ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Rigid Duplex α-Cyclodextrin Reversibly Connected With Disulfide Bonds. Synthesis and Inclusion Complexes

View Author Information
Institute of Organic Chemistry and Biochemistry AS CR, v.v.i. Flemingovo nám. 2, 166 10 Praha 6, Czech Republic, and Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 40 Praha 2, Czech Republic
†IOCB AS CR.
‡Charles University.
Cite this: J. Org. Chem. 2009, 74, 3, 1082–1092
Publication Date (Web):December 29, 2008
https://doi.org/10.1021/jo802139s
Copyright © 2008 American Chemical Society

    Article Views

    2200

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    The rigid duplex cyclodextrin 6 composed of two α-cyclodextrin macrocycles connected with two disulfide bonds in “transannular” (C6I, C6IV) positions was prepared from partially debenzylated α-cyclodextrin 1 in four steps in 73% overall yield. In the last key step involving oxidative coupling of the thiol 5, predominance of the target duplex 6 can be attained under conditions of thermodynamic control. The structure of duplex cyclodextrin was established by MS as well as 2-D NMR methods and confirmed by a single-crystal X-ray analysis. The ability of the duplex cyclodextrin 6 to bind α,ω-alkanediols (C9−C14) and 1-alkanols (C9 and C10) was studied by isothermal titration calorimetry in aqueous solutions. The stability constants of the complexes gradually increase with the alkyl chain length and reach an unprecedently high value of K = 8.6 × 109 M−1 for 1,14-tetradecanediol. It was found that the doubly bridged dimer 6 exhibits higher binding affinity toward the series of α,ω-alkanediols than the singly bridged analogue 10 by about 2 orders of magnitude in K (M−1) or 3.1−3.3 kcal/mol in Δ, the enhancement being due to enthalpic factors. Theoretical calculations using DFT-D methods suggest that the enthalpic contribution stems from dispersion interactions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    General experimental methods, Tables of 1H and 13C NMR chemical shifts, copies of 1H and 13C NMR spectra, details for the determination of association constants of inclusion complexes by ITC including copies of selected thermograms, X-ray experimental data, and details of computational procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 38 publications.

    1. Min Hee Lee, Zhigang Yang, Choon Woo Lim, Yun Hak Lee, Sun Dongbang, Chulhun Kang, and Jong Seung Kim . Disulfide-Cleavage-Triggered Chemosensors and Their Biological Applications. Chemical Reviews 2013, 113 (7) , 5071-5109. https://doi.org/10.1021/cr300358b
    2. Aixia Wang, Wenling Li, Ping Zhang, and Chang-Chun Ling . Synthesis of a Novel Class of Cyclodextrin-Based Nanotubes. Organic Letters 2011, 13 (14) , 3572-3575. https://doi.org/10.1021/ol201065u
    3. Linlin Shi, Wen Zhao, Zhihui Jiu, Jingjing Guo, Qiuhui Zhu, Yonghui Sun, Bo Zhu, Junbiao Chang, Pengyang Xin. Redox‐Regulated Synthetic Channels: Enabling Reversible Ion Transport by Modulating the Ion‐Permeation Pathway. Angewandte Chemie 2024, 136 (20) https://doi.org/10.1002/ange.202403667
    4. Linlin Shi, Wen Zhao, Zhihui Jiu, Jingjing Guo, Qiuhui Zhu, Yonghui Sun, Bo Zhu, Junbiao Chang, Pengyang Xin. Redox‐Regulated Synthetic Channels: Enabling Reversible Ion Transport by Modulating the Ion‐Permeation Pathway. Angewandte Chemie International Edition 2024, 63 (20) https://doi.org/10.1002/anie.202403667
    5. Arturo Llamosí, Marek P. Szymański, Agnieszka Szumna. Molecular vessels from preorganised natural building blocks. Chemical Society Reviews 2024, 53 (9) , 4434-4462. https://doi.org/10.1039/D3CS00801K
    6. Gergely Kali, Soheil Haddadzadegan, Andreas Bernkop-Schnürch. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydrate Polymers 2024, 324 , 121500. https://doi.org/10.1016/j.carbpol.2023.121500
    7. Modhusudan Mondal, Shatarupa Basak, Salim Ali, Debadrita Roy, Md Salman Haydar, Kushankur Sarkar, Narendra Nath Ghosh, Kanak Roy, Mahendra Nath Roy. Assembled Bisphenol A with cyclic oligosaccharide as the controlled release complex to reduce risky effects. Environmental Science and Pollution Research 2023, 30 (15) , 43300-43319. https://doi.org/10.1007/s11356-023-25217-z
    8. Petr Kasal, Jindřich Jindřich. Mono-6-Substituted Cyclodextrins—Synthesis and Applications. Molecules 2021, 26 (16) , 5065. https://doi.org/10.3390/molecules26165065
    9. Jiang Liu, Bo Wang, Cédric Przybylski, Olivia Bistri‐Aslanoff, Mickaël Ménand, Yongmin Zhang, Matthieu Sollogoub. Programmed Synthesis of Hepta‐Differentiated β‐Cyclodextrin: 1 out of 117655 Arrangements. Angewandte Chemie 2021, 133 (21) , 12197-12203. https://doi.org/10.1002/ange.202102182
    10. Jiang Liu, Bo Wang, Cédric Przybylski, Olivia Bistri‐Aslanoff, Mickaël Ménand, Yongmin Zhang, Matthieu Sollogoub. Programmed Synthesis of Hepta‐Differentiated β‐Cyclodextrin: 1 out of 117655 Arrangements. Angewandte Chemie International Edition 2021, 60 (21) , 12090-12096. https://doi.org/10.1002/anie.202102182
    11. Jian Chen, Hui Liu, Xiufang Li, Jianbing Li, Rongdi Tang, Zhiwei Deng, Yanjing Yang, Shian Zhong. Dually acid- and GSH-triggered bis(β-cyclodextrin) as drugs delivery nanoplatform for effective anticancer monotherapy. Nanotechnology 2021, 32 (14) , 145714. https://doi.org/10.1088/1361-6528/abd7b1
    12. Wenya He, Xiaoyan Ren, Zhiqiang Yan, Jin Wang, Lehui Lu. Porous β-cyclodextrin nanotubular assemblies enable high-efficiency removal of bisphenol micropollutants from aquatic systems. Nano Research 2020, 13 (7) , 1933-1942. https://doi.org/10.1007/s12274-020-2758-0
    13. Yi Yi. Multiarm star polymers based on thiol–ene photoclick cyclodextrin cores. Polymer Chemistry 2020, 11 (3) , 659-663. https://doi.org/10.1039/C9PY01338E
    14. Iveta Chena Tichá, Simona Hybelbauerová, Jindřich Jindřich. New α- and β-cyclodextrin derivatives with cinchona alkaloids used in asymmetric organocatalytic reactions. Beilstein Journal of Organic Chemistry 2019, 15 , 830-839. https://doi.org/10.3762/bjoc.15.80
    15. Iveta Tichá, Gábor Benkovics, Milo Malanga, Jindřich Jindřich. Enhanced single-isomer separation and pseudoenantiomer resolution of new primary rim heterobifunctionalized α-cyclodextrin derivatives. Beilstein Journal of Organic Chemistry 2018, 14 , 2829-2837. https://doi.org/10.3762/bjoc.14.261
    16. Frédérique Brégier, Oldřích Hudeček, Fanny Chaux, Marie‐José Penouilh, Jean‐Claude Chambron, Pavel Lhoták, Emmanuel Aubert, Enrique Espinosa. Generation of Cryptophanes in Water by Disulfide Bridge Formation. European Journal of Organic Chemistry 2017, 2017 (26) , 3795-3811. https://doi.org/10.1002/ejoc.201700537
    17. Ameneh Tatar, Anastasia Grishina, Miloš Buděšínský, Tomáš Kraus. Per-2,3- O -alkylated β -cyclodextrin duplexes connected with disulfide bonds. Supramolecular Chemistry 2017, 29 (1) , 40-48. https://doi.org/10.1080/10610278.2016.1164860
    18. Yi‐Meng Yang, Hai‐Zhu Yu, Xiao‐Hui Sun, Zhi‐Min Dang. Density functional theory calculations on S―S bond dissociation energies of disulfides. Journal of Physical Organic Chemistry 2016, 29 (1) , 6-13. https://doi.org/10.1002/poc.3480
    19. Marianna Gregova Trencanova, Eduard Jane, Vojtech Szocs, Sona Halaszova, Monika Jerigova, Ludovit Haizer, Dusan Velic. Fluorescence Dynamics of Monocyclodextrin– and Bis(thiol‐cyclodextrin)–Coumarin C153 Complexes. ChemPhysChem 2015, 16 (11) , 2466-2473. https://doi.org/10.1002/cphc.201500119
    20. Rares Stiufiuc, Cristian Iacovita, Gabriela Stiufiuc, Ede Bodoki, Vasile Chis, Constantin M. Lucaciu. Surface mediated chiral interactions between cyclodextrins and propranolol enantiomers: a SERS and DFT study. Physical Chemistry Chemical Physics 2015, 17 (2) , 1281-1289. https://doi.org/10.1039/C4CP03413A
    21. Sergey Volkov, Lukáš Kumprecht, Miloš Buděšínský, Martin Lepšík, Michal Dušek, Tomáš Kraus. A γ-cyclodextrin duplex connected with two disulfide bonds: synthesis, structure and inclusion complexes. Organic & Biomolecular Chemistry 2015, 13 (10) , 2980-2985. https://doi.org/10.1039/C4OB02464H
    22. Yara Ruiz García, Jan Zelenka, Y. Vladimir Pabon, Abhishek Iyer, Miloš Buděšínský, Tomáš Kraus, C. I. Edvard Smith, Annemieke Madder. Cyclodextrin–peptide conjugates for sequence specific DNA binding. Organic & Biomolecular Chemistry 2015, 13 (18) , 5273-5278. https://doi.org/10.1039/C5OB00609K
    23. Jaeyeon Shin, Kyungsoo Paek. The Facile Synthesis of a Carceplex with Four Disulfide Bridges. Bulletin of the Korean Chemical Society 2014, 35 (7) , 2205-2206. https://doi.org/10.5012/bkcs.2014.35.7.2205
    24. Elena Badea, Bożenna Nowicka, Giuseppe Della Gatta. Thermodynamics of fusion and sublimation for a homologous series of eleven alkane-α,ω-diols HO-(CH2)n-OH: Structure-related odd–even effect. The Journal of Chemical Thermodynamics 2014, 68 , 90-97. https://doi.org/10.1016/j.jct.2013.08.019
    25. Andreas Herrmann. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem. Soc. Rev. 2014, 43 (6) , 1899-1933. https://doi.org/10.1039/C3CS60336A
    26. Frédérique Brégier, Juliette Lavalle, Jean‐Claude Chambron. Capping α‐Cyclodextrin with Cyclotriveratrylene by Triple Disulfide‐Bridge Formation. European Journal of Organic Chemistry 2013, 2013 (13) , 2666-2671. https://doi.org/10.1002/ejoc.201201729
    27. Anastasia Grishina, Stancho Stanchev, Lukáš Kumprecht, Miloš Buděšínský, Michaela Pojarová, Michal Dušek, Michaela Rumlová, Ivana Křížová, Lubomír Rulíšek, Tomáš Kraus. β‐Cyclodextrin Duplexes That Are Connected through Two Disulfide Bonds: Potent Hosts for the Complexation of Organic Molecules. Chemistry – A European Journal 2012, 18 (39) , 12292-12304. https://doi.org/10.1002/chem.201201239
    28. Wayne Lo, Thomas A. Scott, Ping Zhang, Chang-Chun Ling, R.H. Holm. Stabilities of cubane type [Fe4S4(SR)4]2− clusters in partially aqueous media. Journal of Inorganic Biochemistry 2011, 105 (4) , 497-508. https://doi.org/10.1016/j.jinorgbio.2010.12.009
    29. Robert J. Falconer, Brett M. Collins. Survey of the year 2009: applications of isothermal titration calorimetry. Journal of Molecular Recognition 2011, 24 (1) , 1-16. https://doi.org/10.1002/jmr.1073
    30. Viktor Mojr, Miloš Buděšínský, Radek Cibulka, Tomáš Kraus. Alloxazine–cyclodextrin conjugates for organocatalytic enantioselective sulfoxidations. Organic & Biomolecular Chemistry 2011, 9 (21) , 7318. https://doi.org/10.1039/c1ob05934c
    31. Lin Hong Zhu, Le Xin Song, Xue Qing Guo, Zheng Dang. Comparison in thermal behaviors of homologues, derivatives and adducts of β-cyclodextrin. Thermochimica Acta 2010, 507-508 , 77-83. https://doi.org/10.1016/j.tca.2010.04.031
    32. Elena Zaborova, Yves Blériot, Matthieu Sollogoub. μ-Waves avoid large excesses of diisobutylaluminium-hydride (DIBAL-H) in the debenzylation of perbenzylated α-cyclodextrin. Tetrahedron Letters 2010, 51 (9) , 1254-1256. https://doi.org/10.1016/j.tetlet.2009.12.037
    33. Petr Maloň, Lucie Bednárová, Michal Straka, Lucie Krejčí, Lukáš Kumprecht, Tomáš Kraus, Markéta Kubáňová, Vladimír Baumruk. Disulfide chromophore and its optical activity. Chirality 2010, 22 (1E) https://doi.org/10.1002/chir.20851
    34. Thomas Lecourt, Yves Blériot, Rachel Auzély-Velty, Matthieu Sollogoub. Cyclodextrin tetraplexes: first syntheses and potential as cross-linking agent. Chemical Communications 2010, 46 (13) , 2238. https://doi.org/10.1039/b921567k
    35. Olivia Bistri-Aslanoff, Yves Blériot, Rachel Auzely-Velty, Matthieu Sollogoub. Duplex of capped-cyclodextrins, synthesis and cross-linking behaviour with a biopolymer. Organic & Biomolecular Chemistry 2010, 8 (15) , 3437. https://doi.org/10.1039/c001531h
    36. Lukáš Kumprecht, Miloš Buděšínský, Petr Bouř, Tomáš Kraus. α-Cyclodextrins reversibly capped with disulfide bonds. New Journal of Chemistry 2010, 34 (10) , 2254. https://doi.org/10.1039/c0nj00126k
    37. Vincent J. Smith, Natalia M. Rougier, Rita H. de Rossi, Mino R. Caira, Elba I. Buján, Mariana A. Fernández, Susan A. Bourne. Investigation of the inclusion of the herbicide metobromuron in native cyclodextrins by powder X-ray diffraction and isothermal titration calorimetry. Carbohydrate Research 2009, 344 (17) , 2388-2393. https://doi.org/10.1016/j.carres.2009.08.036
    38. Lucie Krejčí, Miloš Buděšínský, Ivana Císařová, Tomáš Kraus. Tubular duplex α-cyclodextrin triply bridged with disulfide bonds: synthesis, crystal structure and inclusion complexes. Chemical Communications 2009, 40 (24) , 3557. https://doi.org/10.1039/b904933a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect