ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Carotenoid S1 State in LH2 Complexes from Purple Bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila:  S1 Energies, Dynamics, and Carotenoid Radical Formation

View Author Information
Chemical Physics, Lund University, Box 124, S-221 00 Lund, Sweden, Division of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, University of Glasgow, G12 8QQ Glasgow, U.K., and Department of Chemistry, University of Connecticut, Storrs, Connecticut 0629−3060
Cite this: J. Phys. Chem. B 2002, 106, 42, 11016–11025
Publication Date (Web):September 28, 2002
https://doi.org/10.1021/jp025752p
Copyright © 2002 American Chemical Society

    Article Views

    529

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Using near-infrared femtosecond absorption spectroscopy, we have determined the S1 energies of the carotenoids spheroidene and rhodopin glucoside in LH2 complexes of purple bacteria. The S1 energies in the LH2 complexes yield values of 13400 ± 100 cm-1 for spheroidene and 12550 ± 150 cm-1 for rhodopin glucoside, which are very close to the S1 energies obtained for both carotenoids in solution. The 850 cm-1 difference between the S1 energies of these two carotenoids significantly affects the energy transfer pathways within the LH2 complexes. The S1 energy of spheroidene in the LH2 complex of Rhodobacter (Rb.) sphaeroides is high enough to allow efficient energy transfer from the S1 state to bacteriochlorophylls, resulting in a substantial shortening of the spheroidene S1 lifetime in the LH2 complex (1.7 ps) compared with the lifetime in solution (8.5 ps). Rhodopin glucoside, which occurs in Rhodopseudomonas (Rps.) acidophila, has an S1 energy in the LH2 complex too low for efficient S1-mediated energy transfer and therefore the S2 state becomes the main energy donor in LH2 complexes containing this carotenoid. In addition, a distinct carotenoid spectral band not observed in solution, was detected at around 960 nm in the LH2 complex of Rb. sphaeroides. This band is assigned to a spheroidene radical cation, which is formed in ∼200 fs and decays within 8 ps. The yield of the spheroidene radical formation is estimated to be in the range of 5−8%.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected]. Fax:  +46−46−222 4119.

     Chemical Physics.

     Institute of Biomedical Sciences.

    §

     Department of Chemistry.

    Cited By

    This article is cited by 89 publications.

    1. Jin-Fang Hao, Nami Yamano, Chen-Hui Qi, Yan Zhang, Fei Ma, Peng Wang, Long-Jiang Yu, Jian-Ping Zhang. Carotenoid-Mediated Long-Range Energy Transfer in the Light Harvesting–Reaction Center Complex from Photosynthetic Bacterium Roseiflexus castenholzii. The Journal of Physical Chemistry B 2023, 127 (48) , 10360-10369. https://doi.org/10.1021/acs.jpcb.3c07087
    2. Daniil Khokhlov, Aleksandr Belov. Low-Lying Excited States of Natural Carotenoids Viewed by Ab Initio Methods. The Journal of Physical Chemistry A 2022, 126 (27) , 4376-4391. https://doi.org/10.1021/acs.jpca.2c02485
    3. Kazuhiro J. Fujimoto, Takumi Minoda, Takeshi Yanai. Spectral Tuning Mechanism of Photosynthetic Light-Harvesting Complex II Revealed by Ab Initio Dimer Exciton Model. The Journal of Physical Chemistry B 2021, 125 (37) , 10459-10470. https://doi.org/10.1021/acs.jpcb.1c04457
    4. Daniil Khokhlov, Aleksandr Belov. Ab Initio Study of Low-Lying Excited States of Carotenoid-Derived Polyenes. The Journal of Physical Chemistry A 2020, 124 (28) , 5790-5803. https://doi.org/10.1021/acs.jpca.0c01678
    5. Dariusz M. Niedzwiedzki, C. Neil Hunter, and Robert E. Blankenship . Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria. The Journal of Physical Chemistry B 2016, 120 (43) , 11123-11131. https://doi.org/10.1021/acs.jpcb.6b08639
    6. Preston L. Dilbeck, Qun Tang, David J. Mothersole, Elizabeth C. Martin, C. Neil Hunter, David F. Bocian, Dewey Holten, and Dariusz M. Niedzwiedzki . Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway. The Journal of Physical Chemistry B 2016, 120 (24) , 5429-5443. https://doi.org/10.1021/acs.jpcb.6b03305
    7. Jordan A. Greco, Amy M. LaFountain, Naoto Kinashi, Tetsuro Shinada, Kazuhiko Sakaguchi, Shigeo Katsumura, Nikki Cecil M. Magdaong, Dariusz M. Niedzwiedzki, Robert R. Birge, and Harry A. Frank . Spectroscopic Investigation of the Carotenoid Deoxyperidinin: Direct Observation of the Forbidden S0 → S1 Transition. The Journal of Physical Chemistry B 2016, 120 (10) , 2731-2744. https://doi.org/10.1021/acs.jpcb.6b00439
    8. Yusuke Yoneda, Tomoyasu Noji, Tetsuro Katayama, Naoto Mizutani, Daisuke Komori, Mamoru Nango, Hiroshi Miyasaka, Shigeru Itoh, Yutaka Nagasawa, and Takehisa Dewa . Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores. Journal of the American Chemical Society 2015, 137 (40) , 13121-13129. https://doi.org/10.1021/jacs.5b08508
    9. Rosana Álvarez, Belén Vaz, Hinrich Gronemeyer, and Ángel R. de Lera . Functions, Therapeutic Applications, and Synthesis of Retinoids and Carotenoids. Chemical Reviews 2014, 114 (1) , 1-125. https://doi.org/10.1021/cr400126u
    10. Evgeny E. Ostroumov, Rachel M. Mulvaney, Jessica M. Anna, Richard J. Cogdell, and Gregory D. Scholes . Energy Transfer Pathways in Light-Harvesting Complexes of Purple Bacteria as Revealed by Global Kinetic Analysis of Two-Dimensional Transient Spectra. The Journal of Physical Chemistry B 2013, 117 (38) , 11349-11362. https://doi.org/10.1021/jp403028x
    11. Mindaugas Macernis, Juozas Sulskus, Christopher D. P. Duffy, Alexander V. Ruban, and Leonas Valkunas . Electronic Spectra of Structurally Deformed Lutein. The Journal of Physical Chemistry A 2012, 116 (40) , 9843-9853. https://doi.org/10.1021/jp304363q
    12. Zhi-Qiang You and Chao-Ping Hsu . Ab Inito Study on Triplet Excitation Energy Transfer in Photosynthetic Light-Harvesting Complexes. The Journal of Physical Chemistry A 2011, 115 (16) , 4092-4100. https://doi.org/10.1021/jp200200x
    13. Johannes Neugebauer, Jan Veldstra, and Francesco Buda . Theoretical Spectroscopy of Astaxanthin in Crustacyanin Proteins: Absorption, Circular Dichroism, and Nuclear Magnetic Resonance. The Journal of Physical Chemistry B 2011, 115 (12) , 3216-3225. https://doi.org/10.1021/jp111579u
    14. Ilya Stepanenko, Viktor Kompanetz, Zoya Makhneva, Sergey Chekalin, Andrei Moskalenko and Andrei Razjivin . Two-Photon Excitation Spectroscopy of Carotenoid-Containing and Carotenoid-Depleted LH2 Complexes from Purple Bacteria. The Journal of Physical Chemistry B 2009, 113 (34) , 11720-11723. https://doi.org/10.1021/jp906565m
    15. Sergiu Amarie, Kibrom Arefe, Jan Hendrik Starcke, Andreas Dreuw and Josef Wachtveitl. Identification of an Additional Low-Lying Excited State of Carotenoid Radical Cations. The Journal of Physical Chemistry B 2008, 112 (44) , 14011-14017. https://doi.org/10.1021/jp806030y
    16. Hong Cong, Dariusz M. Niedzwiedzki, George N. Gibson, Amy M. LaFountain, Rhiannon M. Kelsh, Alastair T. Gardiner, Richard J. Cogdell and Harry A. Frank . Ultrafast Time-Resolved Carotenoid to-Bacteriochlorophyll Energy Transfer in LH2 Complexes from Photosynthetic Bacteria. The Journal of Physical Chemistry B 2008, 112 (34) , 10689-10703. https://doi.org/10.1021/jp711946w
    17. Janne Savolainen,, Niels Dijkhuizen,, Riccardo Fanciulli,, Paul A. Liddell,, Devens Gust,, Thomas A. Moore,, Ana L. Moore,, Jürgen Hauer,, Tiago Buckup,, Marcus Motzkus, and, Jennifer L. Herek. Ultrafast Energy Transfer Dynamics of a Bioinspired Dyad Molecule. The Journal of Physical Chemistry B 2008, 112 (9) , 2678-2685. https://doi.org/10.1021/jp0757199
    18. Tomáš Polívka,, Dariusz Niedzwiedzki,, Marcel Fuciman,, Villy Sundström, and, Harry A. Frank. Role of B800 in Carotenoid−Bacteriochlorophyll Energy and Electron Transfer in LH2 Complexes from the Purple Bacterium Rhodobacter sphaeroides. The Journal of Physical Chemistry B 2007, 111 (25) , 7422-7431. https://doi.org/10.1021/jp071395c
    19. Dariusz Niedzwiedzki,, Jeremy F. Koscielecki,, Hong Cong,, James O. Sullivan,, George N. Gibson,, Robert R. Birge, and, Harry A. Frank. Ultrafast Dynamics and Excited State Spectra of Open-Chain Carotenoids at Room and Low Temperatures. The Journal of Physical Chemistry B 2007, 111 (21) , 5984-5998. https://doi.org/10.1021/jp070500f
    20. Sergiu Amarie,, Jörg Standfuss,, Tiago Barros,, Werner Kühlbrandt,, Andreas Dreuw, and, Josef Wachtveitl. Carotenoid Radical Cations as a Probe for the Molecular Mechanism of Nonphotochemical Quenching in Oxygenic Photosynthesis. The Journal of Physical Chemistry B 2007, 111 (13) , 3481-3487. https://doi.org/10.1021/jp066458q
    21. Florian Ehlers,, Duncan A. Wild,, Thomas Lenzer, and, Kawon Oum. Investigation of the S1/ICT → S0 Internal Conversion Lifetime of 4‘-apo-β-caroten-4‘-al and 8‘-apo-β-caroten-8‘-al:  Dependence on Conjugation Length and Solvent Polarity. The Journal of Physical Chemistry A 2007, 111 (12) , 2257-2265. https://doi.org/10.1021/jp0676888
    22. Emmanouil Papagiannakis,, Ivo H. M. van Stokkum,, Mikas Vengris,, Richard J. Cogdell,, Rienk van Grondelle, and, Delmar S. Larsen. Excited-State Dynamics of Carotenoids in Light-Harvesting Complexes. 1. Exploring the Relationship between the S1 and S* States. The Journal of Physical Chemistry B 2006, 110 (11) , 5727-5736. https://doi.org/10.1021/jp054633h
    23. Andreas Dreuw, , Martin Head-Gordon. Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules. Chemical Reviews 2005, 105 (11) , 4009-4037. https://doi.org/10.1021/cr0505627
    24. Helena Hörvin Billsten,, Jingxi Pan,, Subrata Sinha,, Torbjörn Pascher,, Villy Sundström, and, Tomáš Polívka. Excited-State Processes in the Carotenoid Zeaxanthin after Excess Energy Excitation. The Journal of Physical Chemistry A 2005, 109 (31) , 6852-6859. https://doi.org/10.1021/jp052227s
    25. Tomáš Polívka,, Tõnu Pullerits,, Harry A. Frank,, Richard J. Cogdell, and, Villy Sundström. Ultrafast Formation of a Carotenoid Radical in LH2 Antenna Complexes of Purple Bacteria. The Journal of Physical Chemistry B 2004, 108 (39) , 15398-15407. https://doi.org/10.1021/jp0483019
    26. J. L. Herek,, M. Wendling,, Z. He,, T. Polívka,, G. Garcia-Asua,, R. J. Cogdell,, C. N. Hunter,, R. van Grondelle,, V. Sundström, and, T. Pullerits. Ultrafast Carotenoid Band Shifts:  Experiment and Theory. The Journal of Physical Chemistry B 2004, 108 (29) , 10398-10403. https://doi.org/10.1021/jp040094p
    27. Tomáš Polívka and, Villy Sundström. Ultrafast Dynamics of Carotenoid Excited States−From Solution to Natural and Artificial Systems. Chemical Reviews 2004, 104 (4) , 2021-2072. https://doi.org/10.1021/cr020674n
    28. Andreas Dreuw and, Martin Head-Gordon. Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States:  The Zincbacteriochlorin−Bacteriochlorin and Bacteriochlorophyll−Spheroidene Complexes. Journal of the American Chemical Society 2004, 126 (12) , 4007-4016. https://doi.org/10.1021/ja039556n
    29. Gerdenis Kodis,, Christian Herrero,, Rodrigo Palacios,, Ernesto Mariño-Ochoa,, Stephanie Gould,, Linda de la Garza,, Rienk van Grondelle,, Devens Gust,, Thomas A. Moore,, Ana L. Moore, and, John T. M. Kennis. Light Harvesting and Photoprotective Functions of Carotenoids in Compact Artificial Photosynthetic Antenna Designs. The Journal of Physical Chemistry B 2004, 108 (1) , 414-425. https://doi.org/10.1021/jp036139o
    30. Emmanouil Papagiannakis,, Ivo H. M. van Stokkum, and, Rienk van Grondelle, , Robert A. Niederman, , Donatas Zigmantas,, Villy Sundström, and, Tomáš Polívka. A Near-Infrared Transient Absorption Study of the Excited-State Dynamics of the Carotenoid Spirilloxanthin in Solution and in the LH1 Complex of Rhodospirillum rubrum. The Journal of Physical Chemistry B 2003, 107 (40) , 11216-11223. https://doi.org/10.1021/jp034931j
    31. Man-Fai Ng,, Yang Zhao, and, Guan-Hua Chen. Low-Lying Excited States of Light-Harvesting System II in Purple Bacteria. The Journal of Physical Chemistry B 2003, 107 (35) , 9589-9600. https://doi.org/10.1021/jp034320r
    32. Andreas Dreuw,, Graham R. Fleming, and, Martin Head-Gordon. Charge-Transfer State as a Possible Signature of a Zeaxanthin−Chlorophyll Dimer in the Non-photochemical Quenching Process in Green Plants. The Journal of Physical Chemistry B 2003, 107 (27) , 6500-6503. https://doi.org/10.1021/jp034562r
    33. Kazuhiro J. Fujimoto, Tomoya Miyashita, Takehisa Dewa, Takeshi Yanai. Determination of FRET orientation factor between artificial fluorophore and photosynthetic light-harvesting 2 complex (LH2). Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-19375-2
    34. Salwa Torpee, Duangporn Kantachote, Ampaitip Sukhoom, Manee Tantirungkij. Culture optimization to enhance carotenoid production of a selected purple nonsulfur bacterium and its activity against acute hepatopancreatic necrosis disease‐causing Vibrio parahaemolyticus. Biotechnology and Applied Biochemistry 2022, 69 (6) , 2422-2436. https://doi.org/10.1002/bab.2292
    35. Donatas Zigmantas, Tomáš Polívka, Petter Persson, Villy Sundström. Ultrafast laser spectroscopy uncovers mechanisms of light energy conversion in photosynthesis and sustainable energy materials. Chemical Physics Reviews 2022, 3 (4) https://doi.org/10.1063/5.0092864
    36. George A. Sutherland, Pu Qian, C. Neil Hunter, David J.K. Swainsbury, Andrew Hitchcock. Engineering purple bacterial carotenoid biosynthesis to study the roles of carotenoids in light-harvesting complexes. 2022, 137-184. https://doi.org/10.1016/bs.mie.2022.04.001
    37. Dariusz M. Niedzwiedzki, David J. K. Swainsbury, C. Neil Hunter. Carotenoid-to-(bacterio)chlorophyll energy transfer in LH2 antenna complexes from Rba. sphaeroides reconstituted with non-native (bacterio)chlorophylls. Photosynthesis Research 2020, 144 (2) , 155-169. https://doi.org/10.1007/s11120-019-00661-6
    38. Erling Thyrhaug, Craig N. Lincoln, Federico Branchi, Giulio Cerullo, Václav Perlík, František Šanda, Heiko Lokstein, Jürgen Hauer. Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum. Photosynthesis Research 2018, 135 (1-3) , 45-54. https://doi.org/10.1007/s11120-017-0398-3
    39. Dariusz M. Niedzwiedzki, Preston L. Dilbeck, Qun Tang, Elizabeth C. Martin, David F. Bocian, C. Neil Hunter, Dewey Holten. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides. Photosynthesis Research 2017, 131 (3) , 291-304. https://doi.org/10.1007/s11120-016-0322-2
    40. Ying Jia, Ying Shi, Peng Wang, Jian-Ping Zhang. Triplet excitation dynamics of β -carotene studied in three solvents by ns flash photolysis spectroscopy. Chinese Chemical Letters 2017, 28 (1) , 83-88. https://doi.org/10.1016/j.cclet.2016.05.032
    41. NH. Němec, E. Galoppini, H. Imahori, V. Sundstrom, R.J. Groarke. Solar Energy Conversion – Natural to Artificial. 2016https://doi.org/10.1016/B978-0-12-803581-8.00602-0
    42. Li Li, Feng Hu, Yu-Qiang Chang, Yan Zhou, Peng Wang, Jian-Ping Zhang. Triplet excitation dynamics of two keto-carotenoids in n-hexane and in methanol as studied by ns flash photolysis spectroscopy. Chemical Physics Letters 2015, 633 , 114-119. https://doi.org/10.1016/j.cplett.2015.05.022
    43. Dariusz M. Niedzwiedzki, Preston L. Dilbeck, Qun Tang, David J. Mothersole, Elizabeth C. Martin, David F. Bocian, Dewey Holten, C. Neil Hunter. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2015, 1847 (6-7) , 640-655. https://doi.org/10.1016/j.bbabio.2015.04.001
    44. Dariusz M. Niedzwiedzki, Laura Cranston. Excited state lifetimes and energies of okenone and chlorobactene, exemplary keto and non-keto aryl carotenoids. Physical Chemistry Chemical Physics 2015, 17 (20) , 13245-13256. https://doi.org/10.1039/C5CP00836K
    45. Tomáš Polívka, Harry A. Frank. Spectroscopic Investigation of Carotenoids Involved in Non-Photochemical Fluorescence Quenching. 2014, 203-227. https://doi.org/10.1007/978-94-017-9032-1_8
    46. Carolin König, Nicolas Schlüter, Johannes Neugebauer. Direct determination of exciton couplings from subsystem time-dependent density-functional theory within the Tamm–Dancoff approximation. The Journal of Chemical Physics 2013, 138 (3) https://doi.org/10.1063/1.4774117
    47. Smitha Pillai, Janneke Ravensbergen, Antaeres Antoniuk-Pablant, Benjamin D. Sherman, Rienk van Grondelle, Raoul N. Frese, Thomas A. Moore, Devens Gust, Ana L. Moore, John T. M. Kennis. Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad. Physical Chemistry Chemical Physics 2013, 15 (13) , 4775. https://doi.org/10.1039/c3cp50364j
    48. I. B. Klenina, Z. K. Makhneva, A. A. Moskalenko, A. N. Kuzmin, I. I. Proskuryakov. Singlet-triplet excitation fission in light-harvesting complexes of photosynthetic bacteria and in isolated carotenoids. Biophysics 2013, 58 (1) , 43-50. https://doi.org/10.1134/S0006350913010077
    49. Dariusz M. Niedzwiedzki, David Bina, Nichola Picken, Suvi Honkanen, Robert E. Blankenship, Dewey Holten, Richard J. Cogdell. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2012, 1817 (9) , 1576-1587. https://doi.org/10.1016/j.bbabio.2012.05.009
    50. Carolin König, Johannes Neugebauer. Quantum Chemical Description of Absorption Properties and Excited‐State Processes in Photosynthetic Systems. ChemPhysChem 2012, 13 (2) , 386-425. https://doi.org/10.1002/cphc.201100408
    51. A. Yu. Borisov. On the biphoton excitation of the fluorescence of the bacteriochlorophyll molecules of purple photosynthetic bacteria by powerful near IR femto-picosecond pulses. Journal of Experimental and Theoretical Physics 2011, 113 (5) , 901-904. https://doi.org/10.1134/S1063776111150027
    52. Dariusz M. Niedzwiedzki, Marcel Fuciman, Masayuki Kobayashi, Harry A. Frank, Robert E. Blankenship. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum. Photosynthesis Research 2011, 110 (1) , 49-60. https://doi.org/10.1007/s11120-011-9692-7
    53. Dariusz M. Niedzwiedzki, Marcel Fuciman, Harry A. Frank, Robert E. Blankenship. Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2011, 1807 (5) , 518-528. https://doi.org/10.1016/j.bbabio.2011.03.004
    54. H. Němec, E. Galoppini, H. Imahori, V. Sundstrom. Solar Energy Conversion – Natural to Artificial. 2011, 325-359. https://doi.org/10.1016/B978-0-12-374396-1.00020-9
    55. A. Yu. Borisov. Substantiation of the mechanism of biphoton nonresonance excitation of molecules of bacteriochlorophyll of purple bacteria by femtosecond pulses. Optics and Spectroscopy 2010, 109 (5) , 687-689. https://doi.org/10.1134/S0030400X1011007X
    56. Andreas Dreuw, Jan Hendrik Starcke, Josef Wachtveitl. Excited state properties of the astaxanthin radical cation: A quantum chemical study. Chemical Physics 2010, 373 (1-2) , 2-7. https://doi.org/10.1016/j.chemphys.2009.12.010
    57. Sergiu Amarie, Ute Förster, Nina Gildenhoff, Andreas Dreuw, Josef Wachtveitl. Excited state dynamics of the astaxanthin radical cation. Chemical Physics 2010, 373 (1-2) , 8-14. https://doi.org/10.1016/j.chemphys.2010.01.017
    58. Dariusz M. Niedzwiedzki, Miriam M. Enriquez, Amy M. LaFountain, Harry A. Frank. Ultrafast time-resolved absorption spectroscopy of geometric isomers of xanthophylls. Chemical Physics 2010, 373 (1-2) , 80-89. https://doi.org/10.1016/j.chemphys.2010.01.019
    59. Mitsuru Sugisaki, Masazumi Fujiwara, Daisuke Kosumi, Ritsuko Fujii, Mamoru Nango, Richard J. Cogdell, Hideki Hashimoto. Comparison of transient grating signals from spheroidene in an organic solvent and in pigment-protein complexes from Rhodobacter sphaeroides 2.4.1. Physical Review B 2010, 81 (24) https://doi.org/10.1103/PhysRevB.81.245112
    60. Pierre D. Harvey, Christine Stern, Claude P. Gros, Roger Guilard. Through space singlet energy transfers in light-harvesting systems and cofacial bisporphyrin dyads. Journal of Porphyrins and Phthalocyanines 2010, 14 (01) , 55-63. https://doi.org/10.1142/S1088424610001702
    61. Yasushi Koyama, Takeshi Miki, Xiao-Feng Wang, Hiroyoshi Nagae. Dye-Sensitized Solar Cells Based on the Principles and Materials of Photosynthesis: Mechanisms of Suppression and Enhancement of Photocurrent and Conversion Efficiency. International Journal of Molecular Sciences 2009, 10 (11) , 4575-4622. https://doi.org/10.3390/ijms10114575
    62. Jan Hendrik Starcke, Michael Wormit, Andreas Dreuw. Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations. The Journal of Chemical Physics 2009, 131 (14) https://doi.org/10.1063/1.3246350
    63. Wanneng Wang, Zongli Hu, Xuqing Chen, Zhiping Zhao, Jinzhe Li, Guoping Chen. Heterologous synthesis and assembly of functional LHII antenna complexes from Rhodovulum sulfidophilum in Rhodobacter sphaeroides mutant. Molecular Biology Reports 2009, 36 (7) , 1695-1702. https://doi.org/10.1007/s11033-008-9370-9
    64. Villy Sundstrom. Exploring Excited State Processes in Photosynthesis — Features of Photosynthetic Light Harvesting. 2009https://doi.org/10.1002/3527600434.eap662
    65. Michael Wormit, Philipp H.P. Harbach, Jan M. Mewes, Sergiu Amarie, Josef Wachtveitl, Andreas Dreuw. Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes — A theoretical perspective. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2009, 1787 (6) , 738-746. https://doi.org/10.1016/j.bbabio.2009.01.021
    66. I. A. Stepanenko, V. O. Kompanets, S. V. Chekalin, Z. K. Makhneva, A. A. Moskalenko, R. Yu. Pishchalnikov, A. P. Razjivin. Two-photon excitation spectrum of fluorescence of the light-harvesting complex B800–850 from Allochromatium minutissimum within 1200–1500 (600–750) nm spectral range is not carotenoid mediated. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology 2009, 3 (2) , 116-122. https://doi.org/10.1134/S1990747809020020
    67. Tomáš Polívka, Sergei P. Balashov, Pavel Chábera, Eleonora S. Imasheva, Arkady Yartsev, Villy Sundström, Janos K. Lanyi. Femtosecond Carotenoid to Retinal Energy Transfer in Xanthorhodopsin. Biophysical Journal 2009, 96 (6) , 2268-2277. https://doi.org/10.1016/j.bpj.2009.01.004
    68. Harry A. Frank, Tomáš Polívka. Energy Transfer from Carotenoids to Bacteriochlorophylls. 2009, 213-230. https://doi.org/10.1007/978-1-4020-8815-5_12
    69. Pierre D. Harvey, Christine Stern, Claude P. Gros, Roger Guilard. Comments on the through-space singlet energy transfers and energy migration (exciton) in the light harvesting systems. Journal of Inorganic Biochemistry 2008, 102 (3) , 395-405. https://doi.org/10.1016/j.jinorgbio.2007.09.011
    70. Teodor Silviu Balaban, Nina Berova, Charles Michael Drain, Robert Hauschild, Xuefei Huang, Heinz Kalt, Sergei Lebedkin, Jean‐Marie Lehn, Fotis Nifaitis, Gennaro Pescitelli, Valentyn I. Prokhorenko, Gernot Riedel, Gabriela Smeureanu, Joachim Zeller. Syntheses and Energy Transfer in Multiporphyrinic Arrays Self‐Assembled with Hydrogen‐Bonding Recognition Groups and Comparison with Covalent Steroidal Models. Chemistry – A European Journal 2007, 13 (30) , 8411-8427. https://doi.org/10.1002/chem.200601691
    71. Mary Grace I. Galinato, Dariusz Niedzwiedzki, Cailin Deal, Robert R. Birge, Harry A. Frank. Cation radicals of xanthophylls. Photosynthesis Research 2007, 94 (1) , 67-78. https://doi.org/10.1007/s11120-007-9218-5
    72. Michael Wormit, Andreas Dreuw. Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes. Physical Chemistry Chemical Physics 2007, 9 (23) , 2917. https://doi.org/10.1039/b703028b
    73. Andreas Dreuw. Quantum Chemical Methods for the Investigation of Photoinitiated Processes in Biological Systems: Theory and Applications. ChemPhysChem 2006, 7 (11) , 2259-2274. https://doi.org/10.1002/cphc.200600064
    74. Michael Wormit, Andreas Dreuw. Carotenoid Radical Cation Formation in LH2 of Purple Bacteria:  A Quantum Chemical Study. The Journal of Physical Chemistry B 2006, 110 (47) , 24200-24206. https://doi.org/10.1021/jp064568r
    75. Liu Wei-Min, Liu Yuan, Liu Kang-Jun, Yan Yong-Li, Guo Li-Jun, Xu Chun-He, Qian Shi-Xiong. Effect of the mutation of carotenoids on the dynamics of energy transfer in light-harvesting complexes (LH2) from Rhodobacter sphaeroides 601 at room temperature. Chinese Physics 2006, 15 (8) , 1725-1730. https://doi.org/10.1088/1009-1963/15/8/016
    76. Su Lin, Evaldas Katilius, Robielyn P. Ilagan, George N. Gibson, Harry A. Frank, Neal W. Woodbury. Mechanism of Carotenoid Singlet Excited State Energy Transfer in Modified Bacterial Reaction Centers. The Journal of Physical Chemistry B 2006, 110 (31) , 15556-15563. https://doi.org/10.1021/jp061201d
    77. Weimin Liu, Yuan Liu, Lijun Guo, Chunhe Xu, Shixiong Qian. The mutation of carotenoids affects the energy transfer in LH2 light harvesting complexes from Rhodobacter sphaeroides 601 at room temperature. Journal of Luminescence 2006, 119-120 , 350-355. https://doi.org/10.1016/j.jlumin.2006.01.002
    78. Carles Curutchet, Benedetta Mennucci. Toward a Molecular Scale Interpretation of Excitation Energy Transfer in Solvated Bichromophoric Systems. Journal of the American Chemical Society 2005, 127 (47) , 16733-16744. https://doi.org/10.1021/ja055489g
    79. Xiao-Feng Wang, Junfeng Xiang, Peng Wang, Yasushi Koyama, Shozo Yanagida, Yuji Wada, Kazunori Hamada, Shin-ichi Sasaki, Hitoshi Tamiaki. Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers. Chemical Physics Letters 2005, 408 (4-6) , 409-414. https://doi.org/10.1016/j.cplett.2005.04.067
    80. Tomáš Polívka, Cheryl A. Kerfeld, Torbjörn Pascher, Villy Sundström. Spectroscopic Properties of the Carotenoid 3‘-Hydroxyechinenone in the Orange Carotenoid Protein from the Cyanobacterium Arthrospira maxima. Biochemistry 2005, 44 (10) , 3994-4003. https://doi.org/10.1021/bi047473t
    81. Nancy E. Holt, Donatas Zigmantas, Leonas Valkunas, Xiao-Ping Li, Krishna K. Niyogi, Graham R. Fleming. Carotenoid Cation Formation and the Regulation of Photosynthetic Light Harvesting. Science 2005, 307 (5708) , 433-436. https://doi.org/10.1126/science.1105833
    82. Tomáš Polívka, Villy Sundström. Carotenoid Excited States-Photophysics, Ultrafast Dynamics and Photosynthetic Functions. 2005, 187-219. https://doi.org/10.1007/1-4020-2751-6_5
    83. S. Sorgues, J.-M. Mestdagh, B. Soep. Solvation shift of a conical intersection in clusters of excited tetrakis(dimethyl amino)ethylene with ammonia and acetonitrile molecules. Chemical Physics Letters 2004, 399 (1-3) , 234-238. https://doi.org/10.1016/j.cplett.2004.09.151
    84. S. Georgakopoulou, R. van Grondelle, G. van der Zwan. Circular Dichroism of Carotenoids in Bacterial Light-Harvesting Complexes: Experiments and Modeling. Biophysical Journal 2004, 87 (5) , 3010-3022. https://doi.org/10.1529/biophysj.104.047498
    85. Nancy E. Holt, Graham R. Fleming, Krishna K. Niyogi. Toward an Understanding of the Mechanism of Nonphotochemical Quenching in Green Plants. Biochemistry 2004, 43 (26) , 8281-8289. https://doi.org/10.1021/bi0494020
    86. Harry A. Frank, Gary W. Brudvig. Redox Functions of Carotenoids in Photosynthesis. Biochemistry 2004, 43 (27) , 8607-8615. https://doi.org/10.1021/bi0492096
    87. S. Sorgues, J.-M. Mestdagh, B. Soep, J.-P. Visticot. Dynamics of excited tetrakis(dimethylamino)ethylene solvated by argon atoms. Chemical Physics 2004, 301 (2-3) , 225-237. https://doi.org/10.1016/j.chemphys.2004.03.001
    88. Su Lin, Evaldas Katilius, Aileen K. W. Taguchi, Neal W. Woodbury. Excitation Energy Transfer from Carotenoid to Bacteriochlorophyll in the Photosynthetic Purple Bacterial Reaction Center of Rhodobacter s phaeroides. The Journal of Physical Chemistry B 2003, 107 (50) , 14103-14108. https://doi.org/10.1021/jp036130m
    89. D. Zigmantas, R. G. Hiller, V. Sundstrom, T. Polivka. Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. Proceedings of the National Academy of Sciences 2002, 99 (26) , 16760-16765. https://doi.org/10.1073/pnas.262537599

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect