ACS Publications. Most Trusted. Most Cited. Most Read
Exploring Single-File Diffusion in One-Dimensional Nanochannels by Laser-Polarized 129Xe NMR Spectroscopy
My Activity

Figure 1Loading Img
    Article

    Exploring Single-File Diffusion in One-Dimensional Nanochannels by Laser-Polarized 129Xe NMR Spectroscopy
    Click to copy article linkArticle link copied!

    View Author Information
    Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, Materials Science Department, University of Milano-Bicocca, Via Cozzi 53, I - 20125, Italy, and Institut de Recherches sur la Catalyse - CNRS, 2 avenue Albert Einstein, F - 69626 Villeurbanne CEDEX, France
    Other Access Options

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2000, 104, 50, 11665–11670
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp002322v
    Published November 23, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Single-file diffusion behavior is expected for atoms and molecules in one-dimensional gas phases of nanochannels with transverse dimensions that do not allow for the particles to bypass each other. Although single-file diffusion may play an important role in a wide range of industrial catalytic, geologic, and biological processes, experimental evidence is scarce despite the fact that the dynamics differ substantially from ordinary diffusion. We demonstrate the application of continuous-flow laser-polarized 129Xe NMR spectroscopy for the study of gas transport into the effectively one-dimensional channels of a microporous material. The novel methodology makes it possible to monitor diffusion over a time scale of tens of seconds, often inaccessible by conventional NMR experiments. The technique can also be applied to systems with very small mobility factors or diffusion constants that are difficult to determine by currently available methods for diffusion measurement. Experiments using xenon in nanochannel systems can distinguish between unidirectional diffusion and single-file diffusion. The experimental observations indicate that single-file behavior for xenon in an organic nanochannel is persistent even at long diffusion times of over tens of seconds. Finally, using continuous-flow laser-polarized 129Xe NMR spectroscopy, we describe an intriguing correlation between the observed NMR line shape of xenon within the nanochannels and the gas transport into these channels.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Lawrence Berkeley National Laboratory and University of California at Berkeley.

     Permanent address:  Department of Chemistry, Colorado State University, Fort Collins, CO 80235. E-mail:  [email protected].

    §

     University of Milano-Bicocca.

     Institut de Recherches sur la Catalyse.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 125 publications.

    1. Charl Xavier Bezuidenhout, Jacopo Perego, Sergio Piva, Armando Rigamonti, Piero Sozzani, Angelo Monguzzi, Silvia Bracco, Angiolina Comotti. Heteroligand Zr-MOFs Explored by Xenon: Active Site Recognition by Synchrotron PXRD, Hyperpolarization NMR, and GCMC Simulations. Crystal Growth & Design 2024, 24 (18) , 7712-7719. https://doi.org/10.1021/acs.cgd.4c01054
    2. Franca Castiglione, Giacomo Saielli, Michele Mauri, Roberto Simonutti, Andrea Mele. Xenon Dynamics in Ionic Liquids: A Combined NMR and MD Simulation Study. The Journal of Physical Chemistry B 2020, 124 (30) , 6617-6627. https://doi.org/10.1021/acs.jpcb.0c03357
    3. Tobias W. Kemnitzer, Carsten B. L. Tschense, Thomas Wittmann, Ernst A. Rössler, Jürgen Senker. Exploring Local Disorder within CAU-1 Frameworks Using Hyperpolarized 129Xe NMR Spectroscopy. Langmuir 2018, 34 (42) , 12538-12548. https://doi.org/10.1021/acs.langmuir.8b02592
    4. Preecha Kittikhunnatham, Bozumeh Som, Vitaly Rassolov, Matthias Stolte, Frank Würthner, Linda S. Shimizu, and Andrew B. Greytak . Fluorescence Polarization Measurements to Probe Alignment of a Bithiophene Dye in One-Dimensional Channels of Self-Assembled Phenylethynylene Bis-Urea Macrocycle Crystals. The Journal of Physical Chemistry C 2017, 121 (33) , 18102-18109. https://doi.org/10.1021/acs.jpcc.7b07136
    5. Andrés García and James W. Evans . Boundary Conditions for Diffusion-Mediated Processes within Linear Nanopores: Exact Treatment of Coupling to an Equilibrated External Fluid. The Journal of Physical Chemistry C 2017, 121 (16) , 8873-8888. https://doi.org/10.1021/acs.jpcc.7b01273
    6. Clifford R. Bowers, Muslim Dvoyashkin, Sahan R. Salpage, Christopher Akel, Hrishi Bhase, Michael F. Geer, and Linda S. Shimizu . Crystalline Bis-urea Nanochannel Architectures Tailored for Single-File Diffusion Studies. ACS Nano 2015, 9 (6) , 6343-6353. https://doi.org/10.1021/acsnano.5b01895
    7. Moien Alizadehgiashi and John M. Shaw . Fickian and Non-Fickian Diffusion in Heavy Oil + Light Hydrocarbon Mixtures. Energy & Fuels 2015, 29 (4) , 2177-2189. https://doi.org/10.1021/ef502699c
    8. Kirill V. Kovtunov, Milton L. Truong, Danila A. Barskiy, Oleg G. Salnikov, Valery I. Bukhtiyarov, Aaron M. Coffey, Kevin W. Waddell, Igor V. Koptyug, and Eduard Y. Chekmenev . Propane-d6 Heterogeneously Hyperpolarized by Parahydrogen. The Journal of Physical Chemistry C 2014, 118 (48) , 28234-28243. https://doi.org/10.1021/jp508719n
    9. Wenchang Xiao, Chunhua Hu, and Michael D. Ward . Guest Exchange through Single Crystal–Single Crystal Transformations in a Flexible Hydrogen-Bonded Framework. Journal of the American Chemical Society 2014, 136 (40) , 14200-14206. https://doi.org/10.1021/ja507689m
    10. Panayiotis Nikolaou, Aaron M. Coffey, Kaili Ranta, Laura L. Walkup, Brogan M. Gust, Michael J. Barlow, Matthew S. Rosen, Boyd M. Goodson, and Eduard Y. Chekmenev . Multidimensional Mapping of Spin-Exchange Optical Pumping in Clinical-Scale Batch-Mode 129Xe Hyperpolarizers. The Journal of Physical Chemistry B 2014, 118 (18) , 4809-4816. https://doi.org/10.1021/jp501493k
    11. Muslim Dvoyashkin, Hrishi Bhase, Navid Mirnazari, Sergey Vasenkov, and Clifford R. Bowers . Single-File Nanochannel Persistence Lengths from NMR. Analytical Chemistry 2014, 86 (4) , 2200-2204. https://doi.org/10.1021/ac403868t
    12. Muslim Dvoyashkin, Aiping Wang, Sergey Vasenkov, and Clifford R. Bowers . Xenon in l-Alanyl-l-Valine Nanochannels: A Highly Ideal Molecular Single-File System. The Journal of Physical Chemistry Letters 2013, 4 (19) , 3263-3267. https://doi.org/10.1021/jz4016712
    13. Franca Castiglione, Roberto Simonutti, Michele Mauri, and Andrea Mele . Cage-Like Local Structure of Ionic Liquids Revealed by a 129Xe Chemical Shift. The Journal of Physical Chemistry Letters 2013, 4 (10) , 1608-1612. https://doi.org/10.1021/jz400617v
    14. Caroline D. Keenan, Markus M. Herling, Renée Siegel, Nikolaus Petzold, Clifford R. Bowers, Ernst A. Rössler, Josef Breu, and Jürgen Senker . Porosity of Pillared Clays Studied by Hyperpolarized 129Xe NMR Spectroscopy and Xe Adsorption Isotherms. Langmuir 2013, 29 (2) , 643-652. https://doi.org/10.1021/la304502r
    15. Lukáš Kobr, Ke Zhao, Yongqiang Shen, Angiolina Comotti, Silvia Bracco, Richard K. Shoemaker, Piero Sozzani, Noel A. Clark, John C. Price, Charles T. Rogers, and Josef Michl . Inclusion Compound Based Approach to Arrays of Artificial Dipolar Molecular Rotors. A Surface Inclusion. Journal of the American Chemical Society 2012, 134 (24) , 10122-10131. https://doi.org/10.1021/ja302173y
    16. Silvia Bracco, Angiolina Comotti, Lisa Ferretti, and Piero Sozzani . Supramolecular Aggregation of Block Copolymers in the Solid State As Assisted by the Selective Formation of Inclusion Crystals. Journal of the American Chemical Society 2011, 133 (23) , 8982-8994. https://doi.org/10.1021/ja201551n
    17. Chi-Yuan Cheng, Theocharis C. Stamatatos, George Christou and Clifford R. Bowers. Molecular Wheels as Nanoporous Materials: Differing Modes of Gas Diffusion through Ga10 and Ga18 Wheels Probed by Hyperpolarized 129Xe NMR Spectroscopy. Journal of the American Chemical Society 2010, 132 (15) , 5387-5393. https://doi.org/10.1021/ja908327w
    18. Shutao Xu, Weiping Zhang, Xianchun Liu, Xiuwen Han and Xinhe Bao . Enhanced In situ Continuous-Flow MAS NMR for Reaction Kinetics in the Nanocages. Journal of the American Chemical Society 2009, 131 (38) , 13722-13727. https://doi.org/10.1021/ja904304h
    19. Zackary I. Cleveland, Harald E. Möller, Laurence W. Hedlund and Bastiaan Driehuys . Continuously Infusing Hyperpolarized 129Xe into Flowing Aqueous Solutions Using Hydrophobic Gas Exchange Membranes. The Journal of Physical Chemistry B 2009, 113 (37) , 12489-12499. https://doi.org/10.1021/jp9049582
    20. Godefroid Gahungu, Jingping Zhang, Bin Zhang and Theophile Ndikumana . Modulation of Tris(o-phenylenedioxy)cyclotrisphosphazene (TPP) Properties for Zeolite Use: Effect of π-Conjugation Length and CH/N Heterosubstitution. The Journal of Physical Chemistry A 2009, 113 (1) , 246-254. https://doi.org/10.1021/jp804185r
    21. Yong Liu, Weiping Zhang, Zhicheng Liu, Shutao Xu, Yangdong Wang, Zaiku Xie, Xiuwen Han and Xinhe Bao. Direct Observation of the Mesopores in ZSM-5 Zeolites with Hierarchical Porous Structures by Laser-Hyperpolarized 129Xe NMR. The Journal of Physical Chemistry C 2008, 112 (39) , 15375-15381. https://doi.org/10.1021/jp802813x
    22. Roberto Anedda, Dmitriy V. Soldatov, Igor L. Moudrakovski, Mariano Casu and John A. Ripmeester . A New Approach to Characterizing Sorption in Materials with Flexible Micropores. Chemistry of Materials 2008, 20 (9) , 2908-2920. https://doi.org/10.1021/cm8001805
    23. Abduljelil Iliyas,, Mladen Eić,, M. Hassan Zahedi-Niaki, and, Sergey Vasenkov. Toward Observation of Single-File Diffusion Using the Tracer Zero-Length Column Method. The Journal of Physical Chemistry B 2008, 112 (12) , 3821-3825. https://doi.org/10.1021/jp710314c
    24. Yong Liu,, Weiping Zhang,, Sujuan Xie,, Longya Xu,, Xiuwen Han, and, Xinhe Bao. Probing the Porosity of Cocrystallized MCM-49/ZSM-35 Zeolites by Hyperpolarized 129Xe NMR. The Journal of Physical Chemistry B 2008, 112 (4) , 1226-1231. https://doi.org/10.1021/jp077396m
    25. Godefroid Gahungu,, Bin Zhang, and, Jingping Zhang. Design of Tetrathiafulvalene-Based Phosphazenes Combining a Good Electron-Donor Capacity and Possible Inclusion Adduct Formation (Part II). The Journal of Physical Chemistry C 2007, 111 (12) , 4838-4846. https://doi.org/10.1021/jp067067e
    26. Carlo Cosentino,, Francesco Amato,, Robbie Walczak,, Anthony Boiarski, and, Mauro Ferrari. Dynamic Model of Biomolecular Diffusion through Two-Dimensional Nanochannels. The Journal of Physical Chemistry B 2005, 109 (15) , 7358-7364. https://doi.org/10.1021/jp045478u
    27. Antonio Barbon,, Marco Bortolus,, Marina Brustolon,, Angiolina Comotti,, Anna Lisa Maniero,, Ulderico Segre, and, Piero Sozzani. Dynamics of the Triplet State of a Dithiophene in Different Solid Matrixes Studied by Transient and Pulse EPR Techniques. The Journal of Physical Chemistry B 2003, 107 (14) , 3325-3331. https://doi.org/10.1021/jp026214f
    28. Takahiro Ueda,, Taro Eguchi,, Nobuo Nakamura, and, Roderick E. Wasylishen. High-Pressure 129Xe NMR Study of Xenon Confined in the Nanochannels of Solid (±)-[Co(en)3]Cl3. The Journal of Physical Chemistry B 2003, 107 (1) , 180-185. https://doi.org/10.1021/jp021679r
    29. Max Filkins, Arthur Harrison, Guilhem J. Collier, Graham Norquay, Jim M. Wild, Sean P. Rigby, Galina E. Pavlovskaya, Thomas Meersmann. A Standardized MRI Phantom for Dissolved Phase 129Xe MRI.. Journal of Magnetic Resonance Open 2024, 83 , 100175. https://doi.org/10.1016/j.jmro.2024.100175
    30. G. Y. Grigoriev, A. S. Lagutin. Methods for Obtaining Polarized Xenon for Magnetic Resonance Imaging. Review. Technical Physics 2024, 69 (3) , 555-577. https://doi.org/10.1134/S1063784224020154
    31. Matteo Boventi, Michele Mauri, Roberto Simonutti. 129Xe: A Wide-Ranging NMR Probe for Multiscale Structures. Applied Sciences 2022, 12 (6) , 3152. https://doi.org/10.3390/app12063152
    32. Alexis Poncet, Aurélien Grabsch, Pierre Illien, Olivier Bénichou. Generalized Correlation Profiles in Single-File Systems. Physical Review Letters 2021, 127 (22) https://doi.org/10.1103/PhysRevLett.127.220601
    33. Jordan Orchard, Lamberto Rondoni, Carlos Mejía-Monasterio, Federico Frascoli. Diffusion and escape from polygonal channels: extreme values and geometric effects. Journal of Statistical Mechanics: Theory and Experiment 2021, 2021 (7) , 073208. https://doi.org/10.1088/1742-5468/ac0c71
    34. Alexis Poncet, Olivier Bénichou, Pierre Illien. Cumulant generating functions of a tracer in quenched dense symmetric exclusion processes. Physical Review E 2021, 103 (4) https://doi.org/10.1103/PhysRevE.103.L040103
    35. Jörg Kärger, Marija Avramovska, Dieter Freude, Jürgen Haase, Seungtaik Hwang, Rustem Valiullin. Pulsed field gradient NMR diffusion measurement in nanoporous materials. Adsorption 2021, 27 (3) , 453-484. https://doi.org/10.1007/s10450-020-00290-9
    36. Dorothea Wisser, Martin Hartmann. 129 Xe NMR on Porous Materials: Basic Principles and Recent Applications. Advanced Materials Interfaces 2021, 8 (4) https://doi.org/10.1002/admi.202001266
    37. Hirokazu Kobayashi. Inter-spin Interactions of Organic Radical Chains in Organic 1D Nanochannels: An ESR Study of the Molecular Orientations and Dynamics of Guest Radicals. 2020, 423-462. https://doi.org/10.1007/978-981-15-0006-0_12
    38. Theodore W. Burkhardt. Tagged-Particle Statistics in Single-File Motion with Random-Acceleration and Langevin Dynamics. Journal of Statistical Physics 2019, 177 (5) , 806-824. https://doi.org/10.1007/s10955-019-02389-y
    39. Zhenchao Zhao, Xin Li, Shihan Li, Shutao Xu, Xinhe Bao, Yilmaz Bilge, Parvulescu Andrei-Nicolae, Müller Ulrich, Weiping Zhang. Structural investigation of interlayer-expanded zeolite by hyperpolarized 129Xe and 1H NMR spectroscopy. Microporous and Mesoporous Materials 2019, 288 , 109555. https://doi.org/10.1016/j.micromeso.2019.06.017
    40. Alexis Poncet, Olivier Bénichou, Vincent Démery, Gleb Oshanin. Bath-mediated interactions between driven tracers in dense single files. Physical Review Research 2019, 1 (3) https://doi.org/10.1103/PhysRevResearch.1.033089
    41. O Bénichou, P Illien, G Oshanin, A Sarracino, R Voituriez. Tracer diffusion in crowded narrow channels. Journal of Physics: Condensed Matter 2018, 30 (44) , 443001. https://doi.org/10.1088/1361-648X/aae13a
    42. Alexey Zhokh, Peter Strizhak. Non-Fickian Transport in Porous Media: Always Temporally Anomalous?. Transport in Porous Media 2018, 124 (2) , 309-323. https://doi.org/10.1007/s11242-018-1066-6
    43. Ville‐Veikko Telkki. Hyperpolarized L aplace NMR. Magnetic Resonance in Chemistry 2018, 56 (7) , 619-632. https://doi.org/10.1002/mrc.4722
    44. Alexis Poncet, Olivier Bénichou, Vincent Démery, Gleb Oshanin. N -tag probability law of the symmetric exclusion process. Physical Review E 2018, 97 (6) https://doi.org/10.1103/PhysRevE.97.062119
    45. Olivier Bénichou, Vincent Démery, Alexis Poncet. Unbinding Transition of Probes in Single-File Systems. Physical Review Letters 2018, 120 (7) https://doi.org/10.1103/PhysRevLett.120.070601
    46. Irene Bassanetti, Silvia Bracco, Angiolina Comotti, Mattia Negroni, Charl Bezuidenhout, Stefano Canossa, Paolo Pio Mazzeo, Luciano Marchió, Piero Sozzani. Flexible porous molecular materials responsive to CO 2 , CH 4 and Xe stimuli. Journal of Materials Chemistry A 2018, 6 (29) , 14231-14239. https://doi.org/10.1039/C8TA02211A
    47. J Cividini, A Kundu. Tagged particle in single-file diffusion with arbitrary initial conditions. Journal of Statistical Mechanics: Theory and Experiment 2017, 2017 (8) , 083203. https://doi.org/10.1088/1742-5468/aa75de
    48. Danila A. Barskiy, Aaron M. Coffey, Panayiotis Nikolaou, Dmitry M. Mikhaylov, Boyd M. Goodson, Rosa T. Branca, George J. Lu, Mikhail G. Shapiro, Ville‐Veikko Telkki, Vladimir V. Zhivonitko, Igor V. Koptyug, Oleg G. Salnikov, Kirill V. Kovtunov, Valerii I. Bukhtiyarov, Matthew S. Rosen, Michael J. Barlow, Shahideh Safavi, Ian P. Hall, Leif Schröder, Eduard Y. Chekmenev. NMR Hyperpolarization Techniques of Gases. Chemistry – A European Journal 2017, 23 (4) , 725-751. https://doi.org/10.1002/chem.201603884
    49. A. Comotti, S. Bracco, P. Sozzani. Solid-State NMR of Supramolecular Materials. 2017, 75-99. https://doi.org/10.1016/B978-0-12-409547-2.12494-1
    50. Alessandro Taloni, Ophir Flomenbom, Ramón Castañeda-Priego, Fabio Marchesoni. Single file dynamics in soft materials. Soft Matter 2017, 13 (6) , 1096-1106. https://doi.org/10.1039/C6SM02570F
    51. David M. Ackerman, James W. Evans. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics. Physical Review E 2017, 95 (1) https://doi.org/10.1103/PhysRevE.95.012132
    52. A. Kundu, J. Cividini. Exact correlations in a single-file system with a driven tracer. EPL (Europhysics Letters) 2016, 115 (5) , 54003. https://doi.org/10.1209/0295-5075/115/54003
    53. Paul I. Dron, Ke Zhao, Jiří Kaleta, Yongqiang Shen, Jin Wen, Richard K. Shoemaker, Charles T. Rogers, Josef Michl. Bulk Inclusions of Pyridazine‐Based Molecular Rotors in Tris( o ‐phenylenedioxy)cyclotriphosphazene (TPP). Advanced Functional Materials 2016, 26 (31) , 5718-5732. https://doi.org/10.1002/adfm.201600437
    54. J Cividini, A Kundu, Satya N Majumdar, D Mukamel. Correlation and fluctuation in a random average process on an infinite line with a driven tracer. Journal of Statistical Mechanics: Theory and Experiment 2016, 2016 (5) , 053212. https://doi.org/10.1088/1742-5468/2016/05/053212
    55. Clifford R. Bowers, Muslim Dvoyashkin, Sahan R. Salpage, Christopher Akel, Hrishi Bhase, Michael F. Geer, Linda S. Shimizu. Squeezing xenon into phenylether bis -urea nanochannels. Canadian Journal of Chemistry 2015, 93 (9) , 1031-1034. https://doi.org/10.1139/cjc-2015-0152
    56. Olivier Bénichou, Jean Desbois. Occupation times for single-file diffusion. Journal of Statistical Mechanics: Theory and Experiment 2015, 2015 (3) , P03001. https://doi.org/10.1088/1742-5468/2015/03/P03001
    57. Ashwani Kr. Tripathi, Deepak Kumar. Correlations in Single File Diffusion: Open and Closed Systems. Biophysical Reviews and Letters 2014, 09 (04) , 367-379. https://doi.org/10.1142/S1793048014400049
    58. Robin Forsling, Lloyd P. Sanders, Tobias Ambjörnsson, Ludvig Lizana. Non-Markovian effects in the first-passage dynamics of obstructed tracer particle diffusion in one-dimensional systems. The Journal of Chemical Physics 2014, 141 (9) https://doi.org/10.1063/1.4894117
    59. P. L. Krapivsky, Kirone Mallick, Tridib Sadhu. Large Deviations in Single-File Diffusion. Physical Review Letters 2014, 113 (7) https://doi.org/10.1103/PhysRevLett.113.078101
    60. Michael A. Lomholt, Tobias Ambjörnsson. Universality and nonuniversality of mobility in heterogeneous single-file systems and Rouse chains. Physical Review E 2014, 89 (3) https://doi.org/10.1103/PhysRevE.89.032101
    61. Ludvig Lizana, Michael A. Lomholt, Tobias Ambjörnsson. Single-file diffusion with non-thermal initial conditions. Physica A: Statistical Mechanics and its Applications 2014, 395 , 148-153. https://doi.org/10.1016/j.physa.2013.10.025
    62. Ke Zhao, Paul I. Dron, Jiří Kaleta, Charles T. Rogers, Josef Michl. Arrays of Dipolar Molecular Rotors in Tris(o-phenylenedioxy)cyclotriphosphazene. 2014, 163-211. https://doi.org/10.1007/128_2013_513
    63. Kiwoong Kim, Sooho Lee, Ji Ho Ryu, Kwang Soon Lee, Won Bo Lee. An improved CO2 adsorption efficiency for the zeolites impregnated with the amino group: A molecular simulation approach. International Journal of Greenhouse Gas Control 2013, 19 , 350-357. https://doi.org/10.1016/j.ijggc.2013.09.013
    64. M. Dvoyashkin, A. Wang, A. Katihar, J. Zang, G.I. Yucelen, S. Nair, D.S. Sholl, C.R. Bowers, S. Vasenkov. Signatures of normal and anomalous diffusion in nanotube systems by NMR. Microporous and Mesoporous Materials 2013, 178 , 119-122. https://doi.org/10.1016/j.micromeso.2013.02.031
    65. P. Illien, O. Bénichou, C. Mejía-Monasterio, G. Oshanin, R. Voituriez. Active Transport in Dense Diffusive Single-File Systems. Physical Review Letters 2013, 111 (3) https://doi.org/10.1103/PhysRevLett.111.038102
    66. Lukáš Kobr, Ke Zhao, Yongqiang Shen, Richard K. Shoemaker, Charles T. Rogers, Josef Michl. Inclusion Compound Based Approach to Forming Arrays of Artificial Dipolar Molecular Rotors: A Search for Optimal Rotor Structures. Advanced Materials 2013, 25 (3) , 443-448. https://doi.org/10.1002/adma.201203294
    67. Angiolina Comotti, Alberto Fraccarollo, Silvia Bracco, Mario Beretta, Gaetano Distefano, Maurizio Cossi, Leonardo Marchese, Claudia Riccardi, Piero Sozzani. Porous dipeptide crystals as selective CO 2 adsorbents: experimental isotherms vs. grand canonical Monte Carlo simulations and MAS NMR spectroscopy. CrystEngComm 2013, 15 (8) , 1503-1507. https://doi.org/10.1039/C2CE26502H
    68. Muhammad Zaheer, Caroline D. Keenan, Justus Hermannsdörfer, Ernest Roessler, Günter Motz, Jürgen Senker, Rhett Kempe. Robust Microporous Monoliths with Integrated Catalytically Active Metal Sites Investigated by Hyperpolarized 129 Xe NMR. Chemistry of Materials 2012, 24 (20) , 3952-3963. https://doi.org/10.1021/cm302379b
    69. Michele Mauri, Roberto Simonutti. Hyperpolarized Xenon Nuclear Magnetic Resonance (NMR) of Building Stone Materials. Materials 2012, 5 (9) , 1722-1739. https://doi.org/10.3390/ma5091722
    70. . Measurement of Elementary Diffusion Processes. 2012, 303-345. https://doi.org/10.1002/9783527651276.ch10
    71. Weiping Zhang, Shutao Xu, Xiuwen Han, Xinhe Bao. In situsolid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem. Soc. Rev. 2012, 41 (1) , 192-210. https://doi.org/10.1039/C1CS15009J
    72. Vlad Badilita, Robert Ch. Meier, Nils Spengler, Ulrike Wallrabe, Marcel Utz, Jan G. Korvink. Microscale nuclear magnetic resonance: a tool for soft matter research. Soft Matter 2012, 8 (41) , 10583. https://doi.org/10.1039/c2sm26065d
    73. Michael A. Lomholt, Ludvig Lizana, Tobias Ambjörnsson. Dissimilar bouncy walkers. The Journal of Chemical Physics 2011, 134 (4) https://doi.org/10.1063/1.3526941
    74. Lorenzo Meazza, Javier Martí-Rujas, Giancarlo Terraneo, Chiara Castiglioni, Alberto Milani, Tullio Pilati, Pierangelo Metrangolo, Giuseppe Resnati. Solid-state synthesis of mixed trihalides via reversible absorption of dihalogens by non porous onium salts. CrystEngComm 2011, 13 (13) , 4427. https://doi.org/10.1039/c1ce05050h
    75. Hirokazu Kobayashi, Tetsuo Asaji, Atsushi Tani. Preparation and Characterization of New Inclusion Compounds Using Stable Nitroxide Radicals and an Organic 1-D Nanochannel as a Template. Materials 2010, 3 (6) , 3625-3641. https://doi.org/10.3390/ma3063625
    76. Ludvig Lizana, Tobias Ambjörnsson, Alessandro Taloni, Eli Barkai, Michael A. Lomholt. Foundation of fractional Langevin equation: Harmonization of a many-body problem. Physical Review E 2010, 81 (5) https://doi.org/10.1103/PhysRevE.81.051118
    77. Xinliang Xu, Binhua Lin, Bianxiao Cui, Aaron R. Dinner, Stuart A. Rice. Spreading of colloid clusters in a quasi-one-dimensional channel. The Journal of Chemical Physics 2010, 132 (8) https://doi.org/10.1063/1.3330414
    78. Neil B. McKeown. Nanoporous molecular crystals. Journal of Materials Chemistry 2010, 20 (47) , 10588. https://doi.org/10.1039/c0jm01867h
    79. Hirokazu Kobayashi, Takahiro Ueda, Keisuke Miyakubo, Taro Eguchi, Atsushi Tani. Preparation and Characterization of Inclusion Compounds Using TEMPOL and an Organic 1-D Nanochannel as a Template. Molecular Crystals and Liquid Crystals 2009, 506 (1) , 150-167. https://doi.org/10.1080/15421400902987545
    80. . Applications. 2009, 313-368. https://doi.org/10.1017/CBO9780511770487.012
    81. S. Bracco, P. Valsesia, L. Ferretti, P. Sozzani, M. Mauri, A. Comotti. Spectroscopic observations of hybrid interfaces and gas storage in organo-clays. Microporous and Mesoporous Materials 2008, 107 (1-2) , 102-107. https://doi.org/10.1016/j.micromeso.2007.05.013
    82. Hirokazu Kobayashi, Takahiro Ueda, Keisuke Miyakubo, Taro Eguchi, Atsushi Tani. ESR study of molecular dynamics and orientation of TEMPO included in organic 1-D nanochannel. Phys. Chem. Chem. Phys. 2008, 10 (9) , 1263-1269. https://doi.org/10.1039/B710098A
    83. Zackary I. Cleveland, Thomas Meersmann. Studying porous materials with krypton-83 NMR spectroscopy. Magnetic Resonance in Chemistry 2007, 45 (S1) , S12-S23. https://doi.org/10.1002/mrc.2084
    84. Chi-Yuan Cheng, Clifford R. Bowers. Direct Observation of Atoms Entering and Exiting l -Alanyl- l -valine Nanotubes by Hyperpolarized Xenon-129 NMR. Journal of the American Chemical Society 2007, 129 (45) , 13997-14002. https://doi.org/10.1021/ja074563n
    85. Chi‐Yuan Cheng, Clifford R. Bowers. Observation of Single‐File Diffusion in Dipeptide Nanotubes by Continuous‐Flow Hyperpolarized Xenon‐129 NMR Spectroscopy. ChemPhysChem 2007, 8 (14) , 2077-2081. https://doi.org/10.1002/cphc.200700336
    86. Angiolina Comotti, Silvia Bracco, Patrizia Valsesia, Lisa Ferretti, Piero Sozzani. 2D Multinuclear NMR, Hyperpolarized Xenon and Gas Storage in Organosilica Nanochannels with Crystalline Order in the Walls. Journal of the American Chemical Society 2007, 129 (27) , 8566-8576. https://doi.org/10.1021/ja071348y
    87. Kristopher J. Ooms, Roderick E. Wasylishen. 129Xe NMR study of xenon in iso-reticular metal–organic frameworks. Microporous and Mesoporous Materials 2007, 103 (1-3) , 341-351. https://doi.org/10.1016/j.micromeso.2007.01.054
    88. Kittisak Koombua, Ramana M. Pidaparti, Gary C. Tepper. A Drug Delivery System Based on Polymer Nanotubes. 2007, 785-787. https://doi.org/10.1109/NEMS.2007.352134
    89. Takahiro Ueda, Kenji Kurokawa, Taro Eguchi, Chihiro Kachi-Terajima, Satoshi Takamizawa. Local Structure and Xenon Adsorption Behavior of Metal−Organic Framework System [M 2 (O 2 CPh) 4 (pyz)] n (M = Rh and Cu) As Studied with Use of Single-Crystal X-ray Diffraction, Adsorption Isotherm, and Xenon-129 NMR. The Journal of Physical Chemistry C 2007, 111 (3) , 1524-1534. https://doi.org/10.1021/jp065321x
    90. Francesco Amato, Carlo Cosentino, Sabrina Pricl, Marco Ferrone, Maurizio Fermeglia, Mark Ming-Cheng Cheng, Robert Walczak, Mauro Ferrari. Multiscale modeling of protein transport in silicon membrane nanochannels. Part 2. From molecular parameters to a predictive continuum diffusion model. Biomedical Microdevices 2006, 8 (4) , 291-298. https://doi.org/10.1007/s10544-006-0032-1
    91. Roberto Simonutti, Silvia Bracco, Angiolina Comotti, Michele Mauri, Piero Sozzani. Continuous Flow Hyperpolarized 129 Xe NMR for Studying Porous Polymers and Blends. Chemistry of Materials 2006, 18 (19) , 4651-4657. https://doi.org/10.1021/cm060499h
    92. Devin N. Sears, Roderick E. Wasylishen, Takahiro Ueda. Grand Canonical Monte Carlo Simulations of the 129 Xe NMR Line Shapes of Xenon Adsorbed in (±)-[Co(en) 3 ]Cl 3. The Journal of Physical Chemistry B 2006, 110 (23) , 11120-11127. https://doi.org/10.1021/jp061655a
    93. Karl F. Stupic, Zackary I. Cleveland, Galina E. Pavlovskaya, Thomas Meersmann. Quadrupolar relaxation of hyperpolarized krypton-83 as a probe for surfaces. Solid State Nuclear Magnetic Resonance 2006, 29 (1-3) , 79-84. https://doi.org/10.1016/j.ssnmr.2005.08.008
    94. Tejal A. Desai, Sadhana Sharma, Robbie J. Walczak, Anthony Boiarski, Michael Cohen, John Shapiro, Teri West, Kristie Melnik, Carlo Cosentino, Piyush M. Sinha, Mauro Ferrari. Nanoporous Implants for Controlled Drug Delivery. 2006, 263-286. https://doi.org/10.1007/978-0-387-25844-7_15
    95. Daniel Raftery. Xenon NMR Spectroscopy. 2006, 205-270. https://doi.org/10.1016/S0066-4103(05)57005-4
    96. Johanna Becker, Angiolina Comotti, Roberto Simonutti, Piero Sozzani, Kay Saalwächter. Molecular Motion of Isolated Linear Alkanes in Nanochannels. The Journal of Physical Chemistry B 2005, 109 (49) , 23285-23294. https://doi.org/10.1021/jp054795d
    97. J. Kärger, S. Vasenkov. Quantitation of diffusion in zeolite catalysts. Microporous and Mesoporous Materials 2005, 85 (3) , 195-206. https://doi.org/10.1016/j.micromeso.2005.06.020
    98. J. Granwehr, J.T. Urban, A.H. Trabesinger, A. Pines. NMR detection using laser-polarized xenon as a dipolar sensor. Journal of Magnetic Resonance 2005, 176 (2) , 125-139. https://doi.org/10.1016/j.jmr.2005.05.013
    99. Katie Campbell, Kristopher J. Ooms, Roderick E. Wasylishen, Rik R. Tykwinski. Characterization of Porosity in Organic and Metal−Organic Macrocycles by Hyperpolarized 129 Xe NMR Spectroscopy. Organic Letters 2005, 7 (16) , 3397-3400. https://doi.org/10.1021/ol050830n
    100. Song-I Han, Sandra Garcia, Thomas J. Lowery, E. Janette Ruiz, Juliette A. Seeley, Lana Chavez, David S. King, David E. Wemmer, Alexander Pines. NMR-Based Biosensing with Optimized Delivery of Polarized 129 Xe to Solutions. Analytical Chemistry 2005, 77 (13) , 4008-4012. https://doi.org/10.1021/ac0500479
    Load all citations

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2000, 104, 50, 11665–11670
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp002322v
    Published November 23, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    695

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.