ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Excited-State Dynamics in the Enhanced Green Fluorescent Protein Mutant Probed by Picosecond Time-Resolved Single Photon Counting Spectroscopy

View Author Information
Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200 F, 3001 Heverlee, Belgium, Department of Agriculture, Katholieke Universiteit Leuven, Kardinaal Mercierlaan, 3001 Heverlee, Belgium, and Department of Biomolecular Sciences, Wageningen Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
Cite this: J. Phys. Chem. B 2001, 105, 21, 4999–5006
Publication Date (Web):May 5, 2001
https://doi.org/10.1021/jp003813i
Copyright © 2001 American Chemical Society
Article Views
796
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (113 KB)

Abstract

The complex photophysics of the wild-type green fluorescent protein (GFP), one of the most popular fluorescent probes in biology, has been extensively documented in literature. The excited-state dynamics of GFP was explained by means of a model implying excited-state proton transfer (ESPT) and three forms of the chromophore, a protonated A form absorbing at 400 nm and two deprotonated I and B forms absorbing at around 475 nm. We report here a systematic picosecond time-resolved fluorescence study of the enhanced green fluorescent protein (EGFP) variant, carrying the Ser65-Thr and Phe64-Leu mutations. By means of multiple excitation wavelength time-resolved experiments, we were able to distinguish between the fluorescence decay times of the deprotonated I* and B* states (3.4 and 2.7 ns). Spectrally, we found the I form being red shifted in comparison with the B form, both in absorption and in emission. Evidence for an excited-state reaction, namely, proton transfer, is also reported. An additional protonated species is proposed in the photophysical scheme in order to explain the excited-state dynamics of EGFP on the basis of our results as well as previous reported data. Two alternative models are presented, both of them applicable also to the data reported in relation with wild-type GFP.

 Department of Chemistry, Katholieke Universiteit Leuven.

*

 To whom correspondence should be addressed. Fax:  +32(016) 327990. E-mail:  [email protected]

 Department of Agriculture, Katholieke Universiteit Leuven.

§

 Wageningen Agricultural University.

Cited By

This article is cited by 87 publications.

  1. Peter T. A. Linders, Melina Ioannidis, Martin ter Beest, Geert van den Bogaart. Fluorescence Lifetime Imaging of pH along the Secretory Pathway. ACS Chemical Biology 2022, 17 (1) , 240-251. https://doi.org/10.1021/acschembio.1c00907
  2. Juan Pablo Fuenzalida Werner, Yuanhui Huang, Kanuj Mishra, Robert Janowski, Paul Vetschera, Christina Heichler, Andriy Chmyrov, Clemens Neufert, Dierk Niessing, Vasilis Ntziachristos, Andre C. Stiel. Challenging a Preconception: Optoacoustic Spectrum Differs from the Optical Absorption Spectrum of Proteins and Dyes for Molecular Imaging. Analytical Chemistry 2020, 92 (15) , 10717-10724. https://doi.org/10.1021/acs.analchem.0c01902
  3. Marisa Vanheusden, Raffaele Vitale, Rafael Camacho, Kris P. F. Janssen, Aline Acke, Susana Rocha, Johan Hofkens. Fluorescence Photobleaching as an Intrinsic Tool to Quantify the 3D Expansion Factor of Biological Samples in Expansion Microscopy. ACS Omega 2020, 5 (12) , 6792-6799. https://doi.org/10.1021/acsomega.0c00118
  4. Rosana S. Molina, Tam M. Tran, Robert E. Campbell, Gerard G. Lambert, Anya Salih, Nathan C. Shaner, Thomas E. Hughes, and Mikhail Drobizhev . Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation. The Journal of Physical Chemistry Letters 2017, 8 (12) , 2548-2554. https://doi.org/10.1021/acs.jpclett.7b00960
  5. Satoshi Habuchi, Hiroyuki Fujita, Tsuyoshi Michinobu, and Martin Vacha . Twist Angle Plays an Important Role in Photophysical Properties of a Donor–Acceptor-Type Conjugated Polymer: A Combined Ensemble and Single-Molecule Study. The Journal of Physical Chemistry B 2011, 115 (49) , 14404-14415. https://doi.org/10.1021/jp209405k
  6. Natalia P. Malikova, Nina V. Visser, Arie van Hoek, Victor V. Skakun, Eugene S. Vysotski, John Lee, and Antonie J. W. G. Visser . Green-Fluorescent Protein from the Bioluminescent Jellyfish Clytia gregaria Is an Obligate Dimer and Does Not Form a Stable Complex with the Ca2+-Discharged Photoprotein Clytin. Biochemistry 2011, 50 (20) , 4232-4241. https://doi.org/10.1021/bi101671p
  7. Satomi Nakazono, Shanmugam Easwaramoorthi, Dongho Kim, Hiroshi Shinokubo and Atsuhiro Osuka. Synthesis of Arylated Perylene Bisimides through C−H Bond Cleavage under Ruthenium Catalysis. Organic Letters 2009, 11 (23) , 5426-5429. https://doi.org/10.1021/ol902271b
  8. Barbara Storti, Fausto Elisei, Stefania Abbruzzetti, Cristiano Viappiani and Loredana Latterini . One-Pot Synthesis of Gold Nanoshells with High Photon-to-Heat Conversion Efficiency. The Journal of Physical Chemistry C 2009, 113 (18) , 7516-7521. https://doi.org/10.1021/jp810544b
  9. R. Gepshtein, P. Leiderman and Dan Huppert. Origin of the Nonexponential Dynamics of Excited-State Proton Transfer in wt-Green Fluorescent Protein. The Journal of Physical Chemistry B 2008, 112 (24) , 7203-7210. https://doi.org/10.1021/jp711372s
  10. Frank Schleifenbaum, Christian Blum, Kirstin Elgass, Vinod Subramaniam and Alfred J. Meixner. New Insights into the Photophysics of DsRed by Multiparameter Spectroscopy on Single Proteins. The Journal of Physical Chemistry B 2008, 112 (25) , 7669-7674. https://doi.org/10.1021/jp7114753
  11. P. Leiderman,, R. Gepshtein,, I. Tsimberov, and, Dan Huppert. Effect of Temperature on Excited-State Proton Tunneling in wt-Green Fluorescent Protein. The Journal of Physical Chemistry B 2008, 112 (4) , 1232-1239. https://doi.org/10.1021/jp077642u
  12. Isabelle Demachy,, Jacqueline Ridard,, Hélène Laguitton-Pasquier,, Elodie Durnerin,, Germain Vallverdu,, Pierre Archirel, and, Bernard Lévy. Cyan Fluorescent Protein: Molecular Dynamics, Simulations, and Electronic Absorption Spectrum. The Journal of Physical Chemistry B 2005, 109 (50) , 24121-24133. https://doi.org/10.1021/jp054656w
  13. Dan Huppert,, Pavel Leiderman,, Moran Ben-Ziv,, Liat Genosar, and, Lior Cohen. Excitation Wavelength Dependence of the Proton-Transfer Reaction of the Green Fluorescent Protein. The Journal of Physical Chemistry B 2005, 109 (9) , 4241-4251. https://doi.org/10.1021/jp0443153
  14. Samuel T. Hess,, Ahmed A. Heikal, and, Watt W. Webb. Fluorescence Photoconversion Kinetics in Novel Green Fluorescent Protein pH Sensors (pHluorins). The Journal of Physical Chemistry B 2004, 108 (28) , 10138-10148. https://doi.org/10.1021/jp0362077
  15. Pavel Leiderman,, Moran Ben-Ziv,, Liat Genosar,, Dan Huppert,, Kyril M. Solntsev, and, Laren M. Tolbert. Study of the Long-Time Fluorescence Tail of the Green Fluorescent Protein. The Journal of Physical Chemistry B 2004, 108 (23) , 8043-8053. https://doi.org/10.1021/jp037786i
  16. Ellen Clancy, Siva Ramadurai, Sarah R. Needham, Karen Baker, Tara A. Eastwood, Julia A. Weinstein, Daniel P. Mulvihill, Stanley W. Botchway. Fluorescence and phosphorescence lifetime imaging reveals a significant cell nuclear viscosity and refractive index changes upon DNA damage. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-022-26880-x
  17. Ayse Aktalay, Flavien Ponsot, Mariano L. Bossi, Vladimir N. Belov, Stefan W. Hell. Cleavable Linker Incorporation into a Synthetic Dye‐Nanobody‐Fluorescent Protein Assembly: FRET, FLIM and STED Microscopy. ChemBioChem 2022, 23 (18) https://doi.org/10.1002/cbic.202200395
  18. Sandra F.H. Correia, Ana R.N. Bastos, Margarida Martins, Inês P.E. Macário, Telma Veloso, Joana L. Pereira, João A.P. Coutinho, Sónia P.M. Ventura, Paulo S. André, Rute A.S. Ferreira. Bio‐Based Solar Energy Harvesting for Onsite Mobile Optical Temperature Sensing in Smart Cities. Advanced Science 2022, 9 (17) , 2104801. https://doi.org/10.1002/advs.202104801
  19. Shaina Dhamija, Arijit K. De. Elucidating Contributions from Multiple Species during Photoconversion of Enhanced Green Fluorescent Protein (EGFP) under Ultraviolet Illumination. Photochemistry and Photobiology 2021, 97 (5) , 980-990. https://doi.org/10.1111/php.13409
  20. Yurema Teijeiro-Gonzalez, Alessandro Crnjar, Andrew J. Beavil, Rebecca L. Beavil, Jakub Nedbal, Alix Le Marois, Carla Molteni, Klaus Suhling. Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer. Biophysical Journal 2021, 120 (2) , 254-269. https://doi.org/10.1016/j.bpj.2020.11.2275
  21. Carlota P. A. Carlos, Sandra F. H. Correia, Margarida Martins, Oleksandr A. Savchuk, João A. P. Coutinho, Paulo S. André, Jana B. Nieder, Sónia P. M. Ventura, Rute A. S. Ferreira. Environmentally friendly luminescent solar concentrators based on an optically efficient and stable green fluorescent protein. Green Chemistry 2020, 22 (15) , 4943-4951. https://doi.org/10.1039/D0GC01742F
  22. Verónica Fernández-Luna, Juan P. Fernández-Blázquez, Miguel A. Monclús, Francisco Javier Rojo, Rafael Daza, Daniel Sanchez-deAlcazar, Aitziber L. Cortajarena, Rubén D. Costa. Biogenic fluorescent protein–silk fibroin phosphors for high performing light-emitting diodes. Materials Horizons 2020, 7 (7) , 1790-1800. https://doi.org/10.1039/D0MH00503G
  23. Andreia Bento-Oliveira, Filipa C. Santos, Joaquim Trigo Marquês, Pedro M. R. Paulo, Thomas Korte, Andreas Herrmann, H. Susana Marinho, Rodrigo F. M. de Almeida. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules 2020, 10 (6) , 871. https://doi.org/10.3390/biom10060871
  24. Matthew G. Romei, Chi-Yun Lin, Irimpan I. Mathews, Steven G. Boxer. Electrostatic control of photoisomerization pathways in proteins. Science 2020, 367 (6473) , 76-79. https://doi.org/10.1126/science.aax1898
  25. Petr Herman, Aleš Holoubek, Barbora Brodska. Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochimica et Biophysica Acta (BBA) - General Subjects 2019, 1863 (1) , 266-277. https://doi.org/10.1016/j.bbagen.2018.10.016
  26. Joanna M. Zajac, Marcel Schubert, Thomas Roland, Changmin Keum, Ifor D. W. Samuel, Malte C. Gather. Time‐Resolved Studies of Energy Transfer in Thin Films of Green and Red Fluorescent Proteins. Advanced Functional Materials 2018, 28 (24) , 1706300. https://doi.org/10.1002/adfm.201706300
  27. Fasheng Chen, Xinyi Zhao, WanZhen Liang. One- and two-photon absorption spectra of the yellow fluorescent protein citrine: effects of intramolecular electron-vibrational coupling and intermolecular interactions. Molecular Physics 2018, 116 (7-8) , 885-897. https://doi.org/10.1080/00268976.2018.1426130
  28. William Kirk, Thomas Allen, Elena Atanasova, William Wessels, Janet Yao, Franklyn Prendergast. Photophysics of EGFP (E222H) Mutant, with Comparisons to Model Chromophores: Excited State pK’s, Progressions, Quenching and Exciton Interaction. Journal of Fluorescence 2017, 27 (3) , 895-919. https://doi.org/10.1007/s10895-017-2025-2
  29. Christof P. Dietrich, Marie Siegert, Simon Betzold, Jürgen Ohmer, Utz Fischer, Sven Höfling. Exciton dynamics in solid-state green fluorescent protein. Applied Physics Letters 2017, 110 (4) , 043703. https://doi.org/10.1063/1.4974033
  30. Klaus Suhling, Liisa M. Hirvonen, James A. Levitt, Pei-Hua Chung, Carolyn Tregidgo, Dmitri A. Rusakov, Kaiyu Zheng, Simon Ameer-Beg, Simon P. Poland, Simao Coelho, Robert Henderson, Nikola Krstajic. Fluorescence Lifetime Imaging. 2017, 353-405. https://doi.org/10.1007/978-94-007-5052-4_13
  31. Gregor Jung. Fluorescent Proteins: The Show Must Go On!. 2016, 55-90. https://doi.org/10.1002/9781119179320.ch4
  32. Klaus Suhling, Liisa M. Hirvonen, James A. Levitt, Pei-Hua Chung, Carolyn Tregidgo, Alix Le Marois, Dmitri A. Rusakov, Kaiyu Zheng, Simon Ameer-Beg, Simon Poland, Simao Coelho, Robert Henderson, Nikola Krstajic. Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments. Medical Photonics 2015, 27 , 3-40. https://doi.org/10.1016/j.medpho.2014.12.001
  33. Klaus Suhling, Liisa M. Hirvonen, James A. Levitt, Pei-Hua Chung, Carolyn Tregidgo, Dmitri A. Rusakov, Kaiyu Zheng, Simon Ameer-Beg, Simon Poland, Simao Coelho, Robert Henderson, Nikola Krstajic. Fluorescence Lifetime Imaging. 2015, 1-50. https://doi.org/10.1007/978-94-007-6174-2_13-2
  34. Marco Vitali, Lars Terenius, Franco Zappa, Rudolf Rigler, Danilo Bronzi, Aleksandar J. Krmpot, Stanko N. Nikolic, Franz-Josef Schmitt, Cornelia Junghans, Simone Tisa, Thomas Friedrich, Vladana Vukojevic. A Single-Photon Avalanche Camera for Fluorescence Lifetime Imaging Microscopy and Correlation Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics 2014, 20 (6) , 344-353. https://doi.org/10.1109/JSTQE.2014.2333238
  35. Christoph Biskup, Thomas Gensch. Fluorescence lifetime imaging of ions in biological tissues. 2014, 497-534. https://doi.org/10.1201/b17018-30
  36. Dagmar Auerbach, Martin Klein, Silke Franz, Yvonne Carius, C. Roy D. Lancaster, Gregor Jung. Replacement of Highly Conserved E222 by the Photostable Non-photoconvertible Histidine in GFP. ChemBioChem 2014, 15 (10) , 1404-1408. https://doi.org/10.1002/cbic.201402075
  37. Agnès Bonnot, Elvire Guiot, Régine Hepp, Laetitia Cavellini, Ludovic Tricoire, Bertrand Lambolez. Single‐fluorophore biosensors based on conformation‐sensitive GFP variants. The FASEB Journal 2014, 28 (3) , 1375-1385. https://doi.org/10.1096/fj.13-240507
  38. Klaus Suhling, Liisa M. Hirvonen, James A. Levitt, Pei-Hua Chung, Carolyn Tregidgo, Dmitri Rusakov, Kaiyu Zheng, Simon Ameer-Beg, Simon Poland, Simon Coelho, Robert Henderson, Nikola Krstajic. Fluorescence Lifetime Imaging. 2014, 1-50. https://doi.org/10.1007/978-94-007-6174-2_13-1
  39. Sean C. Warren, Anca Margineanu, Dominic Alibhai, Douglas J. Kelly, Clifford Talbot, Yuriy Alexandrov, Ian Munro, Matilda Katan, Chris Dunsby, Paul M. W. French, . Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets. PLoS ONE 2013, 8 (8) , e70687. https://doi.org/10.1371/journal.pone.0070687
  40. Takakazu Nakabayashi, Shugo Oshita, Ryoya Sumikawa, Fan Sun, Masataka Kinjo, Nobuhiro Ohta. pH dependence of the fluorescence lifetime of enhanced yellow fluorescent protein in solution and cells. Journal of Photochemistry and Photobiology A: Chemistry 2012, 235 , 65-71. https://doi.org/10.1016/j.jphotochem.2012.02.016
  41. James Hunt, Anthony H. Keeble, Robert E. Dale, Melissa K. Corbett, Rebecca L. Beavil, James Levitt, Marcus J. Swann, Klaus Suhling, Simon Ameer-Beg, Brian J. Sutton, Andrew J. Beavil. A Fluorescent Biosensor Reveals Conformational Changes in Human Immunoglobulin E Fc. Journal of Biological Chemistry 2012, 287 (21) , 17459-17470. https://doi.org/10.1074/jbc.M111.331967
  42. Ya-Ting Kao, Xinxin Zhu, Wei Min. Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein. Proceedings of the National Academy of Sciences 2012, 109 (9) , 3220-3225. https://doi.org/10.1073/pnas.1115311109
  43. Giuseppe Vicidomini, Gael Moneron, Kyu Y Han, Volker Westphal, Haisen Ta, Matthias Reuss, Johann Engelhardt, Christian Eggeling, Stefan W Hell. Sharper low-power STED nanoscopy by time gating. Nature Methods 2011, 8 (7) , 571-573. https://doi.org/10.1038/nmeth.1624
  44. Kirstin A. Walther, Björn Papke, Maja B. Sinn, Kirsten Michel, Ali Kinkhabwala. Precise measurement of protein interacting fractions with fluorescence lifetime imaging microscopy. Molecular BioSystems 2011, 7 (2) , 322. https://doi.org/10.1039/c0mb00132e
  45. Gregor Jung, Andreas Brockhinke, Thomas Gensch, Benjamin Hötzer, Stefanie Schwedler, Seena Koyadan Veettil. Fluorescence Lifetime of Fluorescent Proteins. 2011, 69-97. https://doi.org/10.1007/4243_2011_14
  46. Jan Willem Borst, Antonie J W G Visser. Fluorescence lifetime imaging microscopy in life sciences. Measurement Science and Technology 2010, 21 (10) , 102002. https://doi.org/10.1088/0957-0233/21/10/102002
  47. Aline Regis Faro, Virgile Adam, Philippe Carpentier, Claudine Darnault, Dominique Bourgeois, Eve de Rosny. Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins. Photochemical & Photobiological Sciences 2010, 9 (2) , 254-262. https://doi.org/10.1039/b9pp00121b
  48. Frank Schleifenbaum, Christian Blum, Vinod Subramaniam, Alfred J. Meixner. Single-molecule spectral dynamics at room temperature. Molecular Physics 2009, 107 (18) , 1923-1942. https://doi.org/10.1080/00268970802635004
  49. Toshiyuki Ito, Shugo Oshita, Takakazu Nakabayashi, Fan Sun, Masataka Kinjo, Nobuhiro Ohta. Fluorescence lifetime images of green fluorescent protein in HeLa cells during TNF-α induced apoptosis. Photochemical & Photobiological Sciences 2009, 8 (6) , 763-767. https://doi.org/10.1039/b902341k
  50. Yingjie Zhao, Xin Zhang, Dianqing Li, Daicheng Liu, Wenfeng Jiang, Cixiang Han, Zhiqiang Shi. Water-soluble 3,4:9,10-perylene tetracarboxylic ammonium as a high-performance fluorochrome for living cells staining. Luminescence 2009, 24 (3) , 140-143. https://doi.org/10.1002/bio.1078
  51. Takakazu Nakabayashi, Nobuhiro Ohta. Studies on Microenvironment in a Single Cell Using Fluorescence Lifetime Imaging Microscopy. BUNSEKI KAGAKU 2009, 58 (6) , 473-485. https://doi.org/10.2116/bunsekikagaku.58.473
  52. Takakazu Nakabayashi, Nobuhiro Ohta. Bioanalysis using Fluorescence Lifetime Imaging Microscopy. Nippon Laser Igakkaishi 2009, 30 (4) , 441-448. https://doi.org/10.2530/jslsm.30.441
  53. Digambara Patra. Application and New Developments in Fluorescence Spectroscopic Techniques in Studying Individual Molecules. Applied Spectroscopy Reviews 2008, 43 (5) , 389-415. https://doi.org/10.1080/05704920802108115
  54. Takakazu Nakabayashi, Hui-Ping Wang, Masataka Kinjo, Nobuhiro Ohta. Application of fluorescence lifetime imaging of enhanced green fluorescent protein to intracellular pH measurements. Photochemical & Photobiological Sciences 2008, 7 (6) , 668-670. https://doi.org/10.1039/b800391b
  55. Takakazu Nakabayashi, Masataka Kinjo, Nobuhiro Ohta. Electric field effects on fluorescence of the green fluorescent protein. Chemical Physics Letters 2008, 457 (4-6) , 408-412. https://doi.org/10.1016/j.cplett.2008.04.018
  56. Pavel Leiderman, Dan Huppert, S. James Remington, Laren M. Tolbert, Kyril M. Solntsev. The effect of pressure on the excited-state proton transfer in the wild-type green fluorescent protein. Chemical Physics Letters 2008, 455 (4-6) , 303-306. https://doi.org/10.1016/j.cplett.2008.02.079
  57. Britta Seefeldt, Robert Kasper, Thorsten Seidel, Philip Tinnefeld, Karl-Josef Dietz, Mike Heilemann, Markus Sauer. Fluorescent proteins for single-molecule fluorescence applications. Journal of Biophotonics 2008, 1 (1) , 74-82. https://doi.org/10.1002/jbio.200710024
  58. Cristina Flors, Jun-ichi Hotta, Hiroshi Uji-i, Peter Dedecker, Ryoko Ando, Hideaki Mizuno, Atsushi Miyawaki, Johan Hofkens. A Stroboscopic Approach for Fast Photoactivation−Localization Microscopy with Dronpa Mutants. Journal of the American Chemical Society 2007, 129 (45) , 13970-13977. https://doi.org/10.1021/ja074704l
  59. Pavel Leiderman, Liat Genosar, Dan Huppert, Xiaokun Shu, S. James Remington, Kyril M. Solntsev, Laren M. Tolbert. Ultrafast Excited-State Dynamics in the Green Fluorescent Protein Variant S65T/H148D. 3. Short- and Long-Time Dynamics of the Excited-State Proton Transfer. Biochemistry 2007, 46 (43) , 12026-12036. https://doi.org/10.1021/bi7009053
  60. N. Hamada, R. Nakamura, H. Ijiri, Y. Takeda, F. Tokunaga, Y. Kanematsu, H. Mori. Protein modules: Functional proteins incorporated in viral polyhedra. 2007, 311-323. https://doi.org/10.1016/S1574-0641(07)80026-X
  61. Karin Nienhaus, Fabiana Renzi, Beatrice Vallone, Jörg Wiedenmann, G. Ulrich Nienhaus. Chromophore-Protein Interactions in the Anthozoan Green Fluorescent Protein asFP499. Biophysical Journal 2006, 91 (11) , 4210-4220. https://doi.org/10.1529/biophysj.106.087411
  62. Satoshi Habuchi, Peter Dedecker, Jun-ichi Hotta, Cristina Flors, Ryoko Ando, Hideaki Mizuno, Atsushi Miyawaki, Johan Hofkens. Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochemical & Photobiological Sciences 2006, 5 (6) , 567-576. https://doi.org/10.1039/b516339k
  63. Oriol Vendrell, Ricard Gelabert, Miquel Moreno, José M. Lluch. Potential Energy Landscape of the Photoinduced Multiple Proton-Transfer Process in the Green Fluorescent Protein:  Classical Molecular Dynamics and Multiconfigurational Electronic Structure Calculations. Journal of the American Chemical Society 2006, 128 (11) , 3564-3574. https://doi.org/10.1021/ja0549998
  64. Mircea Cotlet, Peter M. Goodwin, Geoffrey S. Waldo, James H. Werner. A Comparison of the Fluorescence Dynamics of Single Molecules of a Green Fluorescent Protein: One- versus Two-Photon Excitation. ChemPhysChem 2006, 7 (1) , 250-260. https://doi.org/10.1002/cphc.200500247
  65. Allan W. Scruggs, Carole L. Flores, Rebekka Wachter, Neal W. Woodbury. Development and Characterization of Green Fluorescent Protein Mutants with Altered Lifetimes. Biochemistry 2005, 44 (40) , 13377-13384. https://doi.org/10.1021/bi050550f
  66. Nina V. Visser, Jan Willem Borst, Mark A. Hink, Arie van Hoek, Antonie J.W.G. Visser. Direct observation of resonance tryptophan-to-chromophore energy transfer in visible fluorescent proteins. Biophysical Chemistry 2005, 116 (3) , 207-212. https://doi.org/10.1016/j.bpc.2005.04.013
  67. Satoshi Habuchi, Ryoko Ando, Peter Dedecker, Wendy Verheijen, Hideaki Mizuno, Atsushi Miyawaki, Johan Hofkens. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proceedings of the National Academy of Sciences 2005, 102 (27) , 9511-9516. https://doi.org/10.1073/pnas.0500489102
  68. Philip Tinnefeld, Markus Sauer. Neue Wege in der Einzelmolekül-Fluoreszenzspektroskopie: Herausforderungen für die Chemie und Einfluss auf die Biologie. Angewandte Chemie 2005, 117 (18) , 2698-2728. https://doi.org/10.1002/ange.200300647
  69. Philip Tinnefeld, Markus Sauer. Branching Out of Single‐Molecule Fluorescence Spectroscopy: Challenges for Chemistry and Influence on Biology. Angewandte Chemie International Edition 2005, 44 (18) , 2642-2671. https://doi.org/10.1002/anie.200300647
  70. Gregor Jung, Jens Wiehler, Andreas Zumbusch. The Photophysics of Green Fluorescent Protein: Influence of the Key Amino Acids at Positions 65, 203, and 222. Biophysical Journal 2005, 88 (3) , 1932-1947. https://doi.org/10.1529/biophysj.104.044412
  71. . References. 2005, 351-387. https://doi.org/10.1007/3-540-28882-1_9
  72. Klaus Suhling, Paul M. W. French, David Phillips. Time-resolved fluorescence microscopy. Photochemical & Photobiological Sciences 2005, 4 (1) , 13-22. https://doi.org/10.1039/b412924p
  73. Fabio Cannone, Michele Caccia, Sara Bologna, Alberto Diaspro, Giuseppe Chirico. Single molecule spectroscopic characterization of GFP-mut2 mutant for two-photon microscopy applications. Microscopy Research and Technique 2004, 65 (4-5) , 186-193. https://doi.org/10.1002/jemt.20125
  74. Oriol Vendrell, Ricard Gelabert, Miquel Moreno, José M. Lluch. Photoinduced proton transfer from the green fluorescent protein chromophore to a water molecule: analysis of the transfer coordinate. Chemical Physics Letters 2004, 396 (1-3) , 202-207. https://doi.org/10.1016/j.cplett.2004.08.028
  75. Anca Margineanu, Johan Hofkens, Mircea Cotlet, Satoshi Habuchi, Alina Stefan, Jianqiang Qu, Christopher Kohl, Klaus Müllen, Jo Vercammen, Yves Engelborghs, Thomas Gensch, Frans C. De Schryver. Photophysics of a Water−Soluble Rylene Dye:  Comparison with Other Fluorescent Molecules for Biological Applications. The Journal of Physical Chemistry B 2004, 108 (32) , 12242-12251. https://doi.org/10.1021/jp048051w
  76. Teodoro Laino, Riccardo Nifosı̀, Valentina Tozzini. Relationship between structure and optical properties in green fluorescent proteins: a quantum mechanical study of the chromophore environment. Chemical Physics 2004, 298 (1-3) , 17-28. https://doi.org/10.1016/j.chemphys.2003.10.040
  77. Jens Wiehler, Gregor Jung, Christian Seebacher, Andreas Zumbusch, Boris Steipe. Mutagenic Stabilization of the Photocycle Intermediate of Green Fluorescent Protein (GFP). ChemBioChem 2003, 4 (11) , 1164-1171. https://doi.org/10.1002/cbic.200300595
  78. Samuel T. Hess, Erin D. Sheets, Alice Wagenknecht-Wiesner, Ahmed A. Heikal. Quantitative Analysis of the Fluorescence Properties of Intrinsically Fluorescent Proteins in Living Cells. Biophysical Journal 2003, 85 (4) , 2566-2580. https://doi.org/10.1016/S0006-3495(03)74679-7
  79. Valentina Tozzini, Vittorio Pellegrini, Fabio Beltram. Green Fluorescent Proteins and Their Applications to Cell Biology and Bioelectronics. 2003https://doi.org/10.1201/9780203495902.ch139
  80. Vinod Subramaniam, Quentin S. Hanley, Andrew H.A. Clayton, Thomas M. Jovin. [6] Photophysics of green and red fluorescent proteins: Implications for quantitative microscopy. 2003, 178-201. https://doi.org/10.1016/S0076-6879(03)60110-2
  81. Satoshi Habuchi, Mircea Cotlet, Johan Hofkens, Gunter Dirix, Jan Michiels, Jos Vanderleyden, Vinod Subramaniam, Frans C. De Schryver. Resonance Energy Transfer in a Calcium Concentration-Dependent Cameleon Protein. Biophysical Journal 2002, 83 (6) , 3499-3506. https://doi.org/10.1016/S0006-3495(02)75349-6
  82. Klaus Suhling, Jan Siegel, David Phillips, Paul M.W. French, Sandrine Lévêque-Fort, Stephen E.D. Webb, Daniel M. Davis. Imaging the Environment of Green Fluorescent Protein. Biophysical Journal 2002, 83 (6) , 3589-3595. https://doi.org/10.1016/S0006-3495(02)75359-9
  83. Tim B. McAnaney, Eun Sun Park, George T. Hanson, S. James Remington, Steven G. Boxer. Green Fluorescent Protein Variants as Ratiometric Dual Emission pH Sensors. 2. Excited-State Dynamics. Biochemistry 2002, 41 (52) , 15489-15494. https://doi.org/10.1021/bi026610o
  84. Andrew H.A. Clayton, Quentin S. Hanley, Donna J. Arndt-Jovin, Vinod Subramaniam, Thomas M. Jovin. Dynamic Fluorescence Anisotropy Imaging Microscopy inthe Frequency Domain (rFLIM). Biophysical Journal 2002, 83 (3) , 1631-1649. https://doi.org/10.1016/S0006-3495(02)73932-5
  85. Nina V Visser, Mark A Hink, Jan Willem Borst, Gerard N.M van der Krogt, Antonie J.W.G Visser. Circular dichroism spectroscopy of fluorescent proteins. FEBS Letters 2002, 521 (1-3) , 31-35. https://doi.org/10.1016/S0014-5793(02)02808-9
  86. Ahmed A Heikal, Samuel T Hess, Watt W Webb. Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid–base specificity. Chemical Physics 2001, 274 (1) , 37-55. https://doi.org/10.1016/S0301-0104(01)00486-4
  87. Satoshi Habuchi, Johan Hofkens. Single-Molecule Surface-Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein EGFP. , 297-312. https://doi.org/10.1007/3-540-33567-6_15

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE