ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Atmospheric Chemistry of Perfluorinated Carboxylic Acids:  Reaction with OH Radicals and Atmospheric Lifetimes

View Author Information
Ford Motor Company, SRL-3083, P.O. Box 2053, Dearborn, Michigan 48121-2053
Department of Chemistry, 80 St. George Street, University of Toronto, Toronto, Ontario, Canada M5S 3H6
Cite this: J. Phys. Chem. A 2004, 108, 4, 615–620
Publication Date (Web):December 30, 2003
https://doi.org/10.1021/jp036343b
Copyright © 2004 American Chemical Society

    Article Views

    1000

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (90 KB)

    Abstract

    Relative rate techniques were used to study the kinetics of the reactions of OH radicals with a homologous series of perfluorinated acids, F(CF2)nCOOH (n = 1, 2, 3, 4), in 700 Torr of air at 296 ± 2 K. For n > 1, the length of the F(CF2)n group had no discernible impact on the reactivity of the molecule. For n = 1, k(OH + F(CF2)nCOOH) = (9.35 ± 2.08) × 10-14 cm3 molecule-1 s-1. For n = 2−4, k(OH + F(CF2)nCOOH) = (1.69 ± 0.22) × 10-13 cm3 molecule-1 s-1. Dimerization constants for 2F(CF2)nCOOH = (F(CF2)nCOOH)2 were determined to be 0.32 ± 0.03 Torr-1, 0.30 ± 0.03 Torr-1, 0.41 ± 0.04 Torr-1, and 0.46 ± 0.05 Torr-1 for n = 1, 2, 3, 4, respectively. Atmospheric lifetimes of F(CF2)nCOOH with respect to reaction with OH radicals are estimated to be approximately 230 days for n = 1 and 130 days for n > 1. Reaction with OH radicals is a minor atmospheric fate of F(CF2)nCOOH. The major atmospheric removal mechanism for F(CF2)nCOOH is believed to be wet and dry deposition which probably occurs on a time scale of the order of 10 days.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 74 publications.

    1. Paige Jacob, Damian E. Helbling. Rapid and Simultaneous Quantification of Short- and Ultrashort-Chain Perfluoroalkyl Substances in Water and Wastewater. ACS ES&T Water 2023, 3 (1) , 118-128. https://doi.org/10.1021/acsestwater.2c00446
    2. Rayne Holland, M. Anwar H. Khan, Isabel Driscoll, Rabi Chhantyal-Pun, Richard G. Derwent, Craig A. Taatjes, Andrew J. Orr-Ewing, Carl J. Percival, Dudley E. Shallcross. Investigation of the Production of Trifluoroacetic Acid from Two Halocarbons, HFC-134a and HFO-1234yf and Its Fates Using a Global Three-Dimensional Chemical Transport Model. ACS Earth and Space Chemistry 2021, 5 (4) , 849-857. https://doi.org/10.1021/acsearthspacechem.0c00355
    3. Nishith Ghosh, Subhadip Roy, Jahur A. Mondal. On the Behavior of Perfluorinated Persistent Organic Pollutants (POPs) at Environmentally Relevant Aqueous Interfaces: An Interplay of Hydrophobicity and Hydrogen Bonding. Langmuir 2020, 36 (14) , 3720-3729. https://doi.org/10.1021/acs.langmuir.0c00189
    4. Ruslan E. Asfin. IR Spectra of Hydrogen-Bonded Complexes of Trifluoroacetic Acid with Acetone and Diethyl Ether in the Gas Phase. Interaction between CH and OH Stretching Vibrations. The Journal of Physical Chemistry A 2019, 123 (15) , 3285-3292. https://doi.org/10.1021/acs.jpca.8b10215
    5. Shouming Zhou, Shira Joudan, Matthew W. Forbes, Zilin Zhou, Jonathan P. D. Abbatt. Reaction of Condensed-Phase Criegee Intermediates with Carboxylic Acids and Perfluoroalkyl Carboxylic Acids. Environmental Science & Technology Letters 2019, 6 (4) , 243-250. https://doi.org/10.1021/acs.estlett.9b00165
    6. Anna K. Huff, Rebecca B. Mackenzie, C. J. Smith, Kenneth R. Leopold. A Perfluorinated Carboxylic Sulfuric Anhydride: Microwave and Computational Studies of CF3COOSO2OH. The Journal of Physical Chemistry A 2019, 123 (11) , 2237-2243. https://doi.org/10.1021/acs.jpca.9b00300
    7. Craig A. Taatjes, M. Anwar H. Khan, Arkke J. Eskola, Carl J. Percival, David L. Osborn, Timothy J. Wallington, Dudley E. Shallcross. Reaction of Perfluorooctanoic Acid with Criegee Intermediates and Implications for the Atmospheric Fate of Perfluorocarboxylic Acids. Environmental Science & Technology 2019, 53 (3) , 1245-1251. https://doi.org/10.1021/acs.est.8b05073
    8. Franziska Heydebreck, Jianhui Tang, Zhiyong Xie, and Ralf Ebinghaus . Emissions of Per- and Polyfluoroalkyl Substances in a Textile Manufacturing Plant in China and Their Relevance for Workers’ Exposure. Environmental Science & Technology 2016, 50 (19) , 10386-10396. https://doi.org/10.1021/acs.est.6b03213
    9. A. Mellouki , T. J. Wallington , J. Chen . Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: Impacts on Air Quality and Climate. Chemical Reviews 2015, 115 (10) , 3984-4014. https://doi.org/10.1021/cr500549n
    10. E. S. Vasiliev, V. D. Knyazev, G. V. Karpov, and I. I. Morozov . Kinetics and Mechanism of the Reaction of Fluorine Atoms with Pentafluoropropionic Acid. The Journal of Physical Chemistry A 2014, 118 (23) , 4013-4018. https://doi.org/10.1021/jp5029382
    11. Sergio Manzetti, E. Roos van der Spoel, and David van der Spoel . Chemical Properties, Environmental Fate, and Degradation of Seven Classes of Pollutants. Chemical Research in Toxicology 2014, 27 (5) , 713-737. https://doi.org/10.1021/tx500014w
    12. Jing Wu, Jonathan W. Martin, Zihan Zhai, Keding Lu, Li Li, Xuekun Fang, Hangbiao Jin, Jianxin Hu, and Jianbo Zhang . Airborne Trifluoroacetic Acid and Its Fraction from the Degradation of HFC-134a in Beijing, China. Environmental Science & Technology 2014, 48 (7) , 3675-3681. https://doi.org/10.1021/es4050264
    13. Annekatrin Dreyer, Sabine Thuens, Torben Kirchgeorg, and Michael Radke . Ombrotrophic Peat Bogs Are Not Suited as Natural Archives To Investigate the Historical Atmospheric Deposition of Perfluoroalkyl Substances. Environmental Science & Technology 2012, 46 (14) , 7512-7519. https://doi.org/10.1021/es204175y
    14. Malisa S. Chiappero and Gustavo A. Argüello, M. D. Hurley and T. J. Wallington. Atmospheric Chemistry of n-C6F13CH2CHO: Formation from n-C6F13CH2CH2OH, Kinetics, and Mechanisms of Reactions with Chlorine Atoms and OH Radicals. The Journal of Physical Chemistry A 2010, 114 (20) , 6131-6137. https://doi.org/10.1021/jp101587m
    15. Deborah J. Luecken , Robert L. Waterland , Stella Papasavva , Kristen N. Taddonio , William T. Hutzell , John P. Rugh , and Stephen O. Andersen . Ozone and TFA Impacts in North America from Degradation of 2,3,3,3-Tetrafluoropropene (HFO-1234yf), A Potential Greenhouse Gas Replacement. Environmental Science & Technology 2010, 44 (1) , 343-348. https://doi.org/10.1021/es902481f
    16. Hans Peter H. Arp and Kai-Uwe Goss . Gas/Particle Partitioning Behavior of Perfluorocarboxylic Acids with Terrestrial Aerosols. Environmental Science & Technology 2009, 43 (22) , 8542-8547. https://doi.org/10.1021/es901864s
    17. Annekatrin Dreyer, Ingo Weinberg, Christian Temme and Ralf Ebinghaus . Polyfluorinated Compounds in the Atmosphere of the Atlantic and Southern Oceans: Evidence for a Global Distribution. Environmental Science & Technology 2009, 43 (17) , 6507-6514. https://doi.org/10.1021/es9010465
    18. Annekatrin Dreyer, Volker Matthias, Christian Temme and Ralf Ebinghaus. Annual Time Series of Air Concentrations of Polyfluorinated Compounds. Environmental Science & Technology 2009, 43 (11) , 4029-4036. https://doi.org/10.1021/es900257w
    19. Colin J. McMurdo, David A. Ellis, Eva Webster, Jessica Butler, Rebecca D. Christensen and Liisa K. Reid . Aerosol Enrichment of the Surfactant PFO and Mediation of the Water−Air Transport of Gaseous PFOA. Environmental Science & Technology 2008, 42 (11) , 3969-3974. https://doi.org/10.1021/es7032026
    20. R. Dietz, R. Bossi, F. F. Rigét, C. Sonne and E. W. Born. Increasing Perfluoroalkyl Contaminants in East Greenland Polar Bears (Ursus maritimus): A New Toxic Threat to the Arctic Bears. Environmental Science & Technology 2008, 42 (7) , 2701-2707. https://doi.org/10.1021/es7025938
    21. Bin Ouyang,, Tony G. Starkey, and, Brian J. Howard. High-Resolution Microwave Studies of Ring-Structured Complexes between Trifluoroacetic Acid and Water. The Journal of Physical Chemistry A 2007, 111 (28) , 6165-6175. https://doi.org/10.1021/jp071130y
    22. Nabilah Rontu and, Veronica Vaida. Miscibility of Perfluorododecanoic Acid with Organic Acids at the Air−Water Interface. The Journal of Physical Chemistry C 2007, 111 (27) , 9975-9980. https://doi.org/10.1021/jp0718395
    23. T. Nakayama,, K. Takahashi,, Y. Matsumi,, A. Toft,, M. P. Sulbaek Andersen,, O. J. Nielsen,, R. L. Waterland,, R. C. Buck,, M. D. Hurley, and, T. J. Wallington. Atmospheric Chemistry of CF3CHCH2 and C4F9CHCH2:  Products of the Gas-Phase Reactions with Cl Atoms and OH Radicals. The Journal of Physical Chemistry A 2007, 111 (5) , 909-915. https://doi.org/10.1021/jp066736l
    24. M. P. Sulbaek Andersen,, A. Toft,, O. J. Nielsen,, M. D. Hurley,, T. J. Wallington,, H. Chishima,, K. Tonokura,, S. A. Mabury,, J. W. Martin, and, D. A. Ellis. Atmospheric Chemistry of Perfluorinated Aldehyde Hydrates (n-CxF2x+1CH(OH)2, x = 1, 3, 4):  Hydration, Dehydration, and Kinetics and Mechanism of Cl Atom and OH Radical Initiated Oxidation. The Journal of Physical Chemistry A 2006, 110 (32) , 9854-9860. https://doi.org/10.1021/jp060404z
    25. Jean-Paul Le Crâne and, Eric Villenave, , Michael D. Hurley,, Timothy J. Wallington, and, James C. Ball. Atmospheric Chemistry of Propionaldehyde:  Kinetics and Mechanisms of Reactions with OH Radicals and Cl Atoms, UV Spectrum, and Self-Reaction Kinetics of CH3CH2C(O)O2 Radicals at 298 K. The Journal of Physical Chemistry A 2005, 109 (51) , 11837-11850. https://doi.org/10.1021/jp0519868
    26. Michael D. Hurley,, Jessica A. Misner,, James C. Ball, and, Timothy J. Wallington, , D. A. Ellis,, J. W. Martin, and, S. A. Mabury, , M. P. Sulbaek Andersen. Atmospheric Chemistry of CF3CH2CH2OH:  Kinetics, Mechanisms and Products of Cl Atom and OH Radical Initiated Oxidation in the Presence and Absence of NOX. The Journal of Physical Chemistry A 2005, 109 (43) , 9816-9826. https://doi.org/10.1021/jp0535902
    27. M. P. Sulbaek Andersen and, O. J. Nielsen, , M. D. Hurley,, J. C. Ball, and, T. J. Wallington, , D. A. Ellis,, J. W. Martin, and, S. A. Mabury. Atmospheric Chemistry of 4:2 Fluorotelomer Alcohol (n-C4F9CH2CH2OH):  Products and Mechanism of Cl Atom Initiated Oxidation in the Presence of NOx. The Journal of Physical Chemistry A 2005, 109 (9) , 1849-1856. https://doi.org/10.1021/jp045672g
    28. N. I. Butkovskaya,, A. Kukui,, N. Pouvesle, and, G. Le Bras. Rate Constant and Mechanism of the Reaction of OH Radicals with Acetic Acid in the Temperature Range of 229−300 K. The Journal of Physical Chemistry A 2004, 108 (34) , 7021-7026. https://doi.org/10.1021/jp048444v
    29. M. P. Sulbaek Andersen,, C. Stenby, and, O. J. Nielsen, , M. D. Hurley,, J. C. Ball, and, T. J. Wallington, , J. W. Martin,, D. A. Ellis, and, S. A. Mabury. Atmospheric Chemistry of n-CxF2x+1CHO (x = 1, 3, 4):  Mechanism of the CxF2x+1C(O)O2 + HO2 Reaction. The Journal of Physical Chemistry A 2004, 108 (30) , 6325-6330. https://doi.org/10.1021/jp048849f
    30. M. D. Hurley,, J. C. Ball, and, T. J. Wallington, , M. P. Sulbaek Andersen, , D. A. Ellis,, J. W. Martin, and, S. A. Mabury. Atmospheric Chemistry of 4:2 Fluorotelomer Alcohol (CF3(CF2)3CH2CH2OH):  Products and Mechanism of Cl Atom Initiated Oxidation. The Journal of Physical Chemistry A 2004, 108 (26) , 5635-5642. https://doi.org/10.1021/jp0493576
    31. M. P. Sulbaek Andersen and, O. J. Nielsen, , M. D. Hurley,, J. C. Ball, and, T. J. Wallington, , J. E. Stevens, , J. W. Martin,, D. A. Ellis, and, S. A. Mabury. Atmospheric Chemistry of n-CxF2x+1CHO (x = 1, 3, 4):  Reaction with Cl Atoms, OH Radicals and IR Spectra of CxF2x+1C(O)O2NO2. The Journal of Physical Chemistry A 2004, 108 (24) , 5189-5196. https://doi.org/10.1021/jp0496598
    32. Yang Liu, Meng-Yuan Lu, Jia Bao, Li-Xin Shao, Wen-Jing Yu, Xiao-Min Hu, Xin Zhao. Periodically reversing electrocoagulation technique for efficient removal of short-chain perfluoroalkyl substances from contaminated groundwater around a fluorochemical facility. Chemosphere 2023, 334 , 138953. https://doi.org/10.1016/j.chemosphere.2023.138953
    33. A. Jumabaev, A. Absanov, H. Hushvaktov, L. Bulavin. Raman Scattering Spectra and DFT Computational Analyzes of Intermolecular Interactions in Trifluoroacetic and Its Solutions. Ukrainian Journal of Physics 2023, 68 (4) , 246. https://doi.org/10.15407/ujpe68.4.246
    34. Eric J. Weber, Caroline Tebes-Stevens, John W. Washington, Rachel Gladstone. Development of a PFAS reaction library: identifying plausible transformation pathways in environmental and biological systems. Environmental Science: Processes & Impacts 2022, 24 (5) , 689-753. https://doi.org/10.1039/D1EM00445J
    35. Weibo Zheng, Liangfei Xu, Zunyan Hu, Yujie Ding, Jianqiu Li, Minggao Ouyang. Dynamic modeling of chemical membrane degradation in polymer electrolyte fuel cells: Effect of pinhole formation. Journal of Power Sources 2021, 487 , 229367. https://doi.org/10.1016/j.jpowsour.2020.229367
    36. Zhenhai Wu, Yuanyuan Ji, Hong Li, Fang Bi, Ren Yanqin, Rui Gao, Chenfei Liu, Ling Li, Hao Zhang, Xin Zhang, Xuezhong Wang. Study on the pyrolysis characteristics of a series of fluorinated cyclopentenes and implication of their environmental influence. Chemical Physics Letters 2021, 764 , 138213. https://doi.org/10.1016/j.cplett.2020.138213
    37. Heidi M. Pickard, Alison S. Criscitiello, Daniel Persaud, Christine Spencer, Derek C. G. Muir, Igor Lehnherr, Martin J. Sharp, Amila O. De Silva, Cora J. Young. Ice Core Record of Persistent Short‐Chain Fluorinated Alkyl Acids: Evidence of the Impact From Global Environmental Regulations. Geophysical Research Letters 2020, 47 (10) https://doi.org/10.1029/2020GL087535
    38. Li Li. The Degradation of Fluorotelomer-Based Polymers Contributes to the Global Occurrence of Fluorotelomer Alcohols and Perfluoroalkyl Carboxylates. 2020, 63-77. https://doi.org/10.1007/978-981-15-0579-9_4
    39. Ian T. Cousins, Carla A. Ng, Zhanyun Wang, Martin Scheringer. Why is high persistence alone a major cause of concern?. Environmental Science: Processes & Impacts 2019, 21 (5) , 781-792. https://doi.org/10.1039/C8EM00515J
    40. Mohamed Ateia, Amith Maroli, Nishanth Tharayil, Tanju Karanfil. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere 2019, 220 , 866-882. https://doi.org/10.1016/j.chemosphere.2018.12.186
    41. Wenxiu Liu, Jingyi Wu, Wei He, Fuliu Xu. A review on perfluoroalkyl acids studies: Environmental behaviors, toxic effects, and ecological and health risks. Ecosystem Health and Sustainability 2019, 5 (1) , 1-19. https://doi.org/10.1080/20964129.2018.1558031
    42. Qi Wang, Zhen Zhao, Yuefei Ruan, Jun Li, Hongwen Sun, Gan Zhang. Occurrence and distribution of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in natural forest soils: A nationwide study in China. Science of The Total Environment 2018, 645 , 596-602. https://doi.org/10.1016/j.scitotenv.2018.07.151
    43. Erik Dixon‐Anderson, Rainer Lohmann. Field‐testing polyethylene passive samplers for the detection of neutral polyfluorinated alkyl substances in air and water. Environmental Toxicology and Chemistry 2018, 37 (12) , 3002-3010. https://doi.org/10.1002/etc.4264
    44. A. Soto, B. Ballesteros, E. Jiménez, M. Antiñolo, E. Martínez, J. Albaladejo. Kinetic and mechanistic study of the gas-phase reaction of CxF2x+1CH CH2 (x=1, 2, 3, 4 and 6) with O3 under atmospheric conditions. Chemosphere 2018, 201 , 318-327. https://doi.org/10.1016/j.chemosphere.2018.02.183
    45. Fiona Wong, Mahiba Shoeib, Athanasios Katsoyiannis, Sabine Eckhardt, Andreas Stohl, Pernilla Bohlin-Nizzetto, Henrik Li, Phil Fellin, Yushan Su, Hayley Hung. Assessing temporal trends and source regions of per- and polyfluoroalkyl substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP). Atmospheric Environment 2018, 172 , 65-73. https://doi.org/10.1016/j.atmosenv.2017.10.028
    46. R. Singh, P. C. Sui, K. H. Wong, E. Kjeang, S. Knights, N. Djilali. Modeling the Effect of Chemical Membrane Degradation on PEMFC Performance. Journal of The Electrochemical Society 2018, 165 (6) , F3328-F3336. https://doi.org/10.1149/2.0351806jes
    47. Rabi Chhantyal‐Pun, Max R. McGillen, Joseph M. Beames, M. Anwar H. Khan, Carl J. Percival, Dudley E. Shallcross, Andrew J. Orr‐Ewing. Temperature‐Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates. Angewandte Chemie 2017, 129 (31) , 9172-9175. https://doi.org/10.1002/ange.201703700
    48. Rabi Chhantyal‐Pun, Max R. McGillen, Joseph M. Beames, M. Anwar H. Khan, Carl J. Percival, Dudley E. Shallcross, Andrew J. Orr‐Ewing. Temperature‐Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates. Angewandte Chemie International Edition 2017, 56 (31) , 9044-9047. https://doi.org/10.1002/anie.201703700
    49. Zhanyun Wang, Ian T. Cousins, Urs Berger, Konrad Hungerbühler, Martin Scheringer. Comparative assessment of the environmental hazards of and exposure to perfluoroalkyl phosphonic and phosphinic acids (PFPAs and PFPiAs): Current knowledge, gaps, challenges and research needs. Environment International 2016, 89-90 , 235-247. https://doi.org/10.1016/j.envint.2016.01.023
    50. Zhanyun Wang, Ian T. Cousins, Martin Scheringer. Comment on “The environmental photolysis of perfluorooctanesulfonate, perfluorooctanoate, and related fluorochemicals”. Chemosphere 2015, 122 , 301-303. https://doi.org/10.1016/j.chemosphere.2014.03.066
    51. Martin Scheringer, Xenia Trier, Ian T. Cousins, Pim de Voogt, Tony Fletcher, Zhanyun Wang, Thomas F. Webster. Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere 2014, 114 , 337-339. https://doi.org/10.1016/j.chemosphere.2014.05.044
    52. Zhou Song, Heqing Tang, Nan Wang, Xiaobo Wang, Lihua Zhu. Activation of persulfate by UV and Fe 2+ for the defluorination of perfluorooctanoic acid. Advances in environmental research 2014, 3 (3) , 185-197. https://doi.org/10.12989/aer.2014.3.3.185
    53. Zhanyun Wang, Ian T. Cousins, Martin Scheringer, Robert C. Buck, Konrad Hungerbühler. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environment International 2014, 70 , 62-75. https://doi.org/10.1016/j.envint.2014.04.013
    54. Lena Vierke, Claudia Staude, Annegret Biegel-Engler, Wiebke Drost, Christoph Schulte. Perfluorooctanoic acid (PFOA) — main concerns and regulatory developments in Europe from an environmental point of view. Environmental Sciences Europe 2012, 24 (1) https://doi.org/10.1186/2190-4715-24-16
    55. . Modellierung von Persistenz und Ferntransport. 2012, 525-566. https://doi.org/10.1002/9783527672110.ch10
    56. Chao Song, Peng Chen, Chunying Wang, Lingyan Zhu. Photodegradation of perfluorooctanoic acid by synthesized TiO2–MWCNT composites under 365 nm UV irradiation. Chemosphere 2012, 86 (8) , 853-859. https://doi.org/10.1016/j.chemosphere.2011.11.034
    57. Eva Webster, David A. Ellis, Liisa K. Reid. Modeling the environmental fate of perfluorooctanoic acid and perfluorooctanoate: An investigation of the role of individual species partitioning. Environmental Toxicology and Chemistry 2010, 29 (7) , 1466-1475. https://doi.org/10.1002/etc.181
    58. Annekatrin Dreyer, Volker Matthias, Ingo Weinberg, Ralf Ebinghaus. Wet deposition of poly- and perfluorinated compounds in Northern Germany. Environmental Pollution 2010, 158 (5) , 1221-1227. https://doi.org/10.1016/j.envpol.2010.01.030
    59. Michelle M. Phillips, Mary J.A. Dinglasan-Panlilio, Scott A. Mabury, Keith R. Solomon, Paul K. Sibley. Chronic toxicity of fluorotelomer acids to Daphnia magna and Chironomus dilutus. Environmental Toxicology and Chemistry 2010, 38 , n/a-n/a. https://doi.org/10.1002/etc.141
    60. Eva Webster, David A. Ellis. Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids. Environmental Toxicology and Chemistry 2010, 40 , n/a-n/a. https://doi.org/10.1002/etc.228
    61. Cora J. Young, Scott A. Mabury. Atmospheric Perfluorinated Acid Precursors: Chemistry, Occurrence, and Impacts. 2010, 1-109. https://doi.org/10.1007/978-1-4419-6880-7_1
    62. I. Stemmler, G. Lammel. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources. Atmospheric Chemistry and Physics 2010, 10 (20) , 9965-9980. https://doi.org/10.5194/acp-10-9965-2010
    63. Sierra Rayne, Kaya Forest, Ken J. Friesen. Estimated congener specific gas-phase atmospheric behavior and fractionation of perfluoroalkyl compounds: Rates of reaction with atmospheric oxidants, air-water partitioning, and wet/dry deposition lifetimes. Journal of Environmental Science and Health, Part A 2009, 44 (10) , 936-954. https://doi.org/10.1080/10934520902996815
    64. Annekatrin Dreyer, Ralf Ebinghaus. Polyfluorinated compounds in ambient air from ship- and land-based measurements in northern Germany. Atmospheric Environment 2009, 43 (8) , 1527-1535. https://doi.org/10.1016/j.atmosenv.2008.11.047
    65. M. Danilczuk, F. D. Coms, S. Schlick. Fragmentation of Fluorinated Model Compounds Exposed to Oxygen Radicals: Spin Trapping ESR Experiments and Implications for the Behaviour of Proton Exchange Membranes Used in Fuel Cells. Fuel Cells 2008, 8 (6) , 436-452. https://doi.org/10.1002/fuce.200700057
    66. Shuzo Kutsuna, Hisao Hori. Experimental determination of Henry's law constant of perfluorooctanoic acid (PFOA) at 298K by means of an inert-gas stripping method with a helical plate. Atmospheric Environment 2008, 42 (39) , 8883-8892. https://doi.org/10.1016/j.atmosenv.2008.09.008
    67. R. Bossi, J. Strand, O. Sortkjær, M.M. Larsen. Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments. Environment International 2008, 34 (4) , 443-450. https://doi.org/10.1016/j.envint.2007.10.002
    68. Christian Sonne, Rossana Bossi, Rune Dietz, Pall S. Leifsson, Frank F. Rigét, Erik W. Born. Potential correlation between perfluorinated acids and liver morphology in East Greenland polar bears ( Ursus maritimus ). Toxicological & Environmental Chemistry 2008, 90 (2) , 275-283. https://doi.org/10.1080/02772240701391629
    69. John R. Parsons, Monica Sáez, Jan Dolfing, Pim de Voogt. Biodegradation of Perfluorinated Compounds. 2008, 53-71. https://doi.org/10.1007/978-0-387-78444-1_2
    70. Li Huang, Wenbo Dong, Huiqi Hou. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chemical Physics Letters 2007, 436 (1-3) , 124-128. https://doi.org/10.1016/j.cplett.2007.01.037
    71. M.P. Sulbaek Andersen, O.J. Nielsen, A. Toft, T. Nakayama, Y. Matsumi, R.L. Waterland, R.C. Buck, M.D. Hurley, T.J. Wallington. Atmospheric chemistry of C F2+1CH CH2 (x= 1, 2, 4, 6, and 8): Kinetics of gas-phase reactions with Cl atoms, OH radicals, and O3. Journal of Photochemistry and Photobiology A: Chemistry 2005, 176 (1-3) , 124-128. https://doi.org/10.1016/j.jphotochem.2005.06.015
    72. Rossana Bossi, Frank F. Riget, Rune Dietz, Christian Sonne, Patrik Fauser, Maria Dam, Katrin Vorkamp. Preliminary screening of perfluorooctane sulfonate (PFOS) and other fluorochemicals in fish, birds and marine mammals from Greenland and the Faroe Islands. Environmental Pollution 2005, 136 (2) , 323-329. https://doi.org/10.1016/j.envpol.2004.12.020
    73. . Aquatic Processes and Systems in PerspectiveGlobal transport and fate of perfluorochemicals. Journal of Environmental Monitoring 2005, 759. https://doi.org/10.1039/b509482h
    74. J. P. Giesy, S. A. Mabury, J. W. Martin, K. Kannan, P. D. Jones, J. L. Newsted, K. Coady. Perfluorinated Compounds in the Great Lakes. , 391-438. https://doi.org/10.1007/698_5_046

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect