ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Spectroscopic and Dynamic Properties of the Peridinin Lowest Singlet Excited States

View Author Information
Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, and Department of Biological Sciences, Macquarie University, NSW, Australia 2109
Cite this: J. Phys. Chem. A 2001, 105, 45, 10296–10306
Publication Date (Web):June 5, 2001
https://doi.org/10.1021/jp010022n
Copyright © 2001 American Chemical Society

    Article Views

    745

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Spectroscopic properties as well as excited state dynamics of the carotenoid peridinin in several solvents of different polarities were investigated by time-resolved fluorescence and transient absorption techniques. A strong dependence of the peridinin lowest excited states dynamics on solvent polarity was observed after excitation into the strongly allowed S2 state. Peridinin relaxes to the ground state within 10 ps in the strongly polar solvent methanol, while in the nonpolar solvent n-hexane a 160 ps lifetime was observed, thus confirming the previous observations revealed by transient absorption spectroscopy in the visible region (Bautista, J. A.; et al. J. Phys. Chem. B1999, 103, 8751). In addition, the solvent dependence in the near-IR region is demonstrated by a strong negative feature in the transient absorption spectrum of peridinin in methanol, which is not present in n-hexane. This band, characterized by a 1 ps rise time, is ascribed to stimulated emission from an intramolecular charge-transfer (ICT) state. Time-resolved fluorescence data support assignment of this band to the emissive singlet state, whose dynamic characteristics depend strongly on the dielectric strength of the medium. On the basis of all our time-resolved measurements combined with simulations of the observed kinetics, we propose the following model:  the initially populated S2 state decays to the S1 state within less than 100 fs for both solvents. Then, the population is transferred from the S1 state to the S0 and ICT states. The S1 → ICT transfer is controlled by a solvent polarity dependent barrier. In n-hexane the barrier is high enough to prevent the S1 → ICT transfer and only S1 → S0 relaxation characterized by a time constant of 160 ps is observed. An increase of solvent polarity leads to a significant decrease of the barrier, enabling a direct quenching of the S1 state by means of the S1 → ICT transfer, which is characterized by a time constant of 148 ps for tetrahydrofuran, 81 ps for 2-propanol, and 11 ps for the most polar solvent methanol. The ICT state is then rapidly depopulated to the ground state. This relaxation also exhibits solvent dependence, having a time constant of 1 ps in methanol, 2.5 ps in 2-propanol, and 3.5 ps in tetrahydrofuran.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was presented at the PP2000 in Costa do Estoril, Portugal, honoring Professor Ralph Becker's contributions.

     Lund University.

    §

     Macquarie University.

    *

     Corresponding author. E-mail:  [email protected]. Fax:  +46−46−2224119.

    Cited By

    This article is cited by 152 publications.

    1. Jan P. Götze, Heiko Lokstein. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 1. Carotenoids Intercept and Remove B Band Excitations. ACS Omega 2023, 8 (43) , 40005-40014. https://doi.org/10.1021/acsomega.3c05895
    2. Václav Šebelík, Christopher D. P. Duffy, Erika Keil, Tomáš Polívka, Jürgen Hauer. Understanding Carotenoid Dynamics via the Vibronic Energy Relaxation Approach. The Journal of Physical Chemistry B 2022, 126 (22) , 3985-3994. https://doi.org/10.1021/acs.jpcb.2c00996
    3. Giampaolo Marcolin, Elisabetta Collini. Solvent-Dependent Characterization of Fucoxanthin through 2D Electronic Spectroscopy Reveals New Details on the Intramolecular Charge-Transfer State Dynamics. The Journal of Physical Chemistry Letters 2021, 12 (20) , 4833-4840. https://doi.org/10.1021/acs.jpclett.1c00851
    4. Zi S. D. Toa, Mary H. deGolian, Chanelle C. Jumper, Roger G. Hiller, Gregory D. Scholes. Consistent Model of Ultrafast Energy Transfer in Peridinin Chlorophyll-a Protein Using Two-Dimensional Electronic Spectroscopy and Förster Theory. The Journal of Physical Chemistry B 2019, 123 (30) , 6410-6420. https://doi.org/10.1021/acs.jpcb.9b04324
    5. Jan P. Götze. Vibrational Relaxation in Carotenoids as an Explanation for Their Rapid Optical Properties. The Journal of Physical Chemistry B 2019, 123 (10) , 2203-2209. https://doi.org/10.1021/acs.jpcb.8b09841
    6. Robert G. West, Marcel Fuciman, Hristina Staleva-Musto, Václav Šebelík, David Bína, Milan Durchan, Valentyna Kuznetsova, Tomáš Polívka. Equilibration Dependence of Fucoxanthin S1 and ICT Signatures on Polarity, Proticity, and Temperature by Multipulse Femtosecond Absorption Spectroscopy. The Journal of Physical Chemistry B 2018, 122 (29) , 7264-7276. https://doi.org/10.1021/acs.jpcb.8b04217
    7. Elliot J. Taffet, Gregory D. Scholes. Peridinin Torsional Distortion and Bond-Length Alternation Introduce Intramolecular Charge-Transfer and Correlated Triplet Pair Intermediate Excited States. The Journal of Physical Chemistry B 2018, 122 (22) , 5835-5844. https://doi.org/10.1021/acs.jpcb.8b02504
    8. Hristina Staleva-Musto, Valentyna Kuznetsova, Robert G. West, Gürkan Keşan, Babak Minofar, Marcel Fuciman, David Bína, Radek Litvín, Tomáš Polívka. Nonconjugated Acyloxy Group Deactivates the Intramolecular Charge-Transfer State in the Carotenoid Fucoxanthin. The Journal of Physical Chemistry B 2018, 122 (11) , 2922-2930. https://doi.org/10.1021/acs.jpcb.8b00743
    9. Jason K. Gurchiek, Han Bao, Maria Agustina Domínguez-Martín, Sarah E. McGovern, Claire E. Marquardt, Jerome D. Roscioli, Soumen Ghosh, Cheryl A. Kerfeld, and Warren F. Beck . Fluorescence and Excited-State Conformational Dynamics of the Orange Carotenoid Protein. The Journal of Physical Chemistry B 2018, 122 (6) , 1792-1800. https://doi.org/10.1021/acs.jpcb.7b09435
    10. Jerome D. Roscioli, Soumen Ghosh, Amy M. LaFountain, Harry A. Frank, and Warren F. Beck . Quantum Coherent Excitation Energy Transfer by Carotenoids in Photosynthetic Light Harvesting. The Journal of Physical Chemistry Letters 2017, 8 (20) , 5141-5147. https://doi.org/10.1021/acs.jpclett.7b01791
    11. Soumen Ghosh, Michael M. Bishop, Jerome D. Roscioli, Amy M. LaFountain, Harry A. Frank, and Warren F. Beck . Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin–Chlorophyll a Protein. The Journal of Physical Chemistry Letters 2017, 8 (2) , 463-469. https://doi.org/10.1021/acs.jpclett.6b02881
    12. Soumen Ghosh, Jerome D. Roscioli, Michael M. Bishop, Jason K. Gurchiek, Amy M. LaFountain, Harry A. Frank, and Warren F. Beck . Torsional Dynamics and Intramolecular Charge Transfer in the S2 (11Bu+) Excited State of Peridinin: A Mechanism for Enhanced Mid-Visible Light Harvesting. The Journal of Physical Chemistry Letters 2016, 7 (18) , 3621-3626. https://doi.org/10.1021/acs.jpclett.6b01642
    13. Soumen Ghosh, Michael M. Bishop, Jerome D. Roscioli, Amy M. LaFountain, Harry A. Frank, and Warren F. Beck . Femtosecond Heterodyne Transient Grating Studies of Nonradiative Deactivation of the S2 (11Bu+) State of Peridinin: Detection and Spectroscopic Assignment of an Intermediate in the Decay Pathway. The Journal of Physical Chemistry B 2016, 120 (15) , 3601-3614. https://doi.org/10.1021/acs.jpcb.5b12753
    14. Jordan A. Greco, Amy M. LaFountain, Naoto Kinashi, Tetsuro Shinada, Kazuhiko Sakaguchi, Shigeo Katsumura, Nikki Cecil M. Magdaong, Dariusz M. Niedzwiedzki, Robert R. Birge, and Harry A. Frank . Spectroscopic Investigation of the Carotenoid Deoxyperidinin: Direct Observation of the Forbidden S0 → S1 Transition. The Journal of Physical Chemistry B 2016, 120 (10) , 2731-2744. https://doi.org/10.1021/acs.jpcb.6b00439
    15. William P. Bricker and Cynthia S. Lo . Efficient Pathways of Excitation Energy Transfer from Delocalized S2 Excitons in the Peridinin–Chlorophyll a–Protein Complex. The Journal of Physical Chemistry B 2015, 119 (18) , 5755-5764. https://doi.org/10.1021/jp511766j
    16. William P. Bricker and Cynthia S. Lo . Excitation Energy Transfer in the Peridinin-Chlorophyll a-Protein Complex Modeled Using Configuration Interaction. The Journal of Physical Chemistry B 2014, 118 (31) , 9141-9154. https://doi.org/10.1021/jp5017054
    17. Dariusz M. Niedzwiedzki, Haijun Liu, and Robert E. Blankenship . Excited State Properties of 3′-Hydroxyechinenone in Solvents and in the Orange Carotenoid Protein from Synechocystis sp. PCC 6803. The Journal of Physical Chemistry B 2014, 118 (23) , 6141-6149. https://doi.org/10.1021/jp5041794
    18. Václav Šlouf, Marcel Fuciman, Alexander Dulebo, David Kaftan, Michal Koblížek, Harry A. Frank, and Tomáš Polívka . Carotenoid Charge Transfer States and Their Role in Energy Transfer Processes in LH1–RC Complexes from Aerobic Anoxygenic Phototrophs. The Journal of Physical Chemistry B 2013, 117 (38) , 10987-10999. https://doi.org/10.1021/jp309278y
    19. Dariusz M. Niedzwiedzki, Jing Jiang, Cynthia S. Lo, and Robert E. Blankenship . Low-Temperature Spectroscopic Properties of the Peridinin–Chlorophyll a–Protein (PCP) Complex from the Coral Symbiotic Dinoflagellate Symbiodinium. The Journal of Physical Chemistry B 2013, 117 (38) , 11091-11099. https://doi.org/10.1021/jp401022u
    20. Mikas Vengris, Delmar S. Larsen, Leonas Valkunas, Gerdenis Kodis, Christian Herrero, Devens Gust, Thomas Moore, Ana Moore, and Rienk van Grondelle . Separating Annihilation and Excitation Energy Transfer Dynamics in Light Harvesting Systems. The Journal of Physical Chemistry B 2013, 117 (38) , 11372-11382. https://doi.org/10.1021/jp403301c
    21. Rudi Berera, Michal Gwizdala, Ivo H. M. van Stokkum, Diana Kirilovsky, and Rienk van Grondelle . Excited States of the Inactive and Active Forms of the Orange Carotenoid Protein. The Journal of Physical Chemistry B 2013, 117 (31) , 9121-9128. https://doi.org/10.1021/jp307420p
    22. Dariusz M. Niedzwiedzki, Takayuki Kajikawa, Kazuyoshi Aoki, Shigeo Katsumura, and Harry A. Frank . Excited States Energies and Dynamics of Peridinin Analogues and the Nature of the Intramolecular Charge Transfer State in Carbonyl-Containing Carotenoids. The Journal of Physical Chemistry B 2013, 117 (23) , 6874-6887. https://doi.org/10.1021/jp400038k
    23. Milan Durchan, Marcel Fuciman, Václav Šlouf, Gürkan Keşan, and Tomáš Polívka . Excited-State Dynamics of Monomeric and Aggregated Carotenoid 8′-Apo-β-carotenal. The Journal of Physical Chemistry A 2012, 116 (50) , 12330-12338. https://doi.org/10.1021/jp310140k
    24. D. Kosumi, M. Kita, R. Fujii, M. Sugisaki, N. Oka, Y. Takaesu, T. Taira, M. Iha, and H. Hashimoto . Excitation Energy-Transfer Dynamics of Brown Algal Photosynthetic Antennas. The Journal of Physical Chemistry Letters 2012, 3 (18) , 2659-2664. https://doi.org/10.1021/jz300612c
    25. Miriam M. Enriquez, Shohei Hananoki, Shinji Hasegawa, Takayuki Kajikawa, Shigeo Katsumura, Nicole L. Wagner, Robert R. Birge, and Harry A. Frank . Effect of Molecular Symmetry on the Spectra and Dynamics of the Intramolecular Charge Transfer (ICT) State of Peridinin. The Journal of Physical Chemistry B 2012, 116 (35) , 10748-10756. https://doi.org/10.1021/jp305804q
    26. Milan Durchan, Josef Tichý, Radek Litvín, Václav Šlouf, Zdenko Gardian, Petr Hříbek, František Vácha, and Tomáš Polívka . Role of Carotenoids in Light-Harvesting Processes in an Antenna Protein from the Chromophyte Xanthonema debile. The Journal of Physical Chemistry B 2012, 116 (30) , 8880-8889. https://doi.org/10.1021/jp3042796
    27. Rudi Berera, Ivo H. M. van Stokkum, Michal Gwizdala, Adjélé Wilson, Diana Kirilovsky, and Rienk van Grondelle . The Photophysics of the Orange Carotenoid Protein, a Light-Powered Molecular Switch. The Journal of Physical Chemistry B 2012, 116 (8) , 2568-2574. https://doi.org/10.1021/jp2108329
    28. Miriam M. Enriquez, Marcel Fuciman, Amy M. LaFountain, Nicole L. Wagner, Robert R. Birge, and Harry A. Frank. The Intramolecular Charge Transfer State in Carbonyl-Containing Polyenes and Carotenoids. The Journal of Physical Chemistry B 2010, 114 (38) , 12416-12426. https://doi.org/10.1021/jp106113h
    29. Dariusz M. Niedzwiedzki, Aaron M. Collins, Amy M. LaFountain, Miriam M. Enriquez, Harry A. Frank and Robert E. Blankenship. Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from Roseiflexus castenholzii 1 Resubmitted to J Phys Chem B.. The Journal of Physical Chemistry B 2010, 114 (26) , 8723-8734. https://doi.org/10.1021/jp1005764
    30. Dariusz M. Niedzwiedzki, Nirmalya Chatterjee, Miriam M. Enriquez, Takayuki Kajikawa, Shinji Hasegawa, Shigeo Katsumura and Harry A. Frank . Spectroscopic Investigation of Peridinin Analogues Having Different π-Electron Conjugated Chain Lengths: Exploring the Nature of the Intramolecular Charge Transfer State. The Journal of Physical Chemistry B 2009, 113 (41) , 13604-13612. https://doi.org/10.1021/jp903923r
    31. Tim Schulte, Frank P. Sharples, Roger G. Hiller and Eckhard Hofmann . X-ray Structure of the High-Salt Form of the Peridinin-Chlorophyll a-Protein from the Dinoflagellate Amphidinium carterae: Modulation of the Spectral Properties of Pigments by the Protein Environment. Biochemistry 2009, 48 (21) , 4466-4475. https://doi.org/10.1021/bi802320q
    32. Florian Ehlers, Thomas Lenzer and Kawon Oum . Excited-State Dynamics of 12′-Apo-β-caroten-12′-al and 8′-Apo-β-caroten-8′-al in Supercritical CO2, N2O, and CF3H. The Journal of Physical Chemistry B 2008, 112 (51) , 16690-16700. https://doi.org/10.1021/jp807086n
    33. Lavanya Premvardhan, Daniel J. Sandberg, Holger Fey, Robert R. Birge, Claudia Büchel and Rienk van Grondelle . The Charge-Transfer Properties of the S2 State of Fucoxanthin in Solution and in Fucoxanthin Chlorophyll-a/c2 Protein (FCP) Based on Stark Spectroscopy and Molecular-Orbital Theory. The Journal of Physical Chemistry B 2008, 112 (37) , 11838-11853. https://doi.org/10.1021/jp802689p
    34. Hong Cong, Dariusz M. Niedzwiedzki, George N. Gibson, Amy M. LaFountain, Rhiannon M. Kelsh, Alastair T. Gardiner, Richard J. Cogdell and Harry A. Frank . Ultrafast Time-Resolved Carotenoid to-Bacteriochlorophyll Energy Transfer in LH2 Complexes from Photosynthetic Bacteria. The Journal of Physical Chemistry B 2008, 112 (34) , 10689-10703. https://doi.org/10.1021/jp711946w
    35. Matthäus Kopczynski,, Florian Ehlers,, Thomas Lenzer, and, Kawon Oum. Evidence for an Intramolecular Charge Transfer State in 12‘-Apo-β-caroten-12‘-al and 8‘-Apo-β-caroten-8‘-al:  Influence of Solvent Polarity and Temperature. The Journal of Physical Chemistry A 2007, 111 (25) , 5370-5381. https://doi.org/10.1021/jp0672252
    36. Florian Ehlers,, Duncan A. Wild,, Thomas Lenzer, and, Kawon Oum. Investigation of the S1/ICT → S0 Internal Conversion Lifetime of 4‘-apo-β-caroten-4‘-al and 8‘-apo-β-caroten-8‘-al:  Dependence on Conjugation Length and Solvent Polarity. The Journal of Physical Chemistry A 2007, 111 (12) , 2257-2265. https://doi.org/10.1021/jp0676888
    37. B. Dietzek,, W. Kiefer,, G. Hermann,, J. Popp, and, M. Schmitt. Solvent Effects on the Excited-State Processes of Protochlorophyllide:  A Femtosecond Time-Resolved Absorption Study. The Journal of Physical Chemistry B 2006, 110 (9) , 4399-4406. https://doi.org/10.1021/jp0556456
    38. Emmanouil Papagiannakis,, Mikas Vengris,, Delmar S. Larsen,, Ivo H. M. van Stokkum,, Roger G. Hiller, and, Rienk van Grondelle. Use of Ultrafast Dispersed Pump−Dump−Probe and Pump−Repump−Probe Spectroscopies to Explore the Light-Induced Dynamics of Peridinin in Solution. The Journal of Physical Chemistry B 2006, 110 (1) , 512-521. https://doi.org/10.1021/jp053094d
    39. Ritsuko Fujii,, Toshiyuki Kusumoto,, Tokutake Sashima,, Richard J. Cogdell,, Alastair T. Gardiner, and, Hideki Hashimoto. Sub-μ-second Time-Resolved Absorption Spectroscopy of a Polar Carotenoid Analogue, 2-(All-trans-retinylidene)indan-1,3-dione; Formation of the Dication by Direct Triplet-Excited Sensitization. The Journal of Physical Chemistry A 2005, 109 (49) , 11117-11122. https://doi.org/10.1021/jp054436i
    40. Lavanya Premvardhan,, Emmanouil Papagiannakis,, Roger G. Hiller, and, Rienk van Grondelle. The Charge-Transfer Character of the S0 → S2 Transition in the Carotenoid Peridinin Is Revealed by Stark Spectroscopy. The Journal of Physical Chemistry B 2005, 109 (32) , 15589-15597. https://doi.org/10.1021/jp052027g
    41. Tomáš Polívka and, Villy Sundström. Ultrafast Dynamics of Carotenoid Excited States−From Solution to Natural and Artificial Systems. Chemical Reviews 2004, 104 (4) , 2021-2072. https://doi.org/10.1021/cr020674n
    42. Donatas Zigmantas,, Roger G. Hiller,, Arkady Yartsev,, Villy Sundström, and, Tomáš Polívka. Dynamics of Excited States of the Carotenoid Peridinin in Polar Solvents:  Dependence on Excitation Wavelength, Viscosity, and Temperature. The Journal of Physical Chemistry B 2003, 107 (22) , 5339-5348. https://doi.org/10.1021/jp0272318
    43. Lisong Mao,, Yanli Wang, and, Xiche Hu. π−π Stacking Interactions in the Peridinin−Chlorophyll−Protein of Amphidinium carterae. The Journal of Physical Chemistry B 2003, 107 (16) , 3963-3971. https://doi.org/10.1021/jp0276496
    44. Gürkan Keşan, Emrah Özcan, Pavel Chábera, Tomáš Polívka, Marcel Fuciman. Time‐Resolved Spectroelectrochemical Dynamics of Carotenoid 8’‐apo‐β‐Carotenal. ChemPlusChem 2023, 88 (11) https://doi.org/10.1002/cplu.202300404
    45. T. A. Telegina, Yuliya L. Vechtomova, A. V. Aybush, A. A. Buglak, M. S. Kritsky. Isomerization of carotenoids in photosynthesis and metabolic adaptation. Biophysical Reviews 2023, 15 (5) , 887-906. https://doi.org/10.1007/s12551-023-01156-4
    46. Daniel W. Polak, Iain Andrews, George Farrow, Andrew J. Musser, Alex Auty, Dimitri Chekulaev, Julia A. Weinstein, Martin Heeney, Jenny Clark. Conjugation-length dependence of regioregular oligo 3-alkyl(thienylene-vinylene)s demonstrates polyene-like behaviour with weak electron–electron correlations. Physical Chemistry Chemical Physics 2023, 36 https://doi.org/10.1039/D3CP00362K
    47. Donatas Zigmantas, Tomáš Polívka, Petter Persson, Villy Sundström. Ultrafast laser spectroscopy uncovers mechanisms of light energy conversion in photosynthesis and sustainable energy materials. Chemical Physics Reviews 2022, 3 (4) https://doi.org/10.1063/5.0092864
    48. Dariusz M. Niedzwiedzki, Nikki Cecil M. Magdaong, Xinyang Su, Haijun Liu. Biochemical and spectroscopic characterizations of the oligomeric antenna of the coral symbiotic Symbiodiniaceae Fugacium kawagutii. Photosynthesis Research 2022, 154 (2) , 113-124. https://doi.org/10.1007/s11120-022-00951-6
    49. María Agustina Domínguez-Martín, Paul V. Sauer, Henning Kirst, Markus Sutter, David Bína, Basil J. Greber, Eva Nogales, Tomáš Polívka, Cheryl A. Kerfeld. Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 2022, 609 (7928) , 835-845. https://doi.org/10.1038/s41586-022-05156-4
    50. Francesco Tumbarello, Giampaolo Marcolin, Elisa Fresch, Eckhard Hofmann, Donatella Carbonera, Elisabetta Collini. The Energy Transfer Yield between Carotenoids and Chlorophylls in Peridinin Chlorophyll a Protein Is Robust against Mutations. International Journal of Molecular Sciences 2022, 23 (9) , 5067. https://doi.org/10.3390/ijms23095067
    51. Minjung Son, Stephanie M. Hart, Gabriela S. Schlau-Cohen. Investigating carotenoid photophysics in photosynthesis with 2D electronic spectroscopy. Trends in Chemistry 2021, 3 (9) , 733-746. https://doi.org/10.1016/j.trechm.2021.05.008
    52. Heiko Lokstein, Gernot Renger, Jan Götze. Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions. Molecules 2021, 26 (11) , 3378. https://doi.org/10.3390/molecules26113378
    53. Tuhin Khan, Radek Litvín, Václav Šebelík, Tomáš Polívka. Excited‐State Evolution of Keto‐Carotenoids after Excess Energy Excitation in the UV Region. ChemPhysChem 2021, 22 (5) , 471-480. https://doi.org/10.1002/cphc.202000982
    54. Claudia Büchel. Light harvesting complexes in chlorophyll c-containing algae. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2020, 1861 (4) , 148027. https://doi.org/10.1016/j.bbabio.2019.05.003
    55. Jialing Zuo, Liming Tan, Yi Xu, Yingchao Ma, Jia Dong, Peng Wang, Jianping Zhang. Excited State Properties of Fucoxanthin Aggregates. Chemical Research in Chinese Universities 2019, 35 (4) , 627-635. https://doi.org/10.1007/s40242-019-9097-2
    56. Václav Šebelík, Marcel Fuciman, Robert G. West, Tomáš Polívka. Time-resolved two-photon spectroscopy of carotenoids. Chemical Physics 2019, 522 , 171-177. https://doi.org/10.1016/j.chemphys.2019.02.023
    57. Elliot J. Taffet, Gregory D. Scholes. The A g + state falls below 3 A g - at carotenoid-relevant conjugation lengths. Chemical Physics 2018, 515 , 757-767. https://doi.org/10.1016/j.chemphys.2017.12.008
    58. . Brief History of ICT Molecules. 2018, 29-69. https://doi.org/10.1002/9783527801916.ch2
    59. Dariusz M. Niedzwiedzki, Robert E. Blankenship. Excited-state properties of the central-cis isomer of the carotenoid peridinin. Archives of Biochemistry and Biophysics 2018, 649 , 29-36. https://doi.org/10.1016/j.abb.2018.05.004
    60. Robert G. West, David Bína, Marcel Fuciman, Valentyna Kuznetsova, Radek Litvín, Tomáš Polívka. Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from Phaeodactylum tricornutum. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2018, 1859 (5) , 357-365. https://doi.org/10.1016/j.bbabio.2018.02.011
    61. Hideki Hashimoto, Chiasa Uragami, Nao Yukihira, Alastair T. Gardiner, Richard J. Cogdell. Understanding/unravelling carotenoid excited singlet states. Journal of The Royal Society Interface 2018, 15 (141) , 20180026. https://doi.org/10.1098/rsif.2018.0026
    62. Tomohisa Takaya, Masato Anan, Koichi Iwata. Vibrational relaxation dynamics of β-carotene and its derivatives with substituents on terminal rings in electronically excited states as studied by femtosecond time-resolved stimulated Raman spectroscopy in the near-IR region. Physical Chemistry Chemical Physics 2018, 20 (5) , 3320-3327. https://doi.org/10.1039/C7CP06343A
    63. Jaehong Park, Tae-Hong Park, Louise E. Sinks, Pravas Deria, Jiyong Park, Mu-Hyun Baik, Michael J. Therien. Unusual solvent polarity dependent excitation relaxation dynamics of a bis[ p -ethynyldithiobenzoato]Pd-linked bis[(porphinato)zinc] complex. Molecular Systems Design & Engineering 2018, 3 (1) , 275-284. https://doi.org/10.1039/C8ME00001H
    64. Kipras Redeckas, Vladislava Voiciuk, Donatas Zigmantas, Roger G. Hiller, Mikas Vengris. Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a- protein by ultrafast multi-pulse transient absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2017, 1858 (4) , 297-307. https://doi.org/10.1016/j.bbabio.2017.01.014
    65. Dariusz M. Niedzwiedzki, Preston L. Dilbeck, Qun Tang, Elizabeth C. Martin, David F. Bocian, C. Neil Hunter, Dewey Holten. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides. Photosynthesis Research 2017, 131 (3) , 291-304. https://doi.org/10.1007/s11120-016-0322-2
    66. Ying Jia, Ying Shi, Peng Wang, Jian-Ping Zhang. Triplet excitation dynamics of β -carotene studied in three solvents by ns flash photolysis spectroscopy. Chinese Chemical Letters 2017, 28 (1) , 83-88. https://doi.org/10.1016/j.cclet.2016.05.032
    67. Riccardo Spezia, Stefan Knecht, Benedetta Mennucci. Excited state characterization of carbonyl containing carotenoids: a comparison between single and multireference descriptions. Physical Chemistry Chemical Physics 2017, 19 (26) , 17156-17166. https://doi.org/10.1039/C7CP02941A
    68. Kipras Redeckas, Vladislava Voiciuk, Mikas Vengris. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump–dump–probe and femtosecond stimulated Raman scattering spectroscopy. Photosynthesis Research 2016, 128 (2) , 169-181. https://doi.org/10.1007/s11120-015-0215-9
    69. Zuzana Kvíčalová, Jan Alster, Eckhard Hofmann, Petro Khoroshyy, Radek Litvín, David Bína, Tomáš Polívka, Jakub Pšenčík. Triplet–triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2016, 1857 (4) , 341-349. https://doi.org/10.1016/j.bbabio.2016.01.008
    70. Hideki Hashimoto, Chiasa Uragami, Richard J. Cogdell. Carotenoids and Photosynthesis. 2016, 111-139. https://doi.org/10.1007/978-3-319-39126-7_4
    71. Oliver Flender, Mirko Scholz, Jonas Hölzer, Kawon Oum, Thomas Lenzer. A comprehensive picture of the ultrafast excited-state dynamics of retinal. Physical Chemistry Chemical Physics 2016, 18 (22) , 14941-14948. https://doi.org/10.1039/C6CP01335J
    72. I.H.M. van Stokkum, J. Ravensbergen, J.J. Snellenburg, R. van Grondelle, S. Pillai, T.A. Moore, D. Gust, A.L. Moore, J.T.M. Kennis. Resolving Energy and Electron Transfer Processes in Dyads With the Help of Global and Target Analysis. 2016, 169-192. https://doi.org/10.1016/bs.abr.2016.04.003
    73. Hideki Hashimoto, Yuko Sugai, Chiasa Uragami, Alastair T. Gardiner, Richard J. Cogdell. Natural and artificial light-harvesting systems utilizing the functions of carotenoids. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 25 , 46-70. https://doi.org/10.1016/j.jphotochemrev.2015.07.004
    74. Li Li, Feng Hu, Yu-Qiang Chang, Yan Zhou, Peng Wang, Jian-Ping Zhang. Triplet excitation dynamics of two keto-carotenoids in n-hexane and in methanol as studied by ns flash photolysis spectroscopy. Chemical Physics Letters 2015, 633 , 114-119. https://doi.org/10.1016/j.cplett.2015.05.022
    75. Mariangela Di Donato, Elena Ragnoni, Andrea Lapini, Paolo Foggi, Roger G. Hiller, Roberto Righini. Femtosecond transient infrared and stimulated Raman spectroscopy shed light on the relaxation mechanisms of photo-excited peridinin. The Journal of Chemical Physics 2015, 142 (21) , 212409. https://doi.org/10.1063/1.4915072
    76. Hideki Hashimoto, Mitsuru Sugisaki, Masayuki Yoshizawa. Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2015, 1847 (1) , 69-78. https://doi.org/10.1016/j.bbabio.2014.09.001
    77. Florian Ehlers, Mirko Scholz, Jens Schimpfhauser, Jürgen Bienert, Kawon Oum, Thomas Lenzer. Collisional relaxation of apocarotenals: identifying the S* state with vibrationally excited molecules in the ground electronic state S 0 *. Physical Chemistry Chemical Physics 2015, 17 (16) , 10478-10488. https://doi.org/10.1039/C4CP05600K
    78. Dariusz M. Niedzwiedzki, Laura Cranston. Excited state lifetimes and energies of okenone and chlorobactene, exemplary keto and non-keto aryl carotenoids. Physical Chemistry Chemical Physics 2015, 17 (20) , 13245-13256. https://doi.org/10.1039/C5CP00836K
    79. Milan Durchan, Gürkan Keşan, Václav Šlouf, Marcel Fuciman, Hristina Staleva, Josef Tichý, Radek Litvín, David Bína, František Vácha, Tomáš Polívka. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2014, 1837 (10) , 1748-1755. https://doi.org/10.1016/j.bbabio.2014.06.001
    80. Vladimir S. Pavlovich. Gas-phase energy of the S2←S0 transition and electrostatic properties of the S2 state of carotenoid peridinin via a solvatochromic shift and orientation broadening of the absorption spectrum. Photochemical & Photobiological Sciences 2014, 13 (10) , 1444-1455. https://doi.org/10.1039/c4pp00124a
    81. V. S. Pavlovich. Nonradiative Transitions in Media of Different Polarities and Their Modeling for 12′-Apo-β-Caroten-12′-Al and 8′-Apo-β-Caroten-8′-Al. Journal of Applied Spectroscopy 2014, 81 (4) , 583-591. https://doi.org/10.1007/s10812-014-9973-y
    82. Daisuke Kosumi, Ritsuko Fujii, Mitsuru Sugisaki, Naohiro Oka, Masahiko Iha, Hideki Hashimoto. Characterization of the intramolecular transfer state of marine carotenoid fucoxanthin by femtosecond pump–probe spectroscopy. Photosynthesis Research 2014, 121 (1) , 61-68. https://doi.org/10.1007/s11120-014-9995-6
    83. Dariusz M. Niedzwiedzki, Jing Jiang, Cynthia S. Lo, Robert E. Blankenship. Spectroscopic properties of the Chlorophyll a–Chlorophyll c 2–Peridinin-Protein-Complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium. Photosynthesis Research 2014, 120 (1-2) , 125-139. https://doi.org/10.1007/s11120-013-9794-5
    84. Dariusz M. Niedzwiedzki. Photophysical properties of a synthetic, carbonyl-containing (N=6+CO) carotenoid analogue. Chemical Physics Letters 2014, 601 , 74-80. https://doi.org/10.1016/j.cplett.2014.03.088
    85. Daisuke Kosumi, Takayuki Kajikawa, Koki Yano, Satoshi Okumura, Mitsuru Sugisaki, Kazuhiko Sakaguchi, Shigeo Katsumura, Hideki Hashimoto. Roles of allene-group in an intramolecular charge transfer character of a short fucoxanthin homolog as revealed by femtosecond pump-probe spectroscopy. Chemical Physics Letters 2014, 602 , 75-79. https://doi.org/10.1016/j.cplett.2014.04.022
    86. Nikki M. Magdaong, Dariusz M. Niedzwiedzki, Jordan A. Greco, Hongbin Liu, Koki Yano, Takayuki Kajikawa, Kazuhiko Sakaguchi, Shigeo Katsumura, Robert R. Birge, Harry A. Frank. Excited state properties of a short π-electron conjugated peridinin analogue. Chemical Physics Letters 2014, 593 , 132-139. https://doi.org/10.1016/j.cplett.2014.01.002
    87. Vladimir S. Pavlovich. Gas-phase energy of the S 2 ←S 0 transition and electrostatic properties of the S 2 state of carotenoid peridinin via a solvatochromic shift and orientation broadening of the absorption spectrum. Photochem. Photobiol. Sci. 2014, 13 (10) , 1444-1455. https://doi.org/10.1039/C4PP00124A
    88. Tomáš Polívka, Eckhard Hofmann. Structure-Function Relationship in Peridinin-Chlorophyll Proteins. 2014, 39-58. https://doi.org/10.1007/978-94-017-8742-0_3
    89. HENRIK G. BOHR, F. BARY MALIK. COHERENCE, ENERGY AND CHARGE TRANSFERS IN DE-EXCITATION PATHWAYS OF ELECTRONIC EXCITED STATE OF BIOMOLECULES IN PHOTOSYNTHESIS. International Journal of Modern Physics B 2013, 27 (29) , 1347007. https://doi.org/10.1142/S0217979213470073
    90. Nicole L. Wagner, Jordan A. Greco, Miriam M. Enriquez, Harry A. Frank, Robert R. Birge. The Nature of the Intramolecular Charge Transfer State in Peridinin. Biophysical Journal 2013, 104 (6) , 1314-1325. https://doi.org/10.1016/j.bpj.2013.01.045
    91. Tomáš Polívka, Pavel Chábera, Cheryl A. Kerfeld. Carotenoid–protein interaction alters the S1 energy of hydroxyechinenone in the Orange Carotenoid Protein. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2013, 1827 (3) , 248-254. https://doi.org/10.1016/j.bbabio.2012.10.005
    92. Vladimir S. Pavlovich. Solvatochromism and Nonradiative Decay of Intramolecular Charge‐Transfer Excited States: Bands‐of‐Energy Model, Thermodynamics, and Self‐Organization. ChemPhysChem 2012, 13 (18) , 4081-4093. https://doi.org/10.1002/cphc.201200426
    93. Jing Jiang, Hao Zhang, Yisheng Kang, David Bina, Cynthia S. Lo, Robert E. Blankenship. Characterization of the peridinin–chlorophyll a-protein complex in the dinoflagellate Symbiodinium. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2012, 1817 (7) , 983-989. https://doi.org/10.1016/j.bbabio.2012.03.027
    94. Carolin König, Johannes Neugebauer. Quantum Chemical Description of Absorption Properties and Excited‐State Processes in Photosynthetic Systems. ChemPhysChem 2012, 13 (2) , 386-425. https://doi.org/10.1002/cphc.201100408
    95. H.A. Frank, R.J. Cogdell. 8.6 Light Capture in Photosynthesis. 2012, 94-114. https://doi.org/10.1016/B978-0-12-374920-8.00808-0
    96. H. G. Bohr, F. B. Malik. A schematic model for energy and charge transfer in the chlorophyll complex. Theoretical Chemistry Accounts 2011, 130 (4-6) , 1203-1210. https://doi.org/10.1007/s00214-011-1033-6
    97. Daisuke Kosumi, Toshiyuki Kusumoto, Ritsuko Fujii, Mitsuru Sugisaki, Yoshiro Iinuma, Naohiro Oka, Yuki Takaesu, Tomonori Taira, Masahiko Iha, Harry A. Frank, Hideki Hashimoto. Ultrafast excited state dynamics of fucoxanthin: excitation energy dependent intramolecular charge transfer dynamics. Physical Chemistry Chemical Physics 2011, 13 (22) , 10762. https://doi.org/10.1039/c0cp02568b
    98. Tomáš Polívka, Shanti Kaligotla, Pavel Chábera, Harry A. Frank. An intramolecular charge transfer state of carbonyl carotenoids: implications for excited state dynamics of apo-carotenals and retinal. Physical Chemistry Chemical Physics 2011, 13 (22) , 10787. https://doi.org/10.1039/c1cp20269c
    99. Niklas Christensson, Pavel Chábera, Roger G. Hiller, Tõnu Pullerits, Tomáš Polívka. Four-wave-mixing spectroscopy of peridinin in solution and in the peridinin–chlorophyll-a protein. Chemical Physics 2010, 373 (1-2) , 15-22. https://doi.org/10.1016/j.chemphys.2009.12.011
    100. Peter W. Lohse, Florian Ehlers, Kawon Oum, Mirko Scholz, Thomas Lenzer. Ultrafast solvation dynamics of 12′-apo-β-carotenoic-12′-acid in [C6mim]+[Tf2N]−. Chemical Physics 2010, 373 (1-2) , 45-49. https://doi.org/10.1016/j.chemphys.2009.12.028
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect