ACS Publications. Most Trusted. Most Cited. Most Read
Ultrafast Carotenoid Band Shifts:  Experiment and Theory
My Activity

    Article

    Ultrafast Carotenoid Band Shifts:  Experiment and Theory
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical Physics, Lund University, P.O. Box 124, S-22100 Lund, Sweden, Krebs Institute and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, U. K., Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands, IBLS, University of Glasgow, Glasgow G12 8QQ, U. K., and FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2004, 108, 29, 10398–10403
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp040094p
    Published June 2, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The ultrafast carotenoid band shift upon excitation of nearby bacteriochlorophyll molecules was studied in three different light harvesting complexes from purple bacteria. The results were analyzed in terms of changes in local electric field of the carotenoids. Time dependent density functional theory calculations based on known and model structures led to good agreement with experimental results, strongly suggesting that the mutual orientation of the pigment molecules rather than the type of the carotenoid molecules determines the extent of the ultrafast band shift. We further estimate that the protein induced local field nearby carotenoid molecule is about 4 or 6 MV/cm, depending on the orientation of the change of the electrical dipole in the carotenoid upon optical transition.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Part of the special issue “Gerald Small Festschrift”.

    #

     FOM-Institute for Atomic and Molecular Physics.

     Vrije Universiteit.

     Lund University.

    §

     University of Sheffield.

     University of Glasgow.

    *

     Corresponding author.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 42 publications.

    1. Samim Sardar, Roberto Caferri, Franco V. A. Camargo, Stefano Capaldi, Alberto Ghezzi, Luca Dall’Osto, Cosimo D’Andrea, Giulio Cerullo, Roberto Bassi. Site-Directed Mutagenesis of the Chlorophyll-Binding Sites Modulates Excited-State Lifetime and Chlorophyll–Xanthophyll Energy Transfer in the Monomeric Light-Harvesting Complex CP29. The Journal of Physical Chemistry Letters 2024, 15 (11) , 3149-3158. https://doi.org/10.1021/acs.jpclett.3c02900
    2. Jin-Fang Hao, Nami Yamano, Chen-Hui Qi, Yan Zhang, Fei Ma, Peng Wang, Long-Jiang Yu, Jian-Ping Zhang. Carotenoid-Mediated Long-Range Energy Transfer in the Light Harvesting–Reaction Center Complex from Photosynthetic Bacterium Roseiflexus castenholzii. The Journal of Physical Chemistry B 2023, 127 (48) , 10360-10369. https://doi.org/10.1021/acs.jpcb.3c07087
    3. Pu Qian, David J. K. Swainsbury, Tristan I. Croll, Pablo Castro-Hartmann, Giorgio Divitini, Kasim Sader, C. Neil Hunter. Cryo-EM Structure of the Rhodobacter sphaeroides Light-Harvesting 2 Complex at 2.1 Å. Biochemistry 2021, 60 (44) , 3302-3314. https://doi.org/10.1021/acs.biochem.1c00576
    4. Dariusz M. Niedzwiedzki, C. Neil Hunter, and Robert E. Blankenship . Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria. The Journal of Physical Chemistry B 2016, 120 (43) , 11123-11131. https://doi.org/10.1021/acs.jpcb.6b08639
    5. Soumen Ghosh, Michael M. Bishop, Jerome D. Roscioli, Amy M. LaFountain, Harry A. Frank, and Warren F. Beck . Femtosecond Heterodyne Transient Grating Studies of Nonradiative Deactivation of the S2 (11Bu+) State of Peridinin: Detection and Spectroscopic Assignment of an Intermediate in the Decay Pathway. The Journal of Physical Chemistry B 2016, 120 (15) , 3601-3614. https://doi.org/10.1021/acs.jpcb.5b12753
    6. Daisuke Kosumi, Tomoko Horibe, Mitsuru Sugisaki, Richard J. Cogdell, and Hideki Hashimoto . Photoprotection Mechanism of Light-Harvesting Antenna Complex from Purple Bacteria. The Journal of Physical Chemistry B 2016, 120 (5) , 951-956. https://doi.org/10.1021/acs.jpcb.6b00121
    7. Miriam M. Enriquez, Shohei Hananoki, Shinji Hasegawa, Takayuki Kajikawa, Shigeo Katsumura, Nicole L. Wagner, Robert R. Birge, and Harry A. Frank . Effect of Molecular Symmetry on the Spectra and Dynamics of the Intramolecular Charge Transfer (ICT) State of Peridinin. The Journal of Physical Chemistry B 2012, 116 (35) , 10748-10756. https://doi.org/10.1021/jp305804q
    8. Ryosuke Nakamura, Katsunori Nakagawa, Mamoru Nango, Hideki Hashimoto, and Masayuki Yoshizawa . Dark Excited States of Carotenoid Regulated by Bacteriochlorophyll in Photosynthetic Light Harvesting. The Journal of Physical Chemistry B 2011, 115 (12) , 3233-3239. https://doi.org/10.1021/jp111718k
    9. Tomáš Polívka, Harry A. Frank, Miriam M. Enriquez, Dariusz M. Niedzwiedzki, Synnøve Liaaen-Jensen, Joanna Hemming, John R. Helliwell and Madeleine Helliwell . X-ray Crystal Structure and Time-Resolved Spectroscopy of the Blue Carotenoid Violerythrin. The Journal of Physical Chemistry B 2010, 114 (26) , 8760-8769. https://doi.org/10.1021/jp101296a
    10. Hong Cong, Dariusz M. Niedzwiedzki, George N. Gibson, Amy M. LaFountain, Rhiannon M. Kelsh, Alastair T. Gardiner, Richard J. Cogdell and Harry A. Frank . Ultrafast Time-Resolved Carotenoid to-Bacteriochlorophyll Energy Transfer in LH2 Complexes from Photosynthetic Bacteria. The Journal of Physical Chemistry B 2008, 112 (34) , 10689-10703. https://doi.org/10.1021/jp711946w
    11. Rudi Berera,, Ivo H. M. van Stokkum,, Gerdenis Kodis,, Amy E. Keirstead,, Smitha Pillai,, Christian Herrero,, Rodrigo E. Palacios,, Mikas Vengris,, Rienk van Grondelle,, Devens Gust,, Thomas A. Moore,, Ana L. Moore, and, John T. M. Kennis. Energy Transfer, Excited-State Deactivation, and Exciplex Formation in Artificial Caroteno-Phthalocyanine Light-Harvesting Antennas. The Journal of Physical Chemistry B 2007, 111 (24) , 6868-6877. https://doi.org/10.1021/jp071010q
    12. Tomáš Polívka,, Mathias Pellnor,, Eurico Melo,, Torbjörn Pascher,, Villy Sundström,, Atsuhiro Osuka, and, K. Razi Naqvi. Polarity-Tuned Energy Transfer Efficiency in Artificial Light-Harvesting Antennae Containing Carbonyl Carotenoids Peridinin and Fucoxanthin. The Journal of Physical Chemistry C 2007, 111 (1) , 467-476. https://doi.org/10.1021/jp066187j
    13. M. E. Madjet,, A. Abdurahman, and, T. Renger. Intermolecular Coulomb Couplings from Ab Initio Electrostatic Potentials:  Application to Optical Transitions of Strongly Coupled Pigments in Photosynthetic Antennae and Reaction Centers. The Journal of Physical Chemistry B 2006, 110 (34) , 17268-17281. https://doi.org/10.1021/jp0615398
    14. Andrei G. Yakovlev, Alexandra S. Taisova, Zoya G. Fetisova. Dynamic Stark effect in β and γ carotenes induced by photoexcitation of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus. Photosynthesis Research 2022, 154 (3) , 291-302. https://doi.org/10.1007/s11120-022-00942-7
    15. Ivana Šímová, Valentyna Kuznetsova, Alastair T. Gardiner, Václav Šebelík, Michal Koblížek, Marcel Fuciman, Tomáš Polívka. Carotenoid responds to excess energy dissipation in the LH2 complex from Rhodoblastus acidophilus. Photosynthesis Research 2022, 154 (1) , 75-87. https://doi.org/10.1007/s11120-022-00952-5
    16. Samim Sardar, Roberto Caferri, Franco V. A. Camargo, Javier Pamos Serrano, Alberto Ghezzi, Stefano Capaldi, Luca Dall’Osto, Roberto Bassi, Cosimo D’Andrea, Giulio Cerullo. Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment. The Journal of Chemical Physics 2022, 156 (20) https://doi.org/10.1063/5.0087898
    17. Dariusz M. Niedzwiedzki, Benjamin M. Wolf, Robert E. Blankenship. Excitation energy transfer in the far-red absorbing violaxanthin/vaucheriaxanthin chlorophyll a complex from the eustigmatophyte alga FP5. Photosynthesis Research 2019, 140 (3) , 337-354. https://doi.org/10.1007/s11120-019-00615-y
    18. Dariusz M. Niedzwiedzki, Shira Bar-Zvi, Robert E. Blankenship, Noam Adir. Mapping the excitation energy migration pathways in phycobilisomes from the cyanobacterium Acaryochloris marina. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2019, 1860 (4) , 286-296. https://doi.org/10.1016/j.bbabio.2019.01.002
    19. Erling Thyrhaug, Craig N. Lincoln, Federico Branchi, Giulio Cerullo, Václav Perlík, František Šanda, Heiko Lokstein, Jürgen Hauer. Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum. Photosynthesis Research 2018, 135 (1-3) , 45-54. https://doi.org/10.1007/s11120-017-0398-3
    20. Rafael G. Saer, Robert E. Blankenship. Light harvesting in phototrophic bacteria: structure and function. Biochemical Journal 2017, 474 (13) , 2107-2131. https://doi.org/10.1042/BCJ20160753
    21. Hui-Yuan S. Chen, Michelle Liberton, Himadri B. Pakrasi, Dariusz M. Niedzwiedzki. Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2017, 1858 (3) , 249-258. https://doi.org/10.1016/j.bbabio.2017.01.001
    22. Alberta Pinnola, Hristina Staleva-Musto, Stefano Capaldi, Matteo Ballottari, Roberto Bassi, Tomáš Polívka. Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2016, 1857 (12) , 1870-1878. https://doi.org/10.1016/j.bbabio.2016.09.001
    23. Dariusz M. Niedzwiedzki, Tomasz Tronina, Haijun Liu, Hristina Staleva, Josef Komenda, Roman Sobotka, Robert E. Blankenship, Tomáš Polívka. Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase–HliC/D complex. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2016, 1857 (9) , 1430-1439. https://doi.org/10.1016/j.bbabio.2016.04.280
    24. Fei Ma, Long-Jiang Yu, Zheng-Yu Wang-Otomo, Rienk van Grondelle. The origin of the unusual Qy red shift in LH1–RC complexes from purple bacteria Thermochromatium tepidum as revealed by Stark absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2015, 1847 (12) , 1479-1486. https://doi.org/10.1016/j.bbabio.2015.08.007
    25. Vladimir Z. Paschenko, Vladimir V. Gorokhov, Boris N. Korvatovskiy, Eugeniy A. Bocharov, Peter P. Knox, Oleg M. Sarkisov, Christoph Theiss, Hans J. Eichler, Gernot Renger, Andrew B. Rubin. The rate of Qx→Qy relaxation in bacteriochlorophylls of reaction centers from Rhodobacter sphaeroides determined by kinetics of the ultrafast carotenoid bandshift. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2012, 1817 (8) , 1399-1406. https://doi.org/10.1016/j.bbabio.2012.02.006
    26. H.A. Frank, R.J. Cogdell. 8.6 Light Capture in Photosynthesis. 2012, 94-114. https://doi.org/10.1016/B978-0-12-374920-8.00808-0
    27. Václav Šlouf, Sergei P. Balashov, Janos K. Lanyi, Tõnu Pullerits, Tomáš Polívka. Carotenoid response to retinal excitation and photoisomerization dynamics in xanthorhodopsin. Chemical Physics Letters 2011, 516 (1-3) , 96-101. https://doi.org/10.1016/j.cplett.2011.09.062
    28. Daisuke Kosumi, Satoshi Maruta, Tomoko Horibe, Ritsuko Fujii, Mitsuru Sugisaki, Richard J. Cogdell, Hideki Hashimoto. Ultrafast Energy‐Transfer Pathway in a Purple‐Bacterial Photosynthetic Core Antenna, as Revealed by Femtosecond Time‐Resolved Spectroscopy. Angewandte Chemie 2011, 123 (5) , 1129-1132. https://doi.org/10.1002/ange.201003771
    29. Daisuke Kosumi, Satoshi Maruta, Tomoko Horibe, Ritsuko Fujii, Mitsuru Sugisaki, Richard J. Cogdell, Hideki Hashimoto. Ultrafast Energy‐Transfer Pathway in a Purple‐Bacterial Photosynthetic Core Antenna, as Revealed by Femtosecond Time‐Resolved Spectroscopy. Angewandte Chemie International Edition 2011, 50 (5) , 1097-1100. https://doi.org/10.1002/anie.201003771
    30. Fabio Pichierri. A quantum mechanical analysis of the light-harvesting complex 2 (LH2) from purple photosynthetic bacteria: Insights into the electrostatic effects of transmembrane helices. Biosystems 2011, 103 (2) , 132-137. https://doi.org/10.1016/j.biosystems.2010.08.006
    31. Elisabet Romero, Ivo H. M. van Stokkum, Jan P. Dekker, Rienk van Grondelle. Ultrafast carotenoid band shifts correlated with Chlz excited states in the photosystem II reaction center: are the carotenoids involved in energy transfer?. Physical Chemistry Chemical Physics 2011, 13 (13) , 5573. https://doi.org/10.1039/c0cp02896g
    32. V. Z. Paschenko, V. V. Gorokhov, B. N. Korvatovsky, P. P. Knox, N. I. Zakharova, C. Teiss, H. -J. Eichler, G. Renger, O. M. Sarkisov, A. B. Rubin. Electrochemical shift of the carotenoid molecule absorption band as an indicator of processes of energy migration in the reaction center of Rhodobacter sphaeroides. Doklady Biochemistry and Biophysics 2010, 434 (1) , 257-261. https://doi.org/10.1134/S1607672910050108
    33. Tim Schulte, Dariusz M. Niedzwiedzki, Robert R. Birge, Roger G. Hiller, Tomáš Polívka, Eckhard Hofmann, Harry A. Frank. Identification of a single peridinin sensing Chl- a excitation in reconstituted PCP by crystallography and spectroscopy. Proceedings of the National Academy of Sciences 2009, 106 (49) , 20764-20769. https://doi.org/10.1073/pnas.0908938106
    34. Ivo H.M. van Stokkum, Emmanouil Papagiannakis, Mikas Vengris, Jante M. Salverda, Tomáš Polívka, Donatas Zigmantas, Delmar S. Larsen, Stefania S. Lampoura, Roger G. Hiller, Rienk van Grondelle. Inter-pigment interactions in the peridinin chlorophyll protein studied by global and target analysis of time resolved absorption spectra. Chemical Physics 2009, 357 (1-3) , 70-78. https://doi.org/10.1016/j.chemphys.2008.10.005
    35. Ben Brüggemann, Niklas Christensson, Tõnu Pullerits. Temperature dependent exciton–exciton annihilation in the LH2 antenna complex. Chemical Physics 2009, 357 (1-3) , 140-143. https://doi.org/10.1016/j.chemphys.2008.12.001
    36. Fei Ma, Yukihiro Kimura, Xiao-Hui Zhao, Yi-Shi Wu, Peng Wang, Li-Min Fu, Zheng-Yu Wang, Jian-Ping Zhang. Excitation Dynamics of Two Spectral Forms of the Core Complexes from Photosynthetic Bacterium Thermochromatium tepidum. Biophysical Journal 2008, 95 (7) , 3349-3357. https://doi.org/10.1529/biophysj.108.133835
    37. Pierre D. Harvey, Christine Stern, Claude P. Gros, Roger Guilard. Comments on the through-space singlet energy transfers and energy migration (exciton) in the light harvesting systems. Journal of Inorganic Biochemistry 2008, 102 (3) , 395-405. https://doi.org/10.1016/j.jinorgbio.2007.09.011
    38. Liu Wei-Min, Liu Yuan, Liu Kang-Jun, Yan Yong-Li, Guo Li-Jun, Xu Chun-He, Qian Shi-Xiong. Effect of the mutation of carotenoids on the dynamics of energy transfer in light-harvesting complexes (LH2) from Rhodobacter sphaeroides 601 at room temperature. Chinese Physics 2006, 15 (8) , 1725-1730. https://doi.org/10.1088/1009-1963/15/8/016
    39. Weimin Liu, Yuan Liu, Lijun Guo, Chunhe Xu, Shixiong Qian. The mutation of carotenoids affects the energy transfer in LH2 light harvesting complexes from Rhodobacter sphaeroides 601 at room temperature. Journal of Luminescence 2006, 119-120 , 350-355. https://doi.org/10.1016/j.jlumin.2006.01.002
    40. Rudi Berera, Christian Herrero, Ivo H. M. van Stokkum, Mikas Vengris, Gerdenis Kodis, Rodrigo E. Palacios, Herbert van Amerongen, Rienk van Grondelle, Devens Gust, Thomas A. Moore, Ana L. Moore, John T. M. Kennis. A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis. Proceedings of the National Academy of Sciences 2006, 103 (14) , 5343-5348. https://doi.org/10.1073/pnas.0508530103
    41. Tomáš Polívka, Torbjörn Pascher, Villy Sundström, Roger G. Hiller. Tuning Energy Transfer in the Peridinin–chlorophyll Complex by Reconstitution with Different Chlorophylls. Photosynthesis Research 2005, 86 (1-2) , 217-227. https://doi.org/10.1007/s11120-005-1447-x
    42. Mengtao Sun, Pär Kjellberg, Fengcai Ma, Tõnu Pullerits. Excited state properties of acceptor-substitute carotenoids: 2D and 3D real-space analysis. Chemical Physics Letters 2005, 401 (4-6) , 558-564. https://doi.org/10.1016/j.cplett.2004.11.074

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2004, 108, 29, 10398–10403
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp040094p
    Published June 2, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    448

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.