ACS Publications. Most Trusted. Most Cited. Most Read
A Density Functional Study of the Claisen Rearrangement of Allyl Aryl Ether, Allyl Arylamine, Allyl Aryl Thio Ether, and a Series of Meta-Substituted Molecules through Reactivity and Selectivity Profiles
My Activity

Figure 1Loading Img
    Article

    A Density Functional Study of the Claisen Rearrangement of Allyl Aryl Ether, Allyl Arylamine, Allyl Aryl Thio Ether, and a Series of Meta-Substituted Molecules through Reactivity and Selectivity Profiles
    Click to copy article linkArticle link copied!

    View Author Information
    Departamento de Química and2Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653-Santiago, Chile, Department of Chemistry, Indian Institute of Technology, Kharagpur, 721 302, India, and Departamento de Química, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
    Other Access Options

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2002, 106, 46, 11227–11233
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp020437o
    Published October 23, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The Claisen rearrangement of allyl phenyl ether, allyl phenylamine, and allyl phenyl thioether, together with the family of H, CH3, OCH3, Cl, F, and CN, meta-substituted molecules, is studied within a density functional framework with B3LYP exchange-correlation energy functionals and 6-311G** basis set. Reactants, intermediates, and products have equilibrium configurations (with no imaginary frequency), and the two transition states possess one imaginary frequency each corroborating the proposed mechanism of a [3,3]-sigmatropic rearrangement. The energy profile for the systems containing oxygen and nitrogen atoms mirrors the hardness profile along the reaction path in agreement with the maximum hardness principle. However, the molecules with sulfur atom do not follow the maximum hardness principle. This is explained in terms of the participation of the highest occupied molecular orbital (HOMO) in the reaction. The minimum polarizability principle is obeyed in all cases.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Departamento de Química .

     Departamento de Física.

    §

     Department of Chemistry.

     Departamento de Química.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 39 publications.

    1. Siamak Noorizadeh and Hadi Parsa . Evaluation of Absolute Hardness: A New Approach. The Journal of Physical Chemistry A 2013, 117 (5) , 939-946. https://doi.org/10.1021/jp308137w
    2. Shili Hou, Xinyao Li, and Jiaxi Xu . Mechanistic Insight into the Formal [1,3]-Migration in the Thermal Claisen Rearrangement. The Journal of Organic Chemistry 2012, 77 (23) , 10856-10869. https://doi.org/10.1021/jo302210t
    3. Yiying Zheng and Jingping Zhang . Catalysis in the Oil Droplet/Water Interface for Aromatic Claisen Rearrangement. The Journal of Physical Chemistry A 2010, 114 (12) , 4325-4333. https://doi.org/10.1021/jp908018u
    4. Miquel Torrent-Sucarrat,, Frank De Proft, and, Paul Geerlings. Stiffness and Raman Intensity:  a Conceptual and Computational DFT Study. The Journal of Physical Chemistry A 2005, 109 (27) , 6071-6076. https://doi.org/10.1021/jp044150y
    5. Tooba Afshari, Mohsen Mohsennia, Mahdi Rezaei Sameti. A molecular electron density theory study of polar Diels-Alder reaction between 2,4–dimethyl–5–ethoxyoxazole and ethyl 4,4,4–trifluorocrotonate. Structural Chemistry 2021, 32 (2) , 805-817. https://doi.org/10.1007/s11224-020-01662-1
    6. Guangyan Liu, Shili Hou, Jiaxi Xu. Theoretical calculation studies on the rearrangement mechanisms of arenesulfenanilides to generate o - and p -aminodiphenyl sulfides. Organic & Biomolecular Chemistry 2019, 17 (47) , 10088-10096. https://doi.org/10.1039/C9OB02202C
    7. D. N. Mityagin, I. M. Gabbasova, A. V. Anisimov, E. A. Kantor. Thermal Transformations of Allyl Phenyl Sulfide: A Quantum-Chemical Study. Moscow University Chemistry Bulletin 2019, 74 (5) , 241-245. https://doi.org/10.3103/S0027131419050092
    8. Pallabita Basu, Robi Sikdar, Tarun Kumar, Irishi N. N. Namboothiri. Synthesis of Functionalized Arenopyrans and Arenylsulfanes by Reacting Nitroallylic Acetates with Arenols and Arenethiols. European Journal of Organic Chemistry 2018, 2018 (41) , 5735-5743. https://doi.org/10.1002/ejoc.201801132
    9. Shinichi Yamabe, Shoko Yamazaki. The tautomerization and ring closure in the Claisen rearrangement: A DFT study. International Journal of Quantum Chemistry 2018, 118 (18) https://doi.org/10.1002/qua.25677
    10. Nazli Javani Dizaji, Azita Nouri, Ehsan Zahedi, Seyed Majid Musavi, Arezu Nouri. Regioselectivity of 1,3-dipolar cycloadditions between aryl azides and an electron-deficient alkyne through DFT reactivity descriptors. Research on Chemical Intermediates 2017, 43 (2) , 767-782. https://doi.org/10.1007/s11164-016-2663-z
    11. Luis R. Domingo, Mar Ríos-Gutiérrez, Eduardo Chamorro, Patricia Pérez. Electrophilic activation of CO2 in cycloaddition reactions towards a nucleophilic carbenoid intermediate: new defying insights from the Molecular Electron Density Theory. Theoretical Chemistry Accounts 2017, 136 (1) https://doi.org/10.1007/s00214-016-2022-6
    12. Mengistu Gemech Menkir, Venkatesan Srinivasadesikan, Shyi-Long Lee. The role of cesium fluoride in aryl propargyl ether Claisen rearrangement and its mechanistic elucidation: a theoretical study. Structural Chemistry 2016, 27 (5) , 1383-1393. https://doi.org/10.1007/s11224-016-0758-1
    13. Izumi Iwakura, Atsushi Yabushita. Development of Novel Reactions Induced by Coherent Molecular Vibrational Excitation and Direct Observation of Molecular Structural Change during “Thermal” Reactions. Bulletin of the Chemical Society of Japan 2016, 89 (3) , 296-307. https://doi.org/10.1246/bcsj.20150242
    14. Hongyin Gao, Qing‐Long Xu, Craig Keene, Muhammed Yousufuddin, Daniel H. Ess, László Kürti. Practical Organocatalytic Synthesis of Functionalized Non‐ C 2 ‐Symmetrical Atropisomeric Biaryls. Angewandte Chemie 2016, 128 (2) , 576-581. https://doi.org/10.1002/ange.201508419
    15. Hongyin Gao, Qing‐Long Xu, Craig Keene, Muhammed Yousufuddin, Daniel H. Ess, László Kürti. Practical Organocatalytic Synthesis of Functionalized Non‐ C 2 ‐Symmetrical Atropisomeric Biaryls. Angewandte Chemie International Edition 2016, 55 (2) , 566-571. https://doi.org/10.1002/anie.201508419
    16. Sławomir Berski, Piotr Durlak. The mechanism of Claisen rearrangement of allyl phenyl ether from the perspective of topological analysis of the ELF. New Journal of Chemistry 2016, 40 (10) , 8717-8726. https://doi.org/10.1039/C6NJ02074G
    17. Azita Nouri, Ehsan Zahedi, Fateme Joneydi Jafari, Arezu Nouri. Diels–Alder Reactions of α-Cyano α,β-Unsaturated Ketones with 2-Methyl-1,3-Butadiene: DFT Study of Mechanism, Reactivity and Regioselectivity. Progress in Reaction Kinetics and Mechanism 2015, 40 (2) , 177-189. https://doi.org/10.3184/146867815X14262620270642
    18. Volker Hessel, Elnaz Shahbazali, Timothy Noël, Sergei Zelentsov. The Claisen Rearrangement – Part 2: Impact Factor Analysis of the Claisen Rearrangement, in Batch and in Flow. ChemBioEng Reviews 2014, 1 (6) , 244-261. https://doi.org/10.1002/cben.201400022
    19. Volker Hessel, Elnaz Shahbazali, Timothy Noël, Sergei Zelentsov. Claisen‐Umlagerung im Rühr‐ und Durchflussbetrieb: Verständnis des Mechanismus und Steuerung der Einflussgrößen. Chemie Ingenieur Technik 2014, 86 (12) , 2160-2179. https://doi.org/10.1002/cite.201400125
    20. Ehsan Zahedi, Majid Mozaffari, Fereshteh-Sadat Karimi, Azita Nouri. Density functional theory study of electric field effects on the isomerization of a photochromic molecular switch based on 1,2-dithienylethene. Canadian Journal of Chemistry 2014, 92 (4) , 317-323. https://doi.org/10.1139/cjc-2013-0589
    21. Izumi Iwakura, Atsushi Yabushita, Jun Liu, Kotaro Okamura, Satoko Kezuka, Takayoshi Kobayashi. A new reaction mechanism of Claisen rearrangement induced by few-optical-cycle pulses: Demonstration of nonthermal chemistry by femtosecond vibrational spectroscopy. Pure and Applied Chemistry 2013, 85 (10) , 1991-2004. https://doi.org/10.1351/pac-con-12-12-01
    22. Izumi Iwakura, Atsushi Yabushita, Jun Liu, Kotaro Okamura, Takayoshi Kobayashi. Photo-impulsive reactions in the electronic ground state without electronic excitation: non-photo, non-thermal chemical reactions. Physical Chemistry Chemical Physics 2012, 14 (27) , 9696. https://doi.org/10.1039/c2cp40607a
    23. Timothy R. Ramadhar, Robert A. Batey. Accurate prediction of experimental free energy of activation barriers for the aliphatic-Claisen rearrangement through DFT calculations. Computational and Theoretical Chemistry 2011, 976 (1-3) , 167-182. https://doi.org/10.1016/j.comptc.2011.08.022
    24. Timothy R. Ramadhar, Robert A. Batey. Resolving the mechanistic origins of E/Z-selectivity differences for the ortho-aryl-Claisen [3,3]-sigmatropic rearrangement through DFT calculations. Computational and Theoretical Chemistry 2011, 974 (1-3) , 76-78. https://doi.org/10.1016/j.comptc.2011.07.018
    25. M. Oftadeh, S. Naseh, M. Hamadanian. Electronic properties and dipole polarizability of thiophene and thiophenol derivatives via density functional theory. Computational and Theoretical Chemistry 2011, 966 (1-3) , 20-25. https://doi.org/10.1016/j.comptc.2011.02.003
    26. Izumi Iwakura, Atsushi Yabushita, Takayoshi Kobayashi. Non-thermal reaction triggered by a stimulated Raman process using 5-fs laser pulses in the electronic ground state: Claisen rearrangement of allyl phenyl ether. Chemical Physics Letters 2011, 501 (4-6) , 567-571. https://doi.org/10.1016/j.cplett.2010.11.028
    27. Izumi Iwakura. The experimental visualisation of molecular structural changes during both photochemical and thermal reactions by real-time vibrational spectroscopy. Physical Chemistry Chemical Physics 2011, 13 (13) , 5546. https://doi.org/10.1039/c0cp01588a
    28. Siamak Noorizadeh, Ameneh Ozhand. A Theoretical Study on Chapman Rearrangement. Chinese Journal of Chemistry 2010, 28 (10) , 1876-1884. https://doi.org/10.1002/cjoc.201090313
    29. Santanab Giri, David Zhigang Wang, Pratim Kumar Chattaraj. Catalyst electronic polarizability and enantiomeric excess in asymmetric hydrogenation. Tetrahedron 2010, 66 (25) , 4560-4563. https://doi.org/10.1016/j.tet.2010.04.055
    30. Aäron G. Vandeputte, Marie-Françoise Reyniers, Guy B. Marin. A theoretical study of the thermodynamics and kinetics of small organosulfur compounds. Theoretical Chemistry Accounts 2009, 123 (5-6) , 391-412. https://doi.org/10.1007/s00214-009-0528-x
    31. Miquel Torrent-Sucarrat, Lluís Blancafort, Miquel Duran, Josep M. Luis, Miquel Solà. Chapter 3 The breakdown of the maximum hardness and minimum polarizability principles for nontotally symmetric vibrations. 2007, 31-45. https://doi.org/10.1016/S1380-7323(07)80004-5
    32. P.K. Chattaraj, U. Sarkar. Chapter 13 Chemical reactivity dynamics in ground and excited electronic states. 2007, 269-286. https://doi.org/10.1016/S1380-7323(07)80014-8
    33. Vishal Rai, Irishi N. N. Namboothiri. A Theoretical Evaluation of the Michael‐Acceptor Ability of Conjugated Nitroalkenes. European Journal of Organic Chemistry 2006, 2006 (20) , 4693-4703. https://doi.org/10.1002/ejoc.200600505
    34. David Asturiol, Miquel Duran, Pedro Salvador, Miquel Torrent‐Sucarrat. BSSE‐free hardness profiles of hydrogen bond exchange in the hydrogen fluoride dimer. International Journal of Quantum Chemistry 2006, 106 (14) , 2910-2919. https://doi.org/10.1002/qua.21116
    35. Roberto Fernández de la Pradilla, Mariola Tortosa, Alma Viso. Sulfur Participation in [3,3]-Sigmatropic Rearrangements. 2006, 103-129. https://doi.org/10.1007/128_059
    36. Miquel Torrent-Sucarrat, Miquel Duran, Josep M. Luis, Miquel Solà. Basis set effects on the energy and hardness profiles of the hydrogen fluoride dimer. Journal of Chemical Sciences 2005, 117 (5) , 549-554. https://doi.org/10.1007/BF02708361
    37. S. Noorizadeh. The maximum hardness and minimum polarizability principles in accordance with the Bent rule. Journal of Molecular Structure: THEOCHEM 2005, 713 (1-3) , 27-32. https://doi.org/10.1016/j.theochem.2004.09.029
    38. Miquel Torrent-Sucarrat, Josep M. Luis, Miquel Duran, Miquel Solà. The hardness profile as a tool to detect spurious stationary points in the potential energy surface. The Journal of Chemical Physics 2004, 120 (23) , 10914-10924. https://doi.org/10.1063/1.1742793
    39. Brian F. Yates. 9  Computational organic chemistry. Annual Reports Section "B" (Organic Chemistry) 2003, 99 , 292. https://doi.org/10.1039/b212014n

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2002, 106, 46, 11227–11233
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp020437o
    Published October 23, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    895

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.