ACS Publications. Most Trusted. Most Cited. Most Read
Asymmetry in the Shapes of Folded and Denatured States of Proteins
My Activity

Figure 1Loading Img
    Article

    Asymmetry in the Shapes of Folded and Denatured States of Proteins
    Click to copy article linkArticle link copied!

    View Author Information
    Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2004, 108, 21, 6564–6570
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp037128y
    Published March 16, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The asymmetry in the shapes of folded and unfolded states are probed using two parameters, Δ (a measure of the sphericity) and S that describes the shape (S > 0 corresponds to prolate and S < 0 represents oblate). For the folded states, whose interiors are densely packed, the radii of gyration (Rg), Δ, and S are calculated using the coordinates of the experimentally determined structures. Although Rg scales as N1/3, as expected for maximally compact structures, the distributions of Δ and S show that there is considerable asymmetry in the shapes of folded structures. The degree of asymmetry is greater for proteins that form oligomers. Analysis of the two- and three-body contacts in the native structures shows that the presence of near equal number of contacts between backbone and side-chains and between side-chains gives rise to dense packing. We suggest that proteins with relatively large values of Δ and S can tolerate volume mutations without greatly affecting the network of contacts or their stability. Limited analysis of the mutagenesis data on T4 lysozyme and λ-repressor support this conclusion. To probe shape characteristics of denatured states we have developed a CαCβ model of a WW-like domain. The shape parameters, which are calculated using Langevin simulations, change dramatically in the course of coil-to-globule transition. Comparison of the values of Δ and S between the globular state and the folded state of WW domain shows that both energetic (especially dispersion in the hydrophobic interactions) and steric effects are important in determining packing in proteins.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Part of the special issue “Hans C. Andersen Festschrift”.

    *

     Corresponding author.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 150 publications.

    1. Saikat Chakraborty, Tatiana I. Morozova, Jean-Louis Barrat. Intrinsically Disordered Proteins Can Behave as Different Polymers across Their Conformational Ensemble. The Journal of Physical Chemistry B 2025, 129 (9) , 2359-2369. https://doi.org/10.1021/acs.jpcb.4c07020
    2. Krishnakanth Baratam, Anand Srivastava. SOP-MULTI: A Self-Organized Polymer-Based Coarse-Grained Model for Multidomain and Intrinsically Disordered Proteins with Conformation Ensemble Consistent with Experimental Scattering Data. Journal of Chemical Theory and Computation 2024, 20 (22) , 10179-10198. https://doi.org/10.1021/acs.jctc.4c00579
    3. Tao Zhu, Chunhe Li, Xiakun Chu. Fluctuating Chromatin Facilitates Enhancer–Promoter Communication by Regulating Transcriptional Clustering Dynamics. The Journal of Physical Chemistry Letters 2024, 15 (45) , 11428-11436. https://doi.org/10.1021/acs.jpclett.4c02453
    4. Guorong Hu, Haoyu Song, Xiangjun Chen, Jingyuan Li. Wet Conformation of Prion-Like Domain and Intimate Correlation of Hydration and Conformational Fluctuations. The Journal of Physical Chemistry Letters 2024, 15 (32) , 8315-8325. https://doi.org/10.1021/acs.jpclett.4c01476
    5. Nuno F. B. Oliveira, Filipe E. P. Rodrigues, João N. M. Vitorino, Patrícia F. N. Faísca, Miguel Machuqueiro. Interfacial Dynamics and Growth Modes of β2-Microglobulin Dimers. Journal of Chemical Information and Modeling 2023, 63 (14) , 4447-4457. https://doi.org/10.1021/acs.jcim.3c00399
    6. Erin Tsai, Hishara Keshani Gallage Dona, Xinjie Tong, Pu Du, Brian Novak, Rolf David, Steven W. Rick, Donghui Zhang, Revati Kumar. Unraveling the Role of Charge Patterning in the Micellar Structure of Sequence-Defined Amphiphilic Peptoid Oligomers by Molecular Dynamics Simulations. Macromolecules 2022, 55 (12) , 5197-5212. https://doi.org/10.1021/acs.macromol.2c00141
    7. Petteri Vainikka, Sebastian Thallmair, Paulo Cesar Telles Souza, Siewert J. Marrink. Martini 3 Coarse-Grained Model for Type III Deep Eutectic Solvents: Thermodynamic, Structural, and Extraction Properties. ACS Sustainable Chemistry & Engineering 2021, 9 (51) , 17338-17350. https://doi.org/10.1021/acssuschemeng.1c06521
    8. Anuradha Bhat, Michael T. Harris, Vance W. Jaeger. Structural Insights into Self-Assembled Aerosol-OT Aggregates in Aqueous Media Using Atomistic Molecular Dynamics. The Journal of Physical Chemistry B 2021, 125 (50) , 13789-13803. https://doi.org/10.1021/acs.jpcb.1c07136
    9. Fabian Dingfelder, Iuri Macocco, Stephan Benke, Daniel Nettels, Pietro Faccioli, Benjamin Schuler. Slow Escape from a Helical Misfolded State of the Pore-Forming Toxin Cytolysin A. JACS Au 2021, 1 (8) , 1217-1230. https://doi.org/10.1021/jacsau.1c00175
    10. Jianhui Song, Jichen Li, Hue Sun Chan. Small-Angle X-ray Scattering Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles. The Journal of Physical Chemistry B 2021, 125 (24) , 6451-6478. https://doi.org/10.1021/acs.jpcb.1c02453
    11. Jane HyoJin Lee, Changho Kim, Mayya Tokman, Michael E. Colvin. Energy Component Analysis of Electric Field-Induced Shape Change in Water Nanodroplets. The Journal of Physical Chemistry C 2021, 125 (12) , 6933-6944. https://doi.org/10.1021/acs.jpcc.1c00632
    12. Serdal Kirmizialtin, Felicia Pitici, Alfredo E. Cardenas, Ron Elber, D. Thirumalai. Dramatic Shape Changes Occur as Cytochrome c Folds. The Journal of Physical Chemistry B 2020, 124 (38) , 8240-8248. https://doi.org/10.1021/acs.jpcb.0c05802
    13. Michael Landreh, Cagla Sahin, Joseph Gault, Samira Sadeghi, Chester L. Drum, Povilas Uzdavinys, David Drew, Timothy M. Allison, Matteo T. Degiacomi, Erik G. Marklund. Predicting the Shapes of Protein Complexes through Collision Cross Section Measurements and Database Searches. Analytical Chemistry 2020, 92 (18) , 12297-12303. https://doi.org/10.1021/acs.analchem.0c01940
    14. Natalie E. Stenzoski, Junjie Zou, Andrea Piserchio, Ranajeet Ghose, Alex S. Holehouse, Daniel P. Raleigh. The Cold-Unfolded State Is Expanded but Contains Long- and Medium-Range Contacts and Is Poorly Described by Homopolymer Models. Biochemistry 2020, 59 (36) , 3290-3299. https://doi.org/10.1021/acs.biochem.0c00469
    15. Upayan Baul, Michael Bley, Joachim Dzubiella. Thermal Compaction of Disordered and Elastin-like Polypeptides: A Temperature-Dependent, Sequence-Specific Coarse-Grained Simulation Model. Biomacromolecules 2020, 21 (9) , 3523-3538. https://doi.org/10.1021/acs.biomac.0c00546
    16. Leena Aggarwal, Parbati Biswas. Effect of Alzheimer’s Disease Causative and Protective Mutations on the Hydration Environment of Amyloid-β. The Journal of Physical Chemistry B 2020, 124 (12) , 2311-2322. https://doi.org/10.1021/acs.jpcb.9b10425
    17. Xiakun Chu, Zucai Suo, Jin Wang. Confinement and Crowding Effects on Folding of a Multidomain Y-Family DNA Polymerase. Journal of Chemical Theory and Computation 2020, 16 (2) , 1319-1332. https://doi.org/10.1021/acs.jctc.9b01146
    18. Junjie Zou, Carlos Simmerling, Daniel P. Raleigh. Dissecting the Energetics of Intrinsically Disordered Proteins via a Hybrid Experimental and Computational Approach. The Journal of Physical Chemistry B 2019, 123 (49) , 10394-10402. https://doi.org/10.1021/acs.jpcb.9b08323
    19. Fabio C. Zegarra, Dirar Homouz, Andrei G. Gasic, Lucas Babel, Michael Kovermann, Pernilla Wittung-Stafshede, Margaret S. Cheung. Crowding-Induced Elongated Conformation of Urea-Unfolded Apoazurin: Investigating the Role of Crowder Shape in Silico. The Journal of Physical Chemistry B 2019, 123 (17) , 3607-3617. https://doi.org/10.1021/acs.jpcb.9b00782
    20. Upayan Baul, Debayan Chakraborty, Mauro L. Mugnai, John E. Straub, D. Thirumalai. Sequence Effects on Size, Shape, and Structural Heterogeneity in Intrinsically Disordered Proteins. The Journal of Physical Chemistry B 2019, 123 (16) , 3462-3474. https://doi.org/10.1021/acs.jpcb.9b02575
    21. Robert I. Cukier. Generating Intrinsically Disordered Protein Conformational Ensembles from a Database of Ramachandran Space Pair Residue Probabilities Using a Markov Chain. The Journal of Physical Chemistry B 2018, 122 (39) , 9087-9101. https://doi.org/10.1021/acs.jpcb.8b05797
    22. Abdolreza Javidialesaadi and George Stan . Asymmetric Conformational Transitions in AAA+ Biological Nanomachines Modulate Direction-Dependent Substrate Protein Unfolding Mechanisms. The Journal of Physical Chemistry B 2017, 121 (29) , 7108-7121. https://doi.org/10.1021/acs.jpcb.7b05963
    23. Hongsuk Kang, Francisco X. Vázquez, Leili Zhang, Payel Das, Leticia Toledo-Sherman, Binquan Luan, Michael Levitt, and Ruhong Zhou . Emerging β-Sheet Rich Conformations in Supercompact Huntingtin Exon-1 Mutant Structures. Journal of the American Chemical Society 2017, 139 (26) , 8820-8827. https://doi.org/10.1021/jacs.7b00838
    24. Zhenxing Liu, Govardhan Reddy, and D. Thirumalai . Folding PDZ2 Domain Using the Molecular Transfer Model. The Journal of Physical Chemistry B 2016, 120 (33) , 8090-8101. https://doi.org/10.1021/acs.jpcb.6b00327
    25. Hongsuk Kang, Ngo Minh Toan, Changbong Hyeon, and D. Thirumalai . Unexpected Swelling of Stiff DNA in a Polydisperse Crowded Environment. Journal of the American Chemical Society 2015, 137 (34) , 10970-10978. https://doi.org/10.1021/jacs.5b04531
    26. Pooja Rani and Parbati Biswas . Local Structure and Dynamics of Hydration Water in Intrinsically Disordered Proteins. The Journal of Physical Chemistry B 2015, 119 (34) , 10858-10867. https://doi.org/10.1021/jp511961c
    27. Martín Carballo-Pacheco, Ahmed E. Ismail, and Birgit Strodel . Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations. The Journal of Physical Chemistry B 2015, 119 (30) , 9696-9705. https://doi.org/10.1021/acs.jpcb.5b04822
    28. Iris W. Fu, Cade B. Markegard, and Hung D. Nguyen . Solvent Effects on Kinetic Mechanisms of Self-Assembly by Peptide Amphiphiles via Molecular Dynamics Simulations. Langmuir 2015, 31 (1) , 315-324. https://doi.org/10.1021/la503399x
    29. Julija Zavadlav, Manuel N. Melo, Ana V. Cunha, Alex H. de Vries, Siewert J. Marrink, and Matej Praprotnik . Adaptive Resolution Simulation of MARTINI Solvents. Journal of Chemical Theory and Computation 2014, 10 (6) , 2591-2598. https://doi.org/10.1021/ct5001523
    30. Lu Liu, Michael Werner, and Anne Gershenson . Collapse of a Long Axis: Single-Molecule Förster Resonance Energy Transfer and Serpin Equilibrium Unfolding. Biochemistry 2014, 53 (18) , 2903-2914. https://doi.org/10.1021/bi401622n
    31. Marco Brucale, Benjamin Schuler, and Bruno Samorì . Single-Molecule Studies of Intrinsically Disordered Proteins. Chemical Reviews 2014, 114 (6) , 3281-3317. https://doi.org/10.1021/cr400297g
    32. D. Balamurugan, Adelia J. A. Aquino, Francis de Dios, Lionel Flores, Jr., Hans Lischka, and Margaret S. Cheung . Multiscale Simulation of the Ground and Photo-Induced Charge-Separated States of a Molecular Triad in Polar Organic Solvent: Exploring the Conformations, Fluctuations, and Free Energy Landscapes. The Journal of Physical Chemistry B 2013, 117 (40) , 12065-12075. https://doi.org/10.1021/jp4026927
    33. Chitra Narayanan, Daniel S. Weinstock, Kuen-Phon Wu, Jean Baum, and Ronald M. Levy . Investigation of the Polymeric Properties of α-Synuclein and Comparison with NMR Experiments: A Replica Exchange Molecular Dynamics Study. Journal of Chemical Theory and Computation 2012, 8 (10) , 3929-3942. https://doi.org/10.1021/ct300241t
    34. Guoxiong Su, Arkadiusz Czader, Dirar Homouz, Gabriela Bernardes, Sana Mateen, and Margaret S. Cheung . Multiscale Simulation on a Light-Harvesting Molecular Triad. The Journal of Physical Chemistry B 2012, 116 (29) , 8460-8473. https://doi.org/10.1021/jp212273n
    35. Nidhi Rawat and Parbati Biswas . Hydrophobic Moments, Shape, and Packing in Disordered Proteins. The Journal of Physical Chemistry B 2012, 116 (22) , 6326-6335. https://doi.org/10.1021/jp3016529
    36. Jiří Vymětal and Jiří Vondrášek . Gyration- and Inertia-Tensor-Based Collective Coordinates for Metadynamics. Application on the Conformational Behavior of Polyalanine Peptides and Trp-Cage Folding. The Journal of Physical Chemistry A 2011, 115 (41) , 11455-11465. https://doi.org/10.1021/jp2065612
    37. Edward P. O’Brien, John. E. Straub, Bernard R. Brooks, and D. Thirumalai . Influence of Nanoparticle Size and Shape on Oligomer Formation of an Amyloidogenic Peptide. The Journal of Physical Chemistry Letters 2011, 2 (10) , 1171-1177. https://doi.org/10.1021/jz200330k
    38. Alexander Christiansen, Qian Wang, Antonios Samiotakis, Margaret S. Cheung and Pernilla Wittung-Stafshede . Factors Defining Effects of Macromolecular Crowding on Protein Stability: An in Vitro/in Silico Case Study Using Cytochrome c. Biochemistry 2010, 49 (31) , 6519-6530. https://doi.org/10.1021/bi100578x
    39. R. Grima, S. N. Yaliraki and M. Barahona. Crowding-Induced Anisotropic Transport Modulates Reaction Kinetics in Nanoscale Porous Media. The Journal of Physical Chemistry B 2010, 114 (16) , 5380-5385. https://doi.org/10.1021/jp9025865
    40. Krzysztof Kuczera, Gouri S. Jas and Ron Elber. Kinetics of Helix Unfolding: Molecular Dynamics Simulations with Milestoning. The Journal of Physical Chemistry A 2009, 113 (26) , 7461-7473. https://doi.org/10.1021/jp900407w
    41. Guy Ziv and Gilad Haran. Protein Folding, Protein Collapse, and Tanford’s Transfer Model: Lessons from Single-Molecule FRET. Journal of the American Chemical Society 2009, 131 (8) , 2942-2947. https://doi.org/10.1021/ja808305u
    42. Jie Chen, J. D. Bryngelson and D. Thirumalai . Estimations of the Size of Nucleation Regions in Globular Proteins. The Journal of Physical Chemistry B 2008, 112 (50) , 16115-16120. https://doi.org/10.1021/jp806161k
    43. Hoang T. Tran, Albert Mao and Rohit V. Pappu. Role of Backbone−Solvent Interactions in Determining Conformational Equilibria of Intrinsically Disordered Proteins. Journal of the American Chemical Society 2008, 130 (23) , 7380-7392. https://doi.org/10.1021/ja710446s
    44. Margaret S. Cheung and, D. Thirumalai. Effects of Crowding and Confinement on the Structures of the Transition State Ensemble in Proteins. The Journal of Physical Chemistry B 2007, 111 (28) , 8250-8257. https://doi.org/10.1021/jp068201y
    45. Maksim Kouza,, Mai Suan Li,, Edward P. O'Brien, Jr.,, Chin-Kun Hu, and, D. Thirumalai. Effect of Finite Size on Cooperativity and Rates of Protein Folding. The Journal of Physical Chemistry A 2006, 110 (2) , 671-676. https://doi.org/10.1021/jp053770b
    46. Mason Hooten, N. Sanjeeva Murthy, Nityananda Pal, Sagar D. Khare, Adam J. Gormley, Meenakshi Dutt. Martini 3 coarse-grained model of enzymes: Framework with validation by all-atom simulations and x-ray diffraction measurements. The Journal of Chemical Physics 2025, 162 (13) https://doi.org/10.1063/5.0247634
    47. Rajneesh Kumar, Ramanujam Srinivasan, Debasish Chaudhuri. Mechanistic Insights into Z-Ring Formation and Stability. PRX Life 2025, 3 (1) https://doi.org/10.1103/PRXLife.3.013009
    48. Jiahui Wang, Dinesh Sundaravadivelu Devarajan, Keerthivasan Muthukumar, Young C. Kim, Arash Nikoubashman, Jeetain Mittal. Sequence-dependent conformational transitions of disordered proteins during condensation. Chemical Science 2024, 15 (47) , 20056-20063. https://doi.org/10.1039/D4SC05004E
    49. Katerina Linhartova, Francesco Luca Falginella, Martin Matl, Marek Sebesta, Robert Vácha, Richard Stefl. Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53305-2
    50. Amir Sadeghi, Changbong Hyeon, Youngkyun Jung, Bae-Yeun Ha. Compaction and clustering of a heterogeneous polymer by biomolecular crowding. The Journal of Chemical Physics 2024, 161 (18) https://doi.org/10.1063/5.0226892
    51. Julian O. Streit, Ivana V. Bukvin, Sammy H. S. Chan, Shahzad Bashir, Lauren F. Woodburn, Tomasz Włodarski, Angelo Miguel Figueiredo, Gabija Jurkeviciute, Haneesh K. Sidhu, Charity R. Hornby, Christopher A. Waudby, Lisa D. Cabrita, Anaïs M. E. Cassaignau, John Christodoulou. The ribosome lowers the entropic penalty of protein folding. Nature 2024, 633 (8028) , 232-239. https://doi.org/10.1038/s41586-024-07784-4
    52. John M. McBride, Aleksei Koshevarnikov, Marta Siek, Bartosz A. Grzybowski, Tsvi Tlusty. Statistical Survey of Chemical and Geometric Patterns on Protein Surfaces as a Blueprint for Protein‐Mimicking Nanoparticles. Small Structures 2024, 5 (9) https://doi.org/10.1002/sstr.202400086
    53. Haiqing Zhao, Hao Wu, Alex Guseman, Dulith Abeykoon, Christina M. Camara, Yamini Dalal, David Fushman, Garegin A. Papoian, . The role of cryptic ancestral symmetry in histone folding mechanisms across Eukarya and Archaea. PLOS Computational Biology 2024, 20 (1) , e1011721. https://doi.org/10.1371/journal.pcbi.1011721
    54. Guang Shi, D. Thirumalai. A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36412-4
    55. Kamal Tripathi, Hitesh Garg, R. Rajesh, Satyavani Vemparala. The conformational phase diagram of charged polymers in the presence of attractive bridging crowders. The Journal of Chemical Physics 2023, 159 (20) https://doi.org/10.1063/5.0172696
    56. Kenichiro Koshiyama, Kazuki Nakata. Effects of lipid saturation on bicelle to vesicle transition of a binary phospholipid mixture: a molecular dynamics simulation study. Soft Matter 2023, 19 (39) , 7655-7662. https://doi.org/10.1039/D3SM00904A
    57. Antonella Paladino, Luigi Vitagliano, Giuseppe Graziano. The Action of Chemical Denaturants: From Globular to Intrinsically Disordered Proteins. Biology 2023, 12 (5) , 754. https://doi.org/10.3390/biology12050754
    58. Ran Yan, Fei Tan, Jingli Wang, Nanrong Zhao. Conformation and dynamics of an active filament in crowded media. The Journal of Chemical Physics 2023, 158 (11) https://doi.org/10.1063/5.0142559
    59. Xiakun Chu, Jin Wang. Insights into the cell fate decision-making processes from chromosome structural reorganizations. Biophysics Reviews 2022, 3 (4) https://doi.org/10.1063/5.0107663
    60. Qiang Sun, Yanfang Fu, Weiqi Wang. Temperature effects on hydrophobic interactions: Implications for protein unfolding. Chemical Physics 2022, 559 , 111550. https://doi.org/10.1016/j.chemphys.2022.111550
    61. Surl-Hee Ahn, Gary A. Huber, J. Andrew McCammon. Investigating Intrinsically Disordered Proteins With Brownian Dynamics. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.898838
    62. Xiakun Chu, Jin Wang, . Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics. PLOS Computational Biology 2021, 17 (11) , e1009596. https://doi.org/10.1371/journal.pcbi.1009596
    63. Amin Sagar, Fátima Herranz-Trillo, Annette Eva Langkilde, Bente Vestergaard, Pau Bernadó. Structure and thermodynamics of transient protein-protein complexes by chemometric decomposition of SAXS datasets. Structure 2021, 29 (9) , 1074-1090.e4. https://doi.org/10.1016/j.str.2021.03.017
    64. Melissa A. Reith, Sinan Kardas, Chiel Mertens, Mathieu Fossépré, Mathieu Surin, Jan Steinkoenig, Filip E. Du Prez. Using nickel to fold discrete synthetic macromolecules into single-chain nanoparticles. Polymer Chemistry 2021, 12 (34) , 4924-4933. https://doi.org/10.1039/D1PY00229E
    65. Alan R. Denton, Wyatt J. Davis. Influence of solvent quality on depletion potentials in colloid–polymer mixtures. The Journal of Chemical Physics 2021, 155 (8) https://doi.org/10.1063/5.0061370
    66. Jure Pražnikar. Scaling laws of graphs of 3D protein structures. Journal of Bioinformatics and Computational Biology 2021, 19 (03) , 2050050. https://doi.org/10.1142/S021972002050050X
    67. Meili Liu, Akshaya K. Das, James Lincoff, Sukanya Sasmal, Sara Y. Cheng, Robert M. Vernon, Julie D. Forman-Kay, Teresa Head-Gordon. Configurational Entropy of Folded Proteins and Its Importance for Intrinsically Disordered Proteins. International Journal of Molecular Sciences 2021, 22 (7) , 3420. https://doi.org/10.3390/ijms22073420
    68. Naoto Hori, Natalia A. Denesyuk, D. Thirumalai. Shape changes and cooperativity in the folding of the central domain of the 16S ribosomal RNA. Proceedings of the National Academy of Sciences 2021, 118 (10) https://doi.org/10.1073/pnas.2020837118
    69. Garima Rani, Kenichi Kuroda, Satyavani Vemparala. Towards designing globular antimicrobial peptide mimics: role of polar functional groups in biomimetic ternary antimicrobial polymers. Soft Matter 2021, 17 (8) , 2090-2103. https://doi.org/10.1039/D0SM01896A
    70. Jai Pathak, Sean Nugent, Michael Bender, Christopher Roberts, Robin Curtis, Jack Douglas. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers 2021, 13 (4) , 601. https://doi.org/10.3390/polym13040601
    71. Yossi Eliaz, Francois Nedelec, Greg Morrison, Herbert Levine, Margaret S. Cheung. Insights from graph theory on the morphologies of actomyosin networks with multilinkers. Physical Review E 2020, 102 (6) https://doi.org/10.1103/PhysRevE.102.062420
    72. Chenliang Xia, Xuefeng He, Jun Wang, Wei Wang. Origin of subdiffusions in proteins: Insight from peptide systems. Physical Review E 2020, 102 (6) https://doi.org/10.1103/PhysRevE.102.062424
    73. Xiakun Chu, Jin Wang. Microscopic Chromosomal Structural and Dynamical Origin of Cell Differentiation and Reprogramming. Advanced Science 2020, 7 (20) https://doi.org/10.1002/advs.202001572
    74. Xiakun Chu, Jin Wang. Conformational state switching and pathways of chromosome dynamics in cell cycle. Applied Physics Reviews 2020, 7 (3) https://doi.org/10.1063/5.0007316
    75. James Liman, Carlos Bueno, Yossi Eliaz, Nicholas P. Schafer, M. Neal Waxham, Peter G. Wolynes, Herbert Levine, Margaret S. Cheung. The role of the Arp2/3 complex in shaping the dynamics and structures of branched actomyosin networks. Proceedings of the National Academy of Sciences 2020, 117 (20) , 10825-10831. https://doi.org/10.1073/pnas.1922494117
    76. Andrea Soranno. Physical basis of the disorder-order transition. Archives of Biochemistry and Biophysics 2020, 685 , 108305. https://doi.org/10.1016/j.abb.2020.108305
    77. Anpu Chen, Bingjie Zhang, Nanrong Zhao. A comparative study of semi-flexible linear and ring polymer conformational change in an anisotropic environment. Physical Chemistry Chemical Physics 2020, 22 (16) , 9137-9147. https://doi.org/10.1039/C9CP07018D
    78. Xiuli Cao, Bingjie Zhang, Nanrong Zhao. Contrastive factors of activity and crowding on conformational properties of a flexible polymer. Chemical Physics Letters 2020, 745 , 137213. https://doi.org/10.1016/j.cplett.2020.137213
    79. Garima Rani, Kenichi Kuroda, Satyavani Vemparala. Aggregation of methacrylate-based ternary biomimetic antimicrobial polymers in solution. Journal of Physics: Condensed Matter 2020, 33 (6) , 064003. https://doi.org/10.1088/1361-648X/abc4c9
    80. D. Thirumalai, George H. Lorimer, Changbong Hyeon. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Science 2020, 29 (2) , 360-377. https://doi.org/10.1002/pro.3795
    81. Gareth Shannon, Callum R. Marples, Rudesh D. Toofanny, Philip M. Williams. Evolutionary drivers of protein shape. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-47337-8
    82. Benjamin M. Adams, Haiping Ke, Lila M. Gierasch, Anne Gershenson, Daniel N. Hebert. Proper secretion of the serpin antithrombin relies strictly on thiol-dependent quality control. Journal of Biological Chemistry 2019, 294 (50) , 18992-19011. https://doi.org/10.1074/jbc.RA119.010450
    83. David Stelter, Tom Keyes. Simulation of fluid/gel phase equilibrium in lipid vesicles. Soft Matter 2019, 15 (40) , 8102-8112. https://doi.org/10.1039/C9SM00854C
    84. D. Thirumalai, Himadri S. Samanta, Hiranmay Maity, Govardhan Reddy. Universal Nature of Collapsibility in the Context of Protein Folding and Evolution. Trends in Biochemical Sciences 2019, 44 (8) , 675-687. https://doi.org/10.1016/j.tibs.2019.04.003
    85. Ivan Peran, Alex S. Holehouse, Isaac S. Carrico, Rohit V. Pappu, Osman Bilsel, Daniel P. Raleigh. Unfolded states under folding conditions accommodate sequence-specific conformational preferences with random coil-like dimensions. Proceedings of the National Academy of Sciences 2019, 116 (25) , 12301-12310. https://doi.org/10.1073/pnas.1818206116
    86. Anpu Chen, Nanrong Zhao. Comparative study of the crowding-induced collapse effect in hard-sphere, flexible polymer and rod-like polymer systems. Physical Chemistry Chemical Physics 2019, 21 (23) , 12335-12345. https://doi.org/10.1039/C9CP01731C
    87. Naoto Hori, Natalia A. Denesyuk, D. Thirumalai. Ion Condensation onto Ribozyme Is Site Specific and Fold Dependent. Biophysical Journal 2019, 116 (12) , 2400-2410. https://doi.org/10.1016/j.bpj.2019.04.037
    88. Xiuli Cao, Bingjie Zhang, Nanrong Zhao. Crowding-Activity Coupling Effect on Conformational Change of a Semi-Flexible Polymer. Polymers 2019, 11 (6) , 1021. https://doi.org/10.3390/polym11061021
    89. Alex S. Holehouse. IDPs and IDRs in biomolecular condensates. 2019, 209-255. https://doi.org/10.1016/B978-0-12-816348-1.00007-7
    90. Hongfeng Lou, Robert I. Cukier. Reweighting ensemble probabilities with experimental histogram data constraints using a maximum entropy principle. The Journal of Chemical Physics 2018, 149 (23) https://doi.org/10.1063/1.5050926
    91. Luciano Censoni, Leandro Martínez, . Prediction of kinetics of protein folding with non-redundant contact information. Bioinformatics 2018, 34 (23) , 4034-4038. https://doi.org/10.1093/bioinformatics/bty478
    92. Wyatt J. Davis, Alan R. Denton. Influence of solvent quality on conformations of crowded polymers. The Journal of Chemical Physics 2018, 149 (12) https://doi.org/10.1063/1.5043434
    93. Alex S. Holehouse, Rohit V. Pappu. Collapse Transitions of Proteins and the Interplay Among Backbone, Sidechain, and Solvent Interactions. Annual Review of Biophysics 2018, 47 (1) , 19-39. https://doi.org/10.1146/annurev-biophys-070317-032838
    94. Srirupa Chakraborty, Payel Das. Emergence of Alternative Structures in Amyloid Beta 1-42 Monomeric Landscape by N-terminal Hexapeptide Amyloid Inhibitors. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-10212-5
    95. Anvy Moly Tom, R. Rajesh, Satyavani Vemparala. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics. The Journal of Chemical Physics 2017, 147 (14) https://doi.org/10.1063/1.4993684
    96. Mads Nygaard, Birthe B. Kragelund, Elena Papaleo, Kresten Lindorff-Larsen. An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations. Biophysical Journal 2017, 113 (3) , 550-557. https://doi.org/10.1016/j.bpj.2017.06.042
    97. Alberto S. Sassi, Salvatore Assenza, Paolo De Los Rios. Shape of a Stretched Polymer. Physical Review Letters 2017, 119 (3) https://doi.org/10.1103/PhysRevLett.119.037801
    98. Pengzhi Zhang, Swarnendu Tripathi, Hoa Trinh, Margaret S. Cheung. Opposing Intermolecular Tuning of Ca2+ Affinity for Calmodulin by Neurogranin and CaMKII Peptides. Biophysical Journal 2017, 112 (6) , 1105-1119. https://doi.org/10.1016/j.bpj.2017.01.020
    99. Himadri S. Samanta, Pavel I. Zhuravlev, Michael Hinczewski, Naoto Hori, Shaon Chakrabarti, D. Thirumalai. Protein collapse is encoded in the folded state architecture. Soft Matter 2017, 13 (19) , 3622-3638. https://doi.org/10.1039/C7SM00074J
    100. Mikayel Aznauryan, Leonildo Delgado, Andrea Soranno, Daniel Nettels, Jie-rong Huang, Alexander M. Labhardt, Stephan Grzesiek, Benjamin Schuler. Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proceedings of the National Academy of Sciences 2016, 113 (37) https://doi.org/10.1073/pnas.1607193113
    Load all citations

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2004, 108, 21, 6564–6570
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp037128y
    Published March 16, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    1699

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.