ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Adsorption of Palladium Phthalocyanine on Graphite:  STM and LEED Study

View Author Information
Chemnitz University of Technology, Institute of Physics, Solid Surfaces Analysis Group, D-09107 Chemnitz, Germany
Cite this: J. Phys. Chem. B 2004, 108, 23, 7839–7843
Publication Date (Web):May 18, 2004
https://doi.org/10.1021/jp037751i
Copyright © 2004 American Chemical Society

    Article Views

    1607

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Adsorption of planar palladium phthalocyanine (PdPc) molecules on the basal plane of graphite is studied using STM (sample at 50 K) and LEED under UHV condition. The monolayer was grown in-situ by organic molecular beam epitaxy (OMBE) on the substrate at room temperature. PdPc molecules diffuse freely on the graphite substrate and form highly ordered, almost defect-free monolayers with a quadratic lattice. One lattice vector of the molecular adlattice is rotated by ±10° with respect to one of the graphite lattice vectors. On the basis of the high-resolution STM images, a model of the adlayer primitive unit cell is proposed, which reveals the adsorption geometry of PdPc molecules on graphite. For a better understanding of the submolecular contrast, the software package Gaussian 98 was used to calculate the electronic structure of isolated PdPc molecules. The STM contrasts at positive sample bias can be assigned to the wave function of the LUMO.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     To whom correspondence should be addressed. Fax:  +49 371 531 3181; e-mail:  [email protected] (T. G. Gopakumar). Fax:  +49 371 531 3181; e-mail:  [email protected] (M. Hietschold).

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Image of a constant current topograph of PdPc on graphite. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 75 publications.

    1. Yuji Hamamoto, Hiroyuki Sawada, Sasfan Arman Wella, Kouji Inagaki, Ikutaro Hamada, Yoshitada Morikawa. Hybridization-Induced Image Potential States with Large Effective Mass in Lead Phthalocyanine Overlayers on Graphene. The Journal of Physical Chemistry C 2022, 126 (26) , 10855-10862. https://doi.org/10.1021/acs.jpcc.2c01652
    2. Axel Belser, Katharina Greulich, Marie S. Sättele, Michael Fingerle, Ruslan Ovsyannikov, Erika Giangrisostomi, Thomas Chassé, Heiko Peisert. Interface Properties of CoPc on Nanographene-Covered Au(111) and the Influence of Annealing. Langmuir 2021, 37 (36) , 10750-10761. https://doi.org/10.1021/acs.langmuir.1c01438
    3. Rongting Wu, Linghao Yan, De-Liang Bao, Junhai Ren, Shixuan Du, Yeliang Wang, Qing Huan, Hong-Jun Gao. Self-Assembly Evolution of Metal-Free Naphthalocyanine Molecules on Ag(111) at the Submonolayer Coverage. The Journal of Physical Chemistry C 2019, 123 (12) , 7202-7208. https://doi.org/10.1021/acs.jpcc.9b00095
    4. Alessandro Biancardi, Claudiu Caraiani, Wai-Lun Chan, and Marco Caricato . How the Number of Layers and Relative Position Modulate the Interlayer Electron Transfer in π-Stacked 2D Materials. The Journal of Physical Chemistry Letters 2017, 8 (7) , 1365-1370. https://doi.org/10.1021/acs.jpclett.7b00194
    5. Rongting Wu, Linghao Yan, Yanfang Zhang, Junhai Ren, Deliang Bao, Haigang Zhang, Yeliang Wang, Shixuan Du, Qing Huan, and Hong-Jun Gao . Self-Assembled Patterns and Young’s Modulus of Single-Layer Naphthalocyanine Molecules on Ag(111). The Journal of Physical Chemistry C 2015, 119 (15) , 8208-8212. https://doi.org/10.1021/acs.jpcc.5b01344
    6. Terry McAfee, Eliot Gann, Tianshuai Guan, Sean C. Stuart, Jack Rowe, Daniel B. Dougherty, and Harald Ade . Toward Single-Crystal Hybrid-Carbon Electronics: Impact of Graphene Substrate Defect Density on Copper Phthalocyanine Film Growth. Crystal Growth & Design 2014, 14 (9) , 4394-4401. https://doi.org/10.1021/cg500504u
    7. Päivi Järvinen, Sampsa K. Hämäläinen, Mari Ijäs, Ari Harju, and Peter Liljeroth . Self-Assembly and Orbital Imaging of Metal Phthalocyanines on a Graphene Model Surface. The Journal of Physical Chemistry C 2014, 118 (24) , 13320-13325. https://doi.org/10.1021/jp504813v
    8. Päivi Järvinen, Sampsa K. Hämäläinen, Kaustuv Banerjee, Pasi Häkkinen, Mari Ijäs, Ari Harju, and Peter Liljeroth . Molecular Self-Assembly on Graphene on SiO2 and h-BN Substrates. Nano Letters 2013, 13 (7) , 3199-3204. https://doi.org/10.1021/nl401265f
    9. Sampsa K. Hämäläinen, Mariia Stepanova, Robert Drost, Peter Liljeroth, Jouko Lahtinen, and Jani Sainio . Self-Assembly of Cobalt-Phthalocyanine Molecules on Epitaxial Graphene on Ir(111). The Journal of Physical Chemistry C 2012, 116 (38) , 20433-20437. https://doi.org/10.1021/jp306439h
    10. K. Yang, W. D. Xiao, Y. H. Jiang, H. G. Zhang, L. W. Liu, J. H. Mao, H. T. Zhou, S. X. Du, and H.-J. Gao . Molecule–Substrate Coupling between Metal Phthalocyanines and Epitaxial Graphene Grown on Ru(0001) and Pt(111). The Journal of Physical Chemistry C 2012, 116 (26) , 14052-14056. https://doi.org/10.1021/jp304068a
    11. Patrick Mehring, Axel Beimborn, Tobias Lühr, and Carsten Westphal . Metal-Free Naphthalocyanine Structures on Au(100) at Submonolayer Coverage. The Journal of Physical Chemistry C 2012, 116 (23) , 12819-12823. https://doi.org/10.1021/jp212365m
    12. Y. H. Jiang, W. D. Xiao, L. W. Liu, L. Z. Zhang, J. C. Lian, K. Yang, S. X. Du, and H.-J. Gao . Self-Assembly of Metal Phthalocyanines on Pb(111) and Au(111) Surfaces at Submonolayer Coverage. The Journal of Physical Chemistry C 2011, 115 (44) , 21750-21754. https://doi.org/10.1021/jp203462f
    13. Wolfgang Hieringer, Ken Flechtner, Andreas Kretschmann, Knud Seufert, Willi Auwärter, Johannes V. Barth, Andreas Görling, Hans-Peter Steinrück, and J. Michael Gottfried . The Surface Trans Effect: Influence of Axial Ligands on the Surface Chemical Bonds of Adsorbed Metalloporphyrins. Journal of the American Chemical Society 2011, 133 (16) , 6206-6222. https://doi.org/10.1021/ja1093502
    14. Marius Toader, Thiruvancheril G. Gopakumar, Pavel Shukrynau, and Michael Hietschold. Exploring the F16CoPc/Ag(110) Interface Using Scanning Tunneling Microscopy and Spectroscopy. 2. Adsorption-Induced Charge Transfer Effect. The Journal of Physical Chemistry C 2010, 114 (49) , 21548-21554. https://doi.org/10.1021/jp1078295
    15. Tomohide Takami, Aurora Clark, Richard Caldwell, Ursula Mazur and K. W. Hipps. Building Self-Assembled Molecular Layers with Axially Substituted Titanium Phthalocyanines. Langmuir 2010, 26 (15) , 12709-12715. https://doi.org/10.1021/la1020127
    16. Hironari Isshiki, Jie Liu, Keiichi Katoh, Masahiro Yamashita, Hitoshi Miyasaka, Brian K. Breedlove, Shinya Takaishi and Tadahiro Komeda . Scanning Tunneling Microscopy Investigation of Tris(phthalocyaninato)yttrium Triple-Decker Molecules Deposited on Au(111). The Journal of Physical Chemistry C 2010, 114 (28) , 12202-12206. https://doi.org/10.1021/jp101349v
    17. Qinmin Guo, Zhihui Qin, Kan Zang, Cunding Liu, Yinghui Yu and Gengyu Cao . Coverage-Dependent Structures of Cobalt−Phthalocyanine Molecules Adsorbed on Cu(001) Surface. Langmuir 2010, 26 (14) , 11804-11808. https://doi.org/10.1021/la1019907
    18. Kelvin Hong Liang Zhang, Hui Li, Hongying Mao, Han Huang, Jing Ma, Andrew Thye Shen Wee and Wei Chen . Control of Two-Dimensional Ordering of F16CuPc on Bi/Ag(111): Effect of Interfacial Interactions. The Journal of Physical Chemistry C 2010, 114 (25) , 11234-11241. https://doi.org/10.1021/jp104034v
    19. Marius Toader, Thiruvancheril G. Gopakumar, Mahmoud Abdel-Hafiez and Michael Hietschold. Exploring the F16CoPc/Ag(110) Interface Using Scanning Tunneling Microscopy and Spectroscopy. Part 1: Template-Guided Adlayer Structure Formation. The Journal of Physical Chemistry C 2010, 114 (8) , 3537-3543. https://doi.org/10.1021/jp9078019
    20. Jinhai Mao, Haigang Zhang, Yuhang Jiang, Yi Pan, Min Gao, Wende Xiao and H.-J. Gao. Tunability of Supramolecular Kagome Lattices of Magnetic Phthalocyanines Using Graphene-Based Moiré Patterns as Templates. Journal of the American Chemical Society 2009, 131 (40) , 14136-14137. https://doi.org/10.1021/ja904907z
    21. Yan-Feng Zhang, Hironari Isshiki, Keiichi Katoh, Yusuke Yoshida, Masahiro Yamashita, Hitoshi Miyasaka, Brian K. Breedlove, Takashi Kajiwara, Shinya Takaishi and Tadahiro Komeda . A Low-Temperature Scanning Tunneling Microscope Investigation of a Nonplanar Dysprosium−Phthalocyanine Adsorption on Au(111). The Journal of Physical Chemistry C 2009, 113 (32) , 14407-14410. https://doi.org/10.1021/jp9045935
    22. Yan Feng Zhang, Hironari Isshiki, Keiichi Katoh, Yusuke Yoshida, Masahiro Yamashita, Hitoshi Miyasaka, Brian K. Breedlove, Takashi Kajiwara, Shinya Takaishi and Tadahiro Komeda. Low-Temperature Scanning Tunneling Microscopy Investigation of Bis(phthalocyaninato)yttrium Growth on Au(111): From Individual Molecules to Two-Dimensional Domains. The Journal of Physical Chemistry C 2009, 113 (22) , 9826-9830. https://doi.org/10.1021/jp902410q
    23. Kai Iketaki, Kaname Kanai, Akihiro Shimizu, Takashi Kubo, Zhi-Hong Wang, Yukio Ouchi, Yasushi Morita, Kazuhiro Nakasuji and Kazuhiko Seki. Scanning Tunneling Microscopy Study of a Phenalenyl-Based Singlet Biradical on Graphite. The Journal of Physical Chemistry C 2009, 113 (4) , 1515-1519. https://doi.org/10.1021/jp808686v
    24. Ursula Mazur, K. W. Hipps and Shawn L. Riechers. Organization of Vanadyl and Metal-Free Tetraphenoxyphthalocyanine Complexes on Highly Oriented Pyrolytic Graphite in the Presence of Paraffinic Solvents: A STM Study. The Journal of Physical Chemistry C 2008, 112 (51) , 20347-20356. https://doi.org/10.1021/jp805684z
    25. Thiruvancheril G. Gopakumar, Hao Tang, Werner R. Thiel and Michael Hietschold. Porous Network Structure of Octacyano-Metal-Free Phthalocyanine on the Basal Plane of Highly Oriented Pyrolytic Graphite. The Journal of Physical Chemistry C 2008, 112 (20) , 7698-7705. https://doi.org/10.1021/jp801611q
    26. Yun Bai,, Florian Buchner,, Matthew T. Wendahl,, Ina Kellner,, Andreas Bayer,, Hans-Peter Steinrück,, Hubertus Marbach, and, J. Michael Gottfried. Direct Metalation of a Phthalocyanine Monolayer on Ag(111) with Coadsorbed Iron Atoms. The Journal of Physical Chemistry C 2008, 112 (15) , 6087-6092. https://doi.org/10.1021/jp711122w
    27. Gregor Witte,, Katrin Hänel,, Carsten Busse,, Alexander Birkner, and, Christof Wöll. Molecules Coining Patterns into a Metal:  The Hard Core of Soft Matter. Chemistry of Materials 2007, 19 (17) , 4228-4233. https://doi.org/10.1021/cm071054b
    28. Joe Otsuki,, Satoru Kawaguchi,, Toshihisa Yamakawa,, Masumi Asakawa, and, Koji Miyake. Arrays of Double-Decker Porphyrins on Highly Oriented Pyrolytic Graphite. Langmuir 2006, 22 (13) , 5708-5715. https://doi.org/10.1021/la0608617
    29. Gina M. Florio,, Tova L. Werblowsky,, Thomas Müller,, Bruce J. Berne, and, George W. Flynn. Self-Assembly of Small Polycyclic Aromatic Hydrocarbons on Graphite:  A Combined Scanning Tunneling Microscopy and Theoretical Approach. The Journal of Physical Chemistry B 2005, 109 (10) , 4520-4532. https://doi.org/10.1021/jp046458v
    30. Hermann Erk, Klaas Opitz, Petra Hein, Stephan Jauernik, Michael Bauer. Observation of electronic structure replicas in photoemission spectra of graphite upon adsorption of tin phthalocyanine. Journal of Physics: Condensed Matter 2023, 35 (9) , 095501. https://doi.org/10.1088/1361-648X/acacdd
    31. Olugbenga Adeniran, Zhen-Fei Liu. Quasiparticle electronic structure of phthalocyanine:TMD interfaces from first-principles GW. The Journal of Chemical Physics 2021, 155 (21) https://doi.org/10.1063/5.0072995
    32. M. Hietschold. Self-assembly on Crystalline Surfaces: From Phthalocyanines to Porphyrins. 2021, 91-120. https://doi.org/10.1039/9781839164149-00091
    33. Dragana Stevic, Ayumi Furuse, Fernando Vallejos-Burgos, Radovan Kukobat, Katsumi Kaneko. Cu-phthalocyanine-mediated nanowindow production on single-wall carbon nanohorn. Molecular Physics 2021, 119 (15-16) https://doi.org/10.1080/00268976.2020.1815883
    34. Joana M. D. Calmeiro, João P. C. Tomé, Leandro M. O. Lourenço. Supramolecular graphene–phthalocyanine assemblies for technological breakthroughs. Journal of Materials Chemistry C 2020, 8 (25) , 8344-8361. https://doi.org/10.1039/D0TC00557F
    35. Solmaz Aliyeva, Rasim Alosmanov, Irada Buniyatzadeh, Abdulseid Azizov, Abel Maharramov. Recent developments in edge-selective functionalization of surface of graphite and derivatives – a review. Soft Materials 2019, 17 (4) , 448-466. https://doi.org/10.1080/1539445X.2019.1600549
    36. Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova. Coordination/Organometallic Compounds and Composites of Carbon Allotropes. 2019, 413-575. https://doi.org/10.1007/978-3-030-03505-1_7
    37. Oxana V. Kharissova, Jared Rodríguez, Boris I. Kharisov. Non-standard ROS-generating combination “theraphthal–ascorbic acid” in low-temperature transformations of carbon allotropes. Chemical Papers 2019, 73 (1) , 239-248. https://doi.org/10.1007/s11696-018-0571-y
    38. S. Takizawa, K. Kondou, H. Isshiki, K. Shimose, T. Kawabe, S. Miwa, Y. Otani. Spin Relaxation Enhanced by Decorating Cu Surfaces With Lead (II) Phthalocyanine Molecules. IEEE Transactions on Magnetics 2018, 54 (11) , 1-4. https://doi.org/10.1109/TMAG.2018.2846364
    39. Suryakanti Debata, Trupti R. Das, Rashmi Madhuri, Prashant K. Sharma. Materials Characterization Using Scanning Tunneling Microscopy: From Fundamentals to Advanced Applications. 2018, 217-261. https://doi.org/10.1007/978-3-319-92955-2_6
    40. Bin Wang. Interfacial engineering of phthalocyanine molecules on graphitic and metal substrates. Molecular Simulation 2017, 43 (5-6) , 384-393. https://doi.org/10.1080/08927022.2016.1265960
    41. Thalia Quinn, Pabitra Choudhury. Direct oxidation of methane to methanol on single-site copper-oxo species of copper porphyrin functionalized graphene: A DFT study. Molecular Catalysis 2017, 431 , 9-14. https://doi.org/10.1016/j.mcat.2017.01.018
    42. Ti Wang, Tika R. Kafle, Bhupal Kattel, Qingfeng Liu, Judy Wu, Wai-Lun Chan. Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep28895
    43. Sophie Griveau, Ingrid Ponce, Jose H. Zagal, Fethi Bedioui. Modified Electrodes with MN4 Complexes: Conception and Electroanalytical Performances for the Detection of Thiols. 2016, 277-321. https://doi.org/10.1007/978-3-319-31332-0_7
    44. J. Michael Gottfried. Surface chemistry of porphyrins and phthalocyanines. Surface Science Reports 2015, 70 (3) , 259-379. https://doi.org/10.1016/j.surfrep.2015.04.001
    45. Luke A. Rochford, Alexandra J. Ramadan, D. Phil Woodruff, Sandrine Heutz, Tim S. Jones. Ordered growth of vanadyl phthalocyanine (VOPc) on an iron phthalocyanine (FePc) monolayer. Physical Chemistry Chemical Physics 2015, 17 (44) , 29747-29752. https://doi.org/10.1039/C5CP03724G
    46. Cornelius Krull. Adsorption of Metal Phthalocyanines on Ag(100). 2014, 51-71. https://doi.org/10.1007/978-3-319-02660-2_4
    47. Renato Seeber, Fabio Terzi, Chiara Zanardi. Monolayers. 2014, 105-137. https://doi.org/10.1007/978-3-662-45103-8_5
    48. Johann Lüder, Biplab Sanyal, Olle Eriksson, Carla Puglia, Barbara Brena. Comparison of van der Waals corrected and sparse-matter density functionals for the metal-free phthalocyanine/gold interface. Physical Review B 2014, 89 (4) https://doi.org/10.1103/PhysRevB.89.045416
    49. Yongfeng Wang, Kai Wu, Jörg Kröger, Richard Berndt. Review Article: Structures of phthalocyanine molecules on surfaces studied by STM. AIP Advances 2012, 2 (4) https://doi.org/10.1063/1.4773458
    50. R.A. Rehman, Weidong Dou, Huiqin Qian, Hongying Mao, Frederik Floether, Hanjie Zhang, Haiyang Li, Pimo He, Shining Bao. Adsorption behavior of iron phthalocyanine at the initial stage on Cu(100) surface. Surface Science 2012, 606 (21-22) , 1749-1754. https://doi.org/10.1016/j.susc.2012.07.021
    51. Salvador Ramos, Cristina Garza, Hiram I. Beltran, José Campos-Terán, Jesús Arenas-Alatorre, Rolando Castillo. The cis-bis(decanoate)tin phthalocyanine/DPPC film at the air/water interface. Journal of Colloid and Interface Science 2012, 369 (1) , 256-266. https://doi.org/10.1016/j.jcis.2011.11.072
    52. José Campos-Terán, Cristina Garza, Hiram I. Beltrán, Rolando Castillo. Thin film formation at the air–water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine. Thin Solid Films 2012, 520 (6) , 2211-2219. https://doi.org/10.1016/j.tsf.2011.10.155
    53. Han Huang, Swee Liang Wong, Wei Chen, Andrew Thye Shen Wee. LT-STM studies on substrate-dependent self-assembly of small organic molecules. Journal of Physics D: Applied Physics 2011, 44 (46) , 464005. https://doi.org/10.1088/0022-3727/44/46/464005
    54. Keiichi Katoh, Hironari Isshiki, Tadahiro Komeda, Masahiro Yamashita. Multiple-decker phthalocyaninato Tb(III) single-molecule magnets and Y(III) complexes for next generation devices. Coordination Chemistry Reviews 2011, 255 (17-18) , 2124-2148. https://doi.org/10.1016/j.ccr.2011.02.024
    55. Yu-Hang Jiang, Li-Wei Liu, Kai Yang, Wen-De Xiao, Hong-Jun Gao. Self-assembly and growth of manganese phthalocyanine on an Au(111) surface. Chinese Physics B 2011, 20 (9) , 096401. https://doi.org/10.1088/1674-1056/20/9/096401
    56. Szymon Godlewski, Antoni Tekiel, Jakub S. Prauzner-Bechcicki, Janusz Budzioch, Andre Gourdon, Marek Szymonski. Adsorption of organic molecules on the TiO2(011) surface: STM study. The Journal of Chemical Physics 2011, 134 (22) https://doi.org/10.1063/1.3593403
    57. Dan Hao, Canli Song, Yanxiao Ning, Yilin Wang, Lili Wang, Xu-Cun Ma, Xi Chen, Qi-Kun Xue. Self-assembly of manganese phthalocyanine on Pb(111) surface: A scanning tunneling microscopy study. The Journal of Chemical Physics 2011, 134 (15) https://doi.org/10.1063/1.3579493
    58. Daniele Stradi, Cristina Díaz, Fernando Martín, Manuel Alcamí. A density functional theory study of the manganese-phthalocyanine. Theoretical Chemistry Accounts 2011, 128 (4-6) , 497-503. https://doi.org/10.1007/s00214-010-0852-1
    59. Weidong Dou, Yongbing Tang, C. S. Lee, S. N. Bao, S. T. Lee. Investigation on the orderly growth of thick zinc phthalocyanine films on Ag(100) surface. The Journal of Chemical Physics 2010, 133 (14) https://doi.org/10.1063/1.3489658
    60. Tadahiro Komeda, Hironari Isshiki, Jie Liu. Metal-free phthalocyanine (H 2 Pc) molecule adsorbed on the Au(111) surface: formation of a wide domain along a single lattice direction. Science and Technology of Advanced Materials 2010, 11 (5) , 054602. https://doi.org/10.1088/1468-6996/11/5/054602
    61. Yanfeng Zhang, Pengfei Guan, Hironari Isshiki, Mingwei Chen, Masahiro Yamashita, Tadahiro Komeda. Bis(phthalocyaninato)yttrium grown on Au(111): Electronic structure of a single molecule and the stability of two-dimensional films investigated by scanning tunneling microscopy/spectroscopy at 4.8 K. Nano Research 2010, 3 (8) , 604-611. https://doi.org/10.1007/s12274-010-0021-9
    62. Szymon Godlewski, Antoni Tekiel, Jakub S. Prauzner‐Bechcicki, Janusz Budzioch, Marek Szymonski. Controlled Reorientation of CuPc Molecules in Ordered Structures Assembled on the TiO 2 (011)‐(2×1) Surface. ChemPhysChem 2010, 11 (9) , 1863-1866. https://doi.org/10.1002/cphc.201000165
    63. Florian Buchner. Direct Metalation of a Phthalocyanine Monolayer on Ag(111) with Co-adsorbed Iron Atoms. 2010, 91-99. https://doi.org/10.1007/978-3-642-14840-8_8
    64. Keiichi Katoh, Tadahiro Komeda, Masahiro Yamashita. Surface morphologies, electronic structures, and Kondo effect of lanthanide(iii)-phthalocyanine molecules on Au(111) by using STM, STS and FET properties for next generation devices. Dalton Transactions 2010, 39 (20) , 4708. https://doi.org/10.1039/b926121d
    65. M. A. Perarnau, P. M. Centres, F. Bulnes, A. J. Ramirez-Pastor. Critical behavior of repulsively interacting particles adsorbed on disordered triangular lattices. Physical Chemistry Chemical Physics 2010, 12 (40) , 13280. https://doi.org/10.1039/c003983g
    66. Tomohide Takami, Clarisa Carrizales, K.W. Hipps. Commensurate ordering of iron phthalocyanine on Ag(111) surface. Surface Science 2009, 603 (21) , 3201-3204. https://doi.org/10.1016/j.susc.2009.08.029
    67. B. N. Holland, N. Peltekis, T. Farrelly, R. G. Wilks, G. Gavrila, D. R. T. Zahn, C. McGuinness, I. T. McGovern. NEXAFS studies of copper phthaloyanine on Ge(001)‐2 × 1 and Ge(111)‐c(2 × 8) surfaces. physica status solidi (b) 2009, 246 (7) , 1546-1551. https://doi.org/10.1002/pssb.200945123
    68. N. L. Tran, F. I. Bohrer, W. C. Trogler, A. C. Kummel. A density functional theory study of the correlation between analyte basicity, ZnPc adsorption strength, and sensor response. The Journal of Chemical Physics 2009, 130 (20) https://doi.org/10.1063/1.3134743
    69. Shih-Hsin Chang, Stefan Kuck, Jens Brede, Leonid Lichtenstein, Germar Hoffmann, Roland Wiesendanger. Symmetry reduction of metal phthalocyanines on metals. Physical Review B 2008, 78 (23) https://doi.org/10.1103/PhysRevB.78.233409
    70. Alessandro Scarfato, Shih-Hsin Chang, Stefan Kuck, Jens Brede, Germar Hoffmann, Roland Wiesendanger. Scanning tunneling microscope study of iron(II) phthalocyanine growth on metals and insulating surfaces. Surface Science 2008, 602 (3) , 677-683. https://doi.org/10.1016/j.susc.2007.11.011
    71. Ngoc L. Tran, Andrew C. Kummel. A density functional theory study on the binding of NO onto FePc films. The Journal of Chemical Physics 2007, 127 (21) https://doi.org/10.1063/1.2799988
    72. Sarah R. Bishop, Ngoc L. Tran, Gary C. Poon, Andrew C. Kummel. Dynamics of analyte binding onto a metallophthalocyanine: NO∕FePc. The Journal of Chemical Physics 2007, 127 (21) https://doi.org/10.1063/1.2804870
    73. Gema de la Torre, Christian G. Claessens, Tomás Torres. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem. Commun. 2007, 8 (20) , 2000-2015. https://doi.org/10.1039/B614234F
    74. Thiruvancheril G. Gopakumar, Markus Lackinger, Michael Hietschold. Scanning Tunnelling Microscopy on Ultrathin Organic Layers of Phthalocyanine and Naphthalocyanines on Highly Oriented Pyrolytic Graphite (0001). Japanese Journal of Applied Physics 2006, 45 (3S) , 2268. https://doi.org/10.1143/JJAP.45.2268
    75. M. Hietschold, M. Lackinger, S. Griessl, W.M. Heckl, T.G. Gopakumar, G.W. Flynn. Molecular structures on crystalline metallic surfaces – From STM images to molecular electronics. Microelectronic Engineering 2005, 82 (3-4) , 207-214. https://doi.org/10.1016/j.mee.2005.07.087

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect