Simone Kern, Yuta Kudo, Jörg Grunenberg, Bradley S. Moore, Stefan Schulz. Strukturaufklärung von Spurenkomponenten durch Kombination von GC/MS, GC/IR, DFT‐Simulationen und Synthese – Salinilactone, neuartige bicyclische Lactone aus Salinispora Bakterien. Angewandte Chemie 2018, 130 (45) , 15137-15141. https://doi.org/10.1002/ange.201807923
    48. Mingliang Zhao, Xianfeng Wei, Xuemeng Liu, Xueyang Dong, Rilei Yu, Shengbiao Wan, Tao Jiang. Total Synthesis of Marine Cyclic Enol-Phosphotriester Salinipostin Compounds. Journal of Ocean University of China 2018, 17 (3) , 683-689. https://doi.org/10.1007/s11802-018-3540-8
    49. Elena Ancheeva, Mona El-Neketi, Georgios Daletos, Weaam Ebrahim, Weiguo Song, Wenhan Lin, Peter Proksch. Anti-infective Compounds from Marine Organisms. 2018, 97-155. https://doi.org/10.1007/978-3-319-69075-9_3
    50. Gregory C. A. Amos, Takayoshi Awakawa, Robert N. Tuttle, Anne-Catrin Letzel, Min Cheol Kim, Yuta Kudo, William Fenical, Bradley S. Moore, Paul R. Jensen. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proceedings of the National Academy of Sciences 2017, 114 (52) https://doi.org/10.1073/pnas.1714381115
    51. Anne‐Catrin Letzel, Jing Li, Gregory C.A. Amos, Natalie Millán‐Aguiñaga, Joape Ginigini, Usama R. Abdelmohsen, Susana P. Gaudêncio, Nadine Ziemert, Bradley S. Moore, Paul R. Jensen. Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environmental Microbiology 2017, 19 (9) , 3660-3673. https://doi.org/10.1111/1462-2920.13867
    52. Dipesh Dhakal, Anaya Raj Pokhrel, Biplav Shrestha, Jae Kyung Sohng. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Frontiers in Microbiology 2017, 8 https://doi.org/10.3389/fmicb.2017.01106
    53. Usama Ramadan Abdelmohsen, Srikkanth Balasubramanian, Tobias A Oelschlaeger, Tanja Grkovic, Ngoc B Pham, Ronald J Quinn, Ute Hentschel. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. The Lancet Infectious Diseases 2017, 17 (2) , e30-e41. https://doi.org/10.1016/S1473-3099(16)30323-1
    54. John W. Blunt, Brent R. Copp, Robert A. Keyzers, Murray H. G. Munro, Michèle R. Prinsep. Marine natural products. Natural Product Reports 2017, 34 (3) , 235-294. https://doi.org/10.1039/C6NP00124F
    55. Dietrich E. Lorke, Anka Stegmeier‐Petroianu, Georg A. Petroianu. Biologic activity of cyclic and caged phosphates: a review. Journal of Applied Toxicology 2017, 37 (1) , 13-22. https://doi.org/10.1002/jat.3369
    56. Mathieu Dutartre, Jérôme Bayardon, Sylvain Jugé. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chemical Society Reviews 2016, 45 (20) , 5771-5794. https://doi.org/10.1039/C6CS00031B
    57. Robert A. Hill, Andrew Sutherland. Hot off the press. Natural Product Reports 2015, 32 (4) , 512-516. https://doi.org/10.1039/C5NP90013A

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect