ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Heats of Formation of the Acetyl Radical and Ion Obtained by Threshold Photoelectron Photoion Coincidence

View Author Information
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
Cite this: J. Phys. Chem. A 2004, 108, 24, 5288–5294
Publication Date (Web):May 22, 2004
https://doi.org/10.1021/jp040118s
Copyright © 2004 American Chemical Society

    Article Views

    443

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The dissociative photoionization onsets for the production of CH3CO+ + CH3 from acetone and CH3CO+ + CH3CO from butanedione have been measured by threshold photoelectron photoion coincidence (TPEPICO) in which time-of-flight (TOF) mass spectra are obtained as a function of the ion internal energy. The use of velocity focusing for threshold electrons and the subtraction of “hot” electron coincidences from the TPEPICO spectra allow the 0 K dissociation onset to be measured with a precision of 1 kJ/mol. The experimental onset for CH3 loss from CH3COCH3 was measured to be 10.563 ± 0.010 eV and the onset for CH3CO loss from CH3COCOCH3 was found to be 10.090 ± 0.006 eV. A 298 K heat of formation of the CH3CO+ of 659.4 ± 1.1 kJ/mol is obtained by combining the measured dissociation onset with the well-established heats of formation of acetone and the methyl radical. A 298 K heat of formation of the CH3CO radical of −9.8 ± 1.8 kJ/mol is obtained by combining the measured dissociation onset with the well-known heat of formation of butanedione and the measured heat of formation of CH3CO+. The acetone and butanedione ionization energies were measured to be 9.708 ± 0.004 and 9.21 ± 0.05 eV, respectively.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Current address:  Department of General and Inorganic Chemistry, Eötvös University Budapest, Hungary H-1117, Budapest, Pázmány P. sétány 1/a.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 53 publications.

    1. Martin DeWitt, Mark C. Babin, Jascha A. Lau, Tonia Solomis, Daniel M. Neumark. High Resolution Photoelectron Spectroscopy of the Acetyl Anion. The Journal of Physical Chemistry A 2022, 126 (43) , 7962-7970. https://doi.org/10.1021/acs.jpca.2c06214
    2. Diego de O. Rogério, Reinaldo L. Cavasso-Filho, Alexsandre F. Lago. VUV-Induced Photodissociation of the Chloroacetone Molecule Studied by Photoelectron-Photoion Coincidence Spectroscopy. Journal of the American Society for Mass Spectrometry 2021, 32 (8) , 2186-2195. https://doi.org/10.1021/jasms.1c00136
    3. Peter Weidner, Amelia W. Ray, Andras Bodi, Bálint Sztáray. Dissociative Photoionization of Methyl Vinyl Ketone−Thermochemical Anchors and a Drifting Methyl Group. The Journal of Physical Chemistry A 2021, 125 (3) , 848-856. https://doi.org/10.1021/acs.jpca.0c10665
    4. Ivan Antonov, Krisztina Voronova, Ming-Wei Chen, Bálint Sztáray, Patrick Hemberger, Andras Bodi, David L. Osborn, Leonid Sheps. To Boldly Look Where No One Has Looked Before: Identifying the Primary Photoproducts of Acetylacetone. The Journal of Physical Chemistry A 2019, 123 (26) , 5472-5490. https://doi.org/10.1021/acs.jpca.9b04640
    5. Jessica P. Porterfield, David H. Bross, Branko Ruscic, James H. Thorpe, Thanh Lam Nguyen, Joshua H. Baraban, John F. Stanton, John W. Daily, and G. Barney Ellison . Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate. The Journal of Physical Chemistry A 2017, 121 (24) , 4658-4677. https://doi.org/10.1021/acs.jpca.7b02639
    6. Fabian Holzmeier, Isabella Wagner, Ingo Fischer, Andras Bodi, and Patrick Hemberger . Pyrolysis of 3-Methoxypyridine. Detection and Characterization of the Pyrrolyl Radical by Threshold Photoelectron Spectroscopy. The Journal of Physical Chemistry A 2016, 120 (27) , 4702-4710. https://doi.org/10.1021/acs.jpca.5b10743
    7. Nikolay G. Petrik, Michael A. Henderson, and Greg A. Kimmel . Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate. The Journal of Physical Chemistry C 2015, 119 (22) , 12262-12272. https://doi.org/10.1021/acs.jpcc.5b02477
    8. Melanie Lang, Fabian Holzmeier, Ingo Fischer, and Patrick Hemberger . Decomposition of Diazomeldrum’s Acid: A Threshold Photoelectron Spectroscopy Study. The Journal of Physical Chemistry A 2014, 118 (47) , 11235-11243. https://doi.org/10.1021/jp509324w
    9. Guilherme C. Almeida, Sérgio Pilling, Diana P. P. Andrade, Nathany Lisbôa S. Castro, Edgar Mendoza, Heloísa M. Boechat-Roberty, and Maria Luiza M. Rocco . Photodesorption and Photostability of Acetone Ices: Relevance to Solid Phase Astrochemistry. The Journal of Physical Chemistry C 2014, 118 (12) , 6193-6200. https://doi.org/10.1021/jp410745c
    10. Sydney Leach . Size Effects on Cation Heats of Formation. II. Methyl Substitutions in Oxygen Compounds. The Journal of Physical Chemistry A 2013, 117 (39) , 10058-10067. https://doi.org/10.1021/jp400736y
    11. Daniel P. Wilson, David Sporleder, and Michael G. White . Final State Distributions of Methyl Photoproducts from the Photooxidation of Acetone on TiO2(110). The Journal of Physical Chemistry C 2012, 116 (31) , 16541-16552. https://doi.org/10.1021/jp303947q
    12. Tomas Baer, S. Hunter Walker, Nicholas S. Shuman, and Andras Bodi . One- and Two-Dimensional Translational Energy Distributions in the Iodine-Loss Dissociation of 1,2-C2H4I2+ and 1,3-C3H6I2+: What Does This Mean?. The Journal of Physical Chemistry A 2012, 116 (11) , 2833-2844. https://doi.org/10.1021/jp2121643
    13. William R. Stevens, Branko Ruscic, and Tomas Baer. Heats of Formation of C6H5•, C6H5+, and C6H5NO by Threshold Photoelectron Photoion Coincidence and Active Thermochemical Tables Analysis. The Journal of Physical Chemistry A 2010, 114 (50) , 13134-13145. https://doi.org/10.1021/jp107561s
    14. William R. Stevens, S. Hunter Walker, Nicholas S. Shuman and Tomas Baer. Dissociative Photoionization Study of Neopentane: A Path to an Accurate Heat of Formation of the t-Butyl Ion, t-Butyl Iodide, and t-Butyl Hydroperoxide. The Journal of Physical Chemistry A 2010, 114 (2) , 804-810. https://doi.org/10.1021/jp908583j
    15. William Stevens, Bálint Sztáray, Nicholas Shuman, Tomas Baer and Jürgen Troe. Specific Rate Constants k(E) of the Dissociation of the Halobenzene Ions: Analysis by Statistical Unimolecular Rate Theories. The Journal of Physical Chemistry A 2009, 113 (3) , 573-582. https://doi.org/10.1021/jp807930k
    16. Jia Zhou and H. Bernhard Schlegel. Dissociation of Acetone Radical Cation (CH3COCH3+· → CH3CO+ + CH3·): An Ab Initio Direct Classical Trajectory Study of the Energy Dependence of the Branching Ratio. The Journal of Physical Chemistry A 2008, 112 (50) , 13121-13127. https://doi.org/10.1021/jp8057492
    17. T. William Bentley. Structural Effects on the Solvolytic Reactivity of Carboxylic and Sulfonic Acid Chlorides. Comparisons with Gas-Phase Data for Cation Formation. The Journal of Organic Chemistry 2008, 73 (16) , 6251-6257. https://doi.org/10.1021/jo800841g
    18. James P. Kercher,, Zsolt Gengeliczki,, Bálint Sztáray, and, Tomas Baer. Dissociation Dynamics of Sequential Ionic Reactions:  Heats of Formation of Tri-, Di-, and Monoethylphosphine. The Journal of Physical Chemistry A 2007, 111 (1) , 16-26. https://doi.org/10.1021/jp0652392
    19. Andras Bodi,, James P. Kercher,, Curtis Bond,, Patcharica Meteesatien,, Bálint Sztáray, and, Tomas Baer. Photoion Photoelectron Coincidence Spectroscopy of Primary Amines RCH2NH2 (R = H, CH3, C2H5, C3H7, i-C3H7):  Alkylamine and Alkyl Radical Heats of Formation by Isodesmic Reaction Networks. The Journal of Physical Chemistry A 2006, 110 (50) , 13425-13433. https://doi.org/10.1021/jp064739s
    20. Juan Z. Dávalos and, Tomas Baer. Thermochemistry and Dissociative Photoionization of Si(CH3)4, BrSi(CH3)3, ISi(CH3)3, and Si2(CH3)6 Studied by Threshold Photoelectron−Photoion Coincidence Spectroscopy. The Journal of Physical Chemistry A 2006, 110 (27) , 8572-8579. https://doi.org/10.1021/jp0566358
    21. Emma E. Rennie,, Anne-Marie Boulanger, and, Paul M. Mayer, , David M. P. Holland and, David A. Shaw, , Louise Cooper, , Larisa G. Shpinkova. A Photoelectron and TPEPICO Investigation of the Acetone Radical Cation. The Journal of Physical Chemistry A 2006, 110 (28) , 8663-8675. https://doi.org/10.1021/jp0616866
    22. Juan Z. Dávalos,, Hideya Koizumi, and, Tomas Baer. Threshold Photoelectron−Photoion Coincidence Spectroscopy:  Dissociation Dynamics and Thermochemistry of Ge(CH3)4, Ge(CH3)3Cl, and Ge(CH3)3Br. The Journal of Physical Chemistry A 2006, 110 (15) , 5032-5037. https://doi.org/10.1021/jp060264t
    23. A. F. Lago,, James P. Kercher,, András Bödi,, Bálint Sztáray,, B. Miller,, D. Wurzelmann, and, Tomas Baer. Dissociative Photoionization and Thermochemistry of Dihalomethane Compounds Studied by Threshold Photoelectron Photoion Coincidence Spectroscopy. The Journal of Physical Chemistry A 2005, 109 (9) , 1802-1809. https://doi.org/10.1021/jp045337s
    24. James P. Kercher,, Elizabeth A. Fogleman,, Hideya Koizumi,, Bálint Sztáray, and, Tomas Baer. Heats of Formation of the Propionyl Ion and Radical and 2,3-Pentanedione by Threshold Photoelectron Photoion Coincidence Spectroscopy. The Journal of Physical Chemistry A 2005, 109 (5) , 939-946. https://doi.org/10.1021/jp0458497
    25. Sebastian Grimm, Seung-Jin Baik, Patrick Hemberger, Tina Kasper, Andreas M. Kempf, Burak Atakan. Insights into the decomposition of zirconium acetylacetonate using synchrotron radiation: Routes to the formation of volatile Zr-intermediates. Journal of Materials Research 2022, 37 (9) , 1558-1575. https://doi.org/10.1557/s43578-022-00566-6
    26. Thomas Bierkandt, Patrick Oßwald, Nina Gaiser, Dominik Krüger, Markus Köhler, Martin Hoener, Shkelqim Shaqiri, Dennis Kaczmarek, Yasin Karakaya, Patrick Hemberger, Tina Kasper. Observation of low‐temperature chemistry products in laminar premixed low‐pressure flames by molecular‐beam mass spectrometry. International Journal of Chemical Kinetics 2021, 53 (10) , 1063-1081. https://doi.org/10.1002/kin.21503
    27. J. Octavio Juárez-Sánchez, Donald H. Galván, Alvaro Posada-Amarillas. Combined DFT and NBO approach to analyze reactivity and stability of (CuS) n (n = 1–12) clusters. Computational and Theoretical Chemistry 2017, 1103 , 71-82. https://doi.org/10.1016/j.comptc.2017.01.030
    28. O. Hüter, F. Temps. Ultrafast α –CC bond cleavage of acetone upon excitation to 3p and 3d Rydberg states by femtosecond time-resolved photoelectron imaging. The Journal of Chemical Physics 2016, 145 (21) https://doi.org/10.1063/1.4971243
    29. Krisztina Voronova, Chrissa M. Mozaffari Easter, Krisztián G. Torma, Andras Bodi, Patrick Hemberger, Bálint Sztáray. Bifurcated dissociative photoionization mechanism of acetic acid anhydride revealed by imaging photoelectron photoion coincidence spectroscopy. Physical Chemistry Chemical Physics 2016, 18 (36) , 25161-25168. https://doi.org/10.1039/C6CP05370J
    30. Andras Bodi, Tomas Baer, Nancy K. Wells, Daniel Fakhoury, David Klecyngier, James P. Kercher. Controlling tunnelling in methane loss from acetone ions by deuteration. Physical Chemistry Chemical Physics 2015, 17 (43) , 28505-28509. https://doi.org/10.1039/C5CP02944A
    31. J. D. Mosley, J. W. Young, M. A. Duncan. Infrared spectroscopy of the acetyl cation and its protonated ketene isomer. The Journal of Chemical Physics 2014, 141 (2) https://doi.org/10.1063/1.4887074
    32. Prasanta Das, Yuan-Pern Lee. Bimolecular reaction of CH3 + CO in solid p -H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex. The Journal of Chemical Physics 2014, 140 (24) https://doi.org/10.1063/1.4883519
    33. J. Mark Parnis, Kaitlynn A. King, Matthew G. K. Thompson. Acetone cation chemistry under varying electron density conditions: from unimolecular decomposition to dissociative recombination processes. Journal of Mass Spectrometry 2013, 48 (11) , 1224-1231. https://doi.org/10.1002/jms.3284
    34. John D. Savee, Oliver Welz, Craig A. Taatjes, David L. Osborn. New mechanistic insights to the O(3P) + propene reaction from multiplexed photoionization mass spectrometry. Physical Chemistry Chemical Physics 2012, 14 (30) , 10410. https://doi.org/10.1039/c2cp41200d
    35. Daniel P. Wilson, David Sporleder, Michael G. White. Final state distributions of methyl radical desorption from ketone photooxidation on TiO2(110). Physical Chemistry Chemical Physics 2012, 14 (39) , 13630. https://doi.org/10.1039/c2cp42628e
    36. Thomas Hellman Morton, Kevin H. Weber, Jingsong Zhang. Thermal decomposition of t-amyl methyl ether (TAME) studied by flash pyrolysis/supersonic expansion/vacuum ultraviolet photoionization time-of-flight mass spectrometry. International Journal of Mass Spectrometry 2011, 306 (2-3) , 210-218. https://doi.org/10.1016/j.ijms.2010.11.003
    37. Karl J. Jobst, Richard D. Bowen, Johan K. Terlouw. The dissociation chemistry of low-energy N-formylethanolamine ions: Hydrogen-bridged radical cations as key intermediates. International Journal of Mass Spectrometry 2011, 306 (1) , 9-26. https://doi.org/10.1016/j.ijms.2011.05.011
    38. Bálint Sztáray, Andras Bodi, Tomas Baer. Modeling unimolecular reactions in photoelectron photoion coincidence experiments. Journal of Mass Spectrometry 2010, 45 (11) , 1233-1245. https://doi.org/10.1002/jms.1813
    39. Nicholas S. Shuman, William R. Stevens, Tomas Baer. Dissociation dynamics of energy-selected acetic acid ions: The gas phase heat of formation of the acetyl ion. International Journal of Mass Spectrometry 2010, 294 (2-3) , 88-92. https://doi.org/10.1016/j.ijms.2010.05.021
    40. James A. Dodd, Paul M. Baker, Eunsook S. Hwang, David Sporleder, Jaime A. Stearns, Steven D. Chambreau, Matthew Braunstein, Patrick F. Conforti. Hyperthermal atomic oxygen source for near-space simulation experiments. Review of Scientific Instruments 2009, 80 (9) https://doi.org/10.1063/1.3212676
    41. Andras Bodi, Nicholas S. Shuman, Tomas Baer. On the ionization and dissociative photoionization of iodomethane: a definitive experimental enthalpy of formation of CH3I. Physical Chemistry Chemical Physics 2009, 11 (46) , 11013. https://doi.org/10.1039/b915400k
    42. . Suppression of the Methyl Radical Loss from Acetone Cation within (CH 3 COCH 3 ) n {CH 3 COCH 3 } + Clusters. Bulletin of the Korean Chemical Society 2008, 1519-1524. https://doi.org/10.5012/bkcs.2008.29.8.1519
    43. J.R. Vacher, F. Jorand, N. Blin-Simiand, S. Pasquiers. Partial ionization cross-sections of acetone and 2-butanone. International Journal of Mass Spectrometry 2008, 273 (3) , 117-125. https://doi.org/10.1016/j.ijms.2008.03.011
    44. M.H.N. Zamanpour, A. Bahkshandeh, S. Ghaffarzadeh, J.M. Dyke. Observation and assignment of the first photoelectron band of the CH3CO (X2A) radical. Journal of Electron Spectroscopy and Related Phenomena 2008, 162 (3) , 122-126. https://doi.org/10.1016/j.elspec.2007.10.002
    45. T. William Bentley, Robert O. Jones. Substituent effects on the formation of sulfonyl cations from sulfonyl chlorides: comparisons of solvolysis kinetic data with calculated gas phase energies. Journal of Physical Organic Chemistry 2007, 20 (12) , 1093-1101. https://doi.org/10.1002/poc.1262
    46. James P. Kercher, Will Stevens, Zsolt Gengeliczki, Tomas Baer. Modeling ionic unimolecular dissociations from a temperature controlled TPEPICO study on 1-C4H9I ions. International Journal of Mass Spectrometry 2007, 267 (1-3) , 159-166. https://doi.org/10.1016/j.ijms.2007.02.035
    47. James P. Kercher, Bálint Sztáray, Tomas Baer. On the dissociation of the 2-pentanone ion studied by threshold photoelectron photoion coincidence spectroscopy. International Journal of Mass Spectrometry 2006, 249-250 , 403-411. https://doi.org/10.1016/j.ijms.2005.11.016
    48. Xian Wang, John L. Holmes. The unexpected decarbonylation of ionized 2,3-pentanedione and related diketones. International Journal of Mass Spectrometry 2006, 249-250 , 222-229. https://doi.org/10.1016/j.ijms.2005.12.033
    49. Andras Bodi, Bálint Sztáray, Tomas Baer. Dissociative photoionization of mono-, di- and trimethylamine studied by a combined threshold photoelectron photoion coincidence spectroscopy and computational approach. Phys. Chem. Chem. Phys. 2006, 8 (5) , 613-623. https://doi.org/10.1039/B511203F
    50. Tomas Baer, Bálint Sztáray, James P. Kercher, A. F. Lago, Andras Bödi, Christopher Skull, Don Palathinkal. Threshold photoelectron photoion coincidence studies of parallel and sequential dissociation reactions. Phys. Chem. Chem. Phys. 2005, 7 (7) , 1507-1513. https://doi.org/10.1039/B502051D
    51. M. Sablier, T. Fujii. 3  Mass spectrometry of free radicals: a methodological overview. Annual Reports Section "C" (Physical Chemistry) 2005, 101 , 53. https://doi.org/10.1039/b408852m
    52. Francis Tam, Erik A. Syrstad, Xiaohong Chen, Frantiček Tureček. Electron-Rich Radicals by Neutralization—Reionization Mass Spectrometry. Generation, Dissociations and Energetics of the Hydrogen Atom Adduct to Acetamide. European Journal of Mass Spectrometry 2004, 10 (6) , 869-879. https://doi.org/10.1255/ejms.680
    53. Adam Brooks, Kai-Chung Lau, C.Y. Ng, Tomas Baer. The C 3 H 7 + Appearance Energy from 2-Iodopropane and 2-Chloropropane Studied by Threshold Photoelectron Photoion Coincidence. European Journal of Mass Spectrometry 2004, 10 (6) , 819-827. https://doi.org/10.1255/ejms.685

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect