ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Intracellular Chemical Imaging of Heme-Containing Enzymes Involved in Innate Immunity Using Resonance Raman Microscopy

View Author Information
Biophysical Engineering Group, Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, and Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
Cite this: J. Phys. Chem. B 2004, 108, 48, 18762–18771
Publication Date (Web):November 5, 2004
https://doi.org/10.1021/jp046955b
Copyright © 2004 American Chemical Society

    Article Views

    817

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (404 KB)

    Abstract

    Vibrational microspectroscopy has become a powerful tool in cellular biology because detailed information about the chemical composition of subcellular, femtoliter volumes can be obtained. Moreover, biological imaging techniques based on this type of spectroscopy avoid labeling methods and artifacts arising from them because the required contrast is generated from endogenous molecules. Here, we report the visualization, by confocal Raman microscopy, of the intracellular distribution of two enzymes important in the immune response of granulocytes (i.e., the NADPH oxidase subunit cytochrome b558 (cyt b558) in neutrophils and eosinophil peroxidase (EPO) in eosinophils). We excited these leukocytes with 413.1 nm laser light, allowing the Raman scattering signal from the heme-containing enzymes to be dramatically enhanced by resonance. In neutrophils, there is a nonnegligible contribution from the hemoprotein myeloperoxidase to the resonance Raman signal. The effect of photobleaching of the Raman signal at 413.1 nm excitation on the reconstructed Raman images is discussed. We also show how singular value decomposition can significantly reduce the noise that is present in the raw spectral data. Stimulation of the neutrophils, either by phagocytosis or by phorbol 12-myristate 13-acetate (PMA), resulted in intracellular redistributions of cyt b558. Spectra extracted from Raman images of PMA-activated neutrophils displayed a significantly higher level of cyt b558 reduction than spectra from resting neutrophils, indicating that cyt b558 reduction is linked with NADPH oxidase activation. The versatility of resonance Raman microscopy on leukocytes is further demonstrated by the visualization of EPO in single eosinophils. In conclusion, high-resolution cellular imaging based on resonance Raman spectroscopy enables the label-free visualization of the intracellular distribution of cyt b558 in neutrophils and EPO in eosinophils, two crucial enzymes in leukocyte innate immunity.

    *

     To whom correspondence should be addressed. Phone:  +31 53 4894612. Fax:  +31 53 4891105. E-mail:  [email protected].

     University of Twente.

     University of Amsterdam.

    Cited By

    This article is cited by 72 publications.

    1. Shogo Toda, Eric Wei-Guang Diau, Shinsuke Shigeto. Mapping of Grain Orientation In Situ of 2D Perovskite Thin Films with Low-Frequency Polarized Raman Microspectroscopy. The Journal of Physical Chemistry C 2021, 125 (51) , 27996-28003. https://doi.org/10.1021/acs.jpcc.1c08533
    2. Hao He, Maofeng Cao, Xiaxia Yue, Mengxi Xu, Lei Wang, Bin Ren. Collaborative Low-Rank Matrix Approximation-Assisted Fast Hyperspectral Raman Imaging and Tip-Enhanced Raman Spectroscopic Imaging. Analytical Chemistry 2021, 93 (44) , 14609-14617. https://doi.org/10.1021/acs.analchem.1c02071
    3. Kota Koike, Kazuki Bando, Jun Ando, Hiroyuki Yamakoshi, Naoki Terayama, Kosuke Dodo, Nicholas Isaac Smith, Mikiko Sodeoka, Katsumasa Fujita. Quantitative Drug Dynamics Visualized by Alkyne-Tagged Plasmonic-Enhanced Raman Microscopy. ACS Nano 2020, 14 (11) , 15032-15041. https://doi.org/10.1021/acsnano.0c05010
    4. Mitsuru Yasuda, Norio Takeshita, Shinsuke Shigeto. Inhomogeneous Molecular Distributions and Cytochrome Types and Redox States in Fungal Cells Revealed by Raman Hyperspectral Imaging Using Multivariate Curve Resolution–Alternating Least Squares. Analytical Chemistry 2019, 91 (19) , 12501-12508. https://doi.org/10.1021/acs.analchem.9b03261
    5. Yi-Ting Zheng, Masanori Toyofuku, Nobuhiko Nomura, and Shinsuke Shigeto . Correlation of Carotenoid Accumulation with Aggregation and Biofilm Development in Rhodococcus sp. SD-74. Analytical Chemistry 2013, 85 (15) , 7295-7301. https://doi.org/10.1021/ac401188f
    6. Chuan-Keng Huang, Masahiro Ando, Hiro-o Hamaguchi, and Shinsuke Shigeto . Disentangling Dynamic Changes of Multiple Cellular Components during the Yeast Cell Cycle by in Vivo Multivariate Raman Imaging. Analytical Chemistry 2012, 84 (13) , 5661-5668. https://doi.org/10.1021/ac300834f
    7. Anuradha Ramoji, Ute Neugebauer, Thomas Bocklitz, Martin Foerster, Michael Kiehntopf, Michael Bauer, and Jürgen Popp . Toward a Spectroscopic Hemogram: Raman Spectroscopic Differentiation of the Two Most Abundant Leukocytes from Peripheral Blood. Analytical Chemistry 2012, 84 (12) , 5335-5342. https://doi.org/10.1021/ac3007363
    8. Vishnu Vardhan Pully, Aufried Lenferink, Henk-Jan van Manen, Vinod Subramaniam, Clemens A. van Blitterswijk and Cees Otto . Microbioreactors for Raman Microscopy of Stromal Cell Differentiation. Analytical Chemistry 2010, 82 (5) , 1844-1850. https://doi.org/10.1021/ac902515c
    9. Anne Myers Kelley. Resonance Raman and Resonance Hyper-Raman Intensities: Structure and Dynamics of Molecular Excited States in Solution. The Journal of Physical Chemistry A 2008, 112 (47) , 11975-11991. https://doi.org/10.1021/jp805530y
    10. Ram Krishna, Ilhami Colak. Advances in Biomedical Applications of Raman Microscopy and Data Processing: A Mini Review. Analytical Letters 2023, 56 (4) , 576-617. https://doi.org/10.1080/00032719.2022.2094391
    11. Nanako Kanno, Shingo Kato, Moriya Ohkuma, Motomu Matsui, Wataru Iwasaki, Shinsuke Shigeto. Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm. STAR Protocols 2022, 3 (4) , 101812. https://doi.org/10.1016/j.xpro.2022.101812
    12. Nanako Kanno, Shingo Kato, Takashi Itoh, Moriya Ohkuma, Shinsuke Shigeto. Resonance Raman analysis of intracellular vitamin B 12 analogs in methanogenic archaea. Analytical Science Advances 2022, 3 (5-6) , 165-173. https://doi.org/10.1002/ansa.202100042
    13. Dustin Shipp. Raman Microscopy. 2021, 8-1-8-22. https://doi.org/10.1063/9780735423794_008
    14. Aritra Mandal, L. D. Ziegler. Vibrational line shape effects in plasmon-enhanced stimulated Raman spectroscopies. The Journal of Chemical Physics 2021, 155 (19) , 194701. https://doi.org/10.1063/5.0067301
    15. Nanako Kanno, Shingo Kato, Moriya Ohkuma, Motomu Matsui, Wataru Iwasaki, Shinsuke Shigeto. Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes. iScience 2021, 24 (9) , 102975. https://doi.org/10.1016/j.isci.2021.102975
    16. Shaowei Li, Yanping Li, Rongxing Yi, Liwei Liu, Junle Qu. Coherent Anti-Stokes Raman Scattering Microscopy and Its Applications. Frontiers in Physics 2020, 8 https://doi.org/10.3389/fphy.2020.598420
    17. Meng-Qi He, Yong-Liang Yu, Jian-Hua Wang. Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications. Nano Today 2020, 35 , 101005. https://doi.org/10.1016/j.nantod.2020.101005
    18. Hao He, Chun Lin, Cheng Zong, Mengxi Xu, Peng Zheng, Ruiqian Ye, Lei Wang, Bin Ren. Automated weak signal extraction of hyperspectral Raman imaging data by adaptive low‐rank matrix approximation. Journal of Raman Spectroscopy 2020, 51 (12) , 2552-2561. https://doi.org/10.1002/jrs.6024
    19. Sachin Nair, Jun Gao, Qirong Yao, Michael H G Duits, Cees Otto, Frieder Mugele. Algorithm-improved high-speed and non-invasive confocal Raman imaging of 2D materials. National Science Review 2020, 7 (3) , 620-628. https://doi.org/10.1093/nsr/nwz177
    20. Alexey V. Vlasov, Nina L. Maliar, Sergey V. Bazhenov, Evelina I. Nikelshparg, Nadezda A. Brazhe, Anastasiia D. Vlasova, Stepan D. Osipov, Vsevolod V. Sudarev, Yury L. Ryzhykau, Andrey O. Bogorodskiy, Egor V. Zinovev, Andrey V. Rogachev, Ilya V. Manukhov, Valentin I. Borshchevskiy, Alexander I. Kuklin, Jan Pokorný, Olga Sosnovtseva, Georgy V. Maksimov, Valentin I. Gordeliy. Raman Scattering: From Structural Biology to Medical Applications. Crystals 2020, 10 (1) , 38. https://doi.org/10.3390/cryst10010038
    21. Anna Rygula, Rafaella F. Fernandes, Marek Grosicki, Bozena Kukla, Patrycja Leszczenko, Dominika Augustynska, Adrian Cernescu, Aleksandra Dorosz, Kamilla Malek, Malgorzata Baranska. Raman imaging highlights biochemical heterogeneity of human eosinophils versus human eosinophilic leukaemia cell line. British Journal of Haematology 2019, 186 (5) , 685-694. https://doi.org/10.1111/bjh.15971
    22. Jun Ando, Kosuke Dodo, Katsumasa Fujita, Mikiko Sodeoka. Visualizing Bioactive Small Molecules by Alkyne Tagging and Slit-Scanning Raman Microscopy. 2019, 99-114. https://doi.org/10.1007/978-1-4939-8891-4_5
    23. Christina Ploumi, Emmanouil Kyriakakis, Nektarios Tavernarakis. Dynamics of Iron Homeostasis in Health and Disease: Molecular Mechanisms and Methods for Iron Determination. 2019, 105-145. https://doi.org/10.1007/978-981-13-0989-2_5
    24. Shinsuke Shigeto. Time- and Space-Resolved Vibrational Spectroscopic Approaches to Elucidate the Behaviors of Complex Molecular Systems: From Biological Cells to Hybrid Solar-Cell Materials. Molecular Science 2018, 12 (1) , A0099. https://doi.org/10.3175/molsci.12.A0099
    25. Dustin W. Shipp, Faris Sinjab, Ioan Notingher. Raman spectroscopy: techniques and applications in the life sciences. Advances in Optics and Photonics 2017, 9 (2) , 315. https://doi.org/10.1364/AOP.9.000315
    26. Shinji Kajimoto, Mizuki Takeuchi, Takakazu Nakabayashi. Raman Imaging Microscopy for Quantitative Analysis of Biological Samples. 2017, 163-172. https://doi.org/10.1007/978-3-319-67358-5_12
    27. Rachael Smith, Karen L. Wright, Lorna Ashton. Raman spectroscopy: an evolving technique for live cell studies. The Analyst 2016, 141 (12) , 3590-3600. https://doi.org/10.1039/C6AN00152A
    28. F. J. Timmermans, A. T. M. Lenferink, H. A. G. M. van Wolferen, C. Otto. Correlative SEM SERS for quantitative analysis of dimer nanoparticles. The Analyst 2016, 141 (23) , 6455-6462. https://doi.org/10.1039/C6AN01648K
    29. Kozue Watanabe, Almar F. Palonpon, Nicholas I. Smith, Liang-da Chiu, Atsushi Kasai, Hitoshi Hashimoto, Satoshi Kawata, Katsumasa Fujita. Structured line illumination Raman microscopy. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms10095
    30. Jen-Fang Hsu, Pei-Ying Hsieh, Hsin-Yun Hsu, Shinsuke Shigeto. When cells divide: Label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep17541
    31. Xianli Zong, Rong Zhu, Xiaoliang Guo. Nanostructured gold microelectrodes for SERS and EIS measurements by incorporating ZnO nanorod growth with electroplating. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep16454
    32. Aya Hashimoto, Yoshinori Yamaguchi, Liang-da Chiu, Chiaki Morimoto, Katsumasa Fujita, Masahide Takedachi, Satoshi Kawata, Shinya Murakami, Eiichi Tamiya. Time-lapse Raman imaging of osteoblast differentiation. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep12529
    33. Katsumasa Fujita. Raman microscopy: Chemical and analytical imaging of biomolecules. 2015, 90-92. https://doi.org/10.1109/ICSJ.2015.7357368
    34. Hiroki Segawa, Yuichi Kaji, Philippe Leproux, Vincent Couderc, Takeaki Ozawa, Tetsuro Oshika, Hideaki Kano. Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source. Journal of Biophotonics 2015, 8 (9) , 705-713. https://doi.org/10.1002/jbio.201400059
    35. Hiroki Segawa, Masanari Okuno, Philippe Leproux, Vincent Couderc, Takeaki Ozawa, Hideaki Kano. Multimodal Imaging of Living Cells with Multiplex Coherent Anti-stokes Raman Scattering (CARS), Third-order Sum Frequency Generation (TSFG) and Two-photon Excitation Fluorescence (TPEF) Using a Nanosecond White-light Laser Source. Analytical Sciences 2015, 31 (4) , 299-305. https://doi.org/10.2116/analsci.31.299
    36. Konstantin A. Okotrub, Nikolay V. Surovtsev. Photobleaching of the resonance Raman lines of cytochromes in living yeast cells. Journal of Photochemistry and Photobiology B: Biology 2014, 141 , 269-274. https://doi.org/10.1016/j.jphotobiol.2014.10.008
    37. David S. Moore, Peter Uhd Jepsen, Karel Volka. Principles of Vibrational Spectroscopic Methods and their Application to Bioanalysis. 2014, 1037-1078. https://doi.org/10.1002/9783527654703.ch27
    38. Masanari Okuno, Hideaki Kano, Kenkichi Fujii, Kotatsu Bito, Satoru Naito, Philippe Leproux, Vincent Couderc, Hiro-o Hamaguchi, . Surfactant Uptake Dynamics in Mammalian Cells Elucidated with Quantitative Coherent Anti-Stokes Raman Scattering Microspectroscopy. PLoS ONE 2014, 9 (4) , e93401. https://doi.org/10.1371/journal.pone.0093401
    39. Gregory P. Holmes-Hampton, Wing-Hang Tong, Tracey A. Rouault. Biochemical and Biophysical Methods for Studying Mitochondrial Iron Metabolism. 2014, 275-307. https://doi.org/10.1016/B978-0-12-801415-8.00015-1
    40. Aliz Kunstar, Anne M. Leferink, Paul I. Okagbare, Michael D. Morris, Blake J. Roessler, Cees Otto, Marcel Karperien, Clemens A. van Blitterswijk, Lorenzo Moroni, Aart A. van Apeldoorn. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds. Journal of The Royal Society Interface 2013, 10 (86) , 20130464. https://doi.org/10.1098/rsif.2013.0464
    41. Nicolas Pavillon, Kazuki Bando, Katsumasa Fujita, Nicholas I. Smith. Feature‐based recognition of Surface‐enhanced Raman spectra for biological targets. Journal of Biophotonics 2013, 6 (8) , 587-597. https://doi.org/10.1002/jbio.201200181
    42. Almar F Palonpon, Mikiko Sodeoka, Katsumasa Fujita. Molecular imaging of live cells by Raman microscopy. Current Opinion in Chemical Biology 2013, 17 (4) , 708-715. https://doi.org/10.1016/j.cbpa.2013.05.021
    43. Almar F Palonpon, Jun Ando, Hiroyuki Yamakoshi, Kosuke Dodo, Mikiko Sodeoka, Satoshi Kawata, Katsumasa Fujita. Raman and SERS microscopy for molecular imaging of live cells. Nature Protocols 2013, 8 (4) , 677-692. https://doi.org/10.1038/nprot.2013.030
    44. Hemanth Nag Noothalapati Venkata, Shinsuke Shigeto. Stable Isotope-Labeled Raman Imaging Reveals Dynamic Proteome Localization to Lipid Droplets in Single Fission Yeast Cells. Chemistry & Biology 2012, 19 (11) , 1373-1380. https://doi.org/10.1016/j.chembiol.2012.08.020
    45. Masanari Okuno, Hideaki Kano, Philippe Leproux, Vincent Couderc, Hiro-o Hamaguchi. Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source. Optical Fiber Technology 2012, 18 (5) , 388-393. https://doi.org/10.1016/j.yofte.2012.05.006
    46. Peter Lasch. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemometrics and Intelligent Laboratory Systems 2012, 117 , 100-114. https://doi.org/10.1016/j.chemolab.2012.03.011
    47. Yasuaki Kumamoto, Atsushi Taguchi, Nicholas Isaac Smith, Satoshi Kawata. Deep ultraviolet resonant Raman imaging of a cell. Journal of Biomedical Optics 2012, 17 (7) , 0760011. https://doi.org/10.1117/1.JBO.17.7.076001
    48. Hiroki Segawa, Masanari Okuno, Hideaki Kano, Philippe Leproux, Vincent Couderc, Hiro-o Hamaguchi. Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation). Optics Express 2012, 20 (9) , 9551. https://doi.org/10.1364/OE.20.009551
    49. Masaya Okada, Nicholas Isaac Smith, Almar Flotildes Palonpon, Hiromi Endo, Satoshi Kawata, Mikiko Sodeoka, Katsumasa Fujita. Label-free Raman observation of cytochrome c dynamics during apoptosis. Proceedings of the National Academy of Sciences 2012, 109 (1) , 28-32. https://doi.org/10.1073/pnas.1107524108
    50. Liesbeth Hartsuiker, Wilma Petersen, Raja G. Rayavarapu, Aufried Lenferink, André A. Poot, Leon W. M. M. Terstappen, Ton G. Van Leeuwen, Srirang Manohar, Cees Otto. Raman and Fluorescence Spectral Imaging of Live Breast Cancer Cells Incubated with PEGylated Gold Nanorods. Applied Spectroscopy 2012, 66 (1) , 66-74. https://doi.org/10.1366/11-06373
    51. Mamoru Hashimoto, Taro Ichimura, Katsumasa Fujita. CARS Microscopy: Implementation of Nonlinear Vibrational Spectroscopy for Far-Field and Near-Field Imaging. 2012, 317-346. https://doi.org/10.1007/978-3-642-28252-2_11
    52. J. J. McGarvey, J. Renwick Beattie. Raman Microscopy : A Versatile Approach to Bio-Imaging. 2012, 219-242. https://doi.org/10.1007/978-3-642-28252-2_7
    53. Srinivasa Rao Karumuri, J. Vijaya Sekhar, V. Sreeram, V. Uma Maheswara rao, M.V. Basaveswara Rao. Spectroscopic studies on distorted structure molecules by using U(2) Lie algebraic method. Journal of Molecular Spectroscopy 2011, 269 (1) , 119-123. https://doi.org/10.1016/j.jms.2011.04.018
    54. Aliz Kunstar, Cees Otto, Marcel Karperien, Clemens van Blitterswijk, Aart van Apeldoorn. Raman Microspectroscopy: A Noninvasive Analysis Tool for Monitoring of Collagen-Containing Extracellular Matrix Formation in a Medium-Throughput Culture System. Tissue Engineering Part C: Methods 2011, 17 (7) , 737-744. https://doi.org/10.1089/ten.tec.2010.0574
    55. Hiroyuki Yamakoshi, Kosuke Dodo, Masaya Okada, Jun Ando, Almar Palonpon, Katsumasa Fujita, Satoshi Kawata, Mikiko Sodeoka. Imaging of EdU, an Alkyne-Tagged Cell Proliferation Probe, by Raman Microscopy. Journal of the American Chemical Society 2011, 133 (16) , 6102-6105. https://doi.org/10.1021/ja108404p
    56. Chuan-Keng Huang, Hiro-o Hamaguchi, Shinsuke Shigeto. In vivo multimode Raman imaging reveals concerted molecular composition and distribution changes during yeast cell cycle. Chemical Communications 2011, 47 (33) , 9423. https://doi.org/10.1039/c1cc12350e
    57. Dongmao Zhang, Karthikeshwar Vangala, Dongping Jiang, Sige Zou, Tibor Pechan. Drop Coating Deposition Raman Spectroscopy of Fluorescein Isothiocyanate Labeled Protein. Applied Spectroscopy 2010, 64 (10) , 1078-1085. https://doi.org/10.1366/000370210792973497
    58. Masanari Okuno, Hideaki Kano, Philippe Leproux, Vincent Couderc, James P. R. Day, Mischa Bonn, Hiro-o Hamaguchi. Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method. Angewandte Chemie 2010, 122 (38) , 6925-6929. https://doi.org/10.1002/ange.201001560
    59. Masanari Okuno, Hideaki Kano, Philippe Leproux, Vincent Couderc, James P. R. Day, Mischa Bonn, Hiro-o Hamaguchi. Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method. Angewandte Chemie International Edition 2010, 49 (38) , 6773-6777. https://doi.org/10.1002/anie.201001560
    60. M. J. Pelletier, C. C. Pelletier. Spectroscopic Theory for Chemical Imaging. 2010, 1-20. https://doi.org/10.1002/9780470768150.ch1
    61. Liesbeth Hartsuiker, Nicole J. L. Zeijen, Leon W. M. M. Terstappen, Cees Otto. A comparison of breast cancer tumor cells with varying expression of the Her2/neu receptor by Raman microspectroscopic imaging. The Analyst 2010, 135 (12) , 3220. https://doi.org/10.1039/c0an00524j
    62. Gavin Jell, Robin Swain, Molly M. Stevens. Raman Spectroscopy: A Tool for Tissue Engineering. 2010, 419-437. https://doi.org/10.1007/978-3-642-02649-2_18
    63. Michaela Harz, Michael Kiehntopf, Stephan Stöckel, Petra Rösch, Eberhard Straube, Thomas Deufel, Jürgen Popp. Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro‐Raman spectroscopy. Journal of Biophotonics 2009, 2 (1-2) , 70-80. https://doi.org/10.1002/jbio.200810068
    64. Katsumasa Fujita, Sawako Ishitobi, Keisaku Hamada, Nicholas I. Smith, Atsushi Taguchi, Yasushi Inouye, Satoshi Kawata. Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell. Journal of Biomedical Optics 2009, 14 (2) , 024038. https://doi.org/10.1117/1.3119242
    65. Katsumasa Fujita. Label-free molecular imaging by using Raman scattering. Nippon Laser Igakkaishi 2009, 30 (4) , 416-420. https://doi.org/10.2530/jslsm.30.416
    66. Keisaku Hamada, Katsumasa Fujita, Nicholas Isaac Smith, Minoru Kobayashi, Yasushi Inouye, Satoshi Kawata. Raman microscopy for dynamic molecular imaging of living cells. Journal of Biomedical Optics 2008, 13 (4) , 044027. https://doi.org/10.1117/1.2952192
    67. Bayden R. Wood, Peter Caspers, Gerwin J. Puppels, Shveta Pandiancherri, Don McNaughton. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Analytical and Bioanalytical Chemistry 2007, 387 (5) , 1691-1703. https://doi.org/10.1007/s00216-006-0881-8
    68. Prabhat Verma, Katsumasa Fujita, Taro Ichimura, Satoshi Kawata. Raman, CARS and near-field Raman-CARS microscopy for cellular and molecular imaging. 2007, 57-71. https://doi.org/10.1016/S1574-0641(07)80009-X
    69. Henk-Jan Van Manen, Robin Van Bruggen, Dirk Roos, Cees Otto. Single-Cell Optical Imaging of the Phagocyte NADPH Oxidase. Antioxidants & Redox Signaling 2006, 8 (9-10) , 1509-1522. https://doi.org/10.1089/ars.2006.8.1509
    70. Marian Navratil, Gary A. Mabbott, Edgar A. Arriaga. Chemical Microscopy Applied to Biological Systems. Analytical Chemistry 2006, 78 (12) , 4005-4020. https://doi.org/10.1021/ac0606756
    71. Ioan Notingher, Larry L Hench. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Review of Medical Devices 2006, 3 (2) , 215-234. https://doi.org/10.1586/17434440.3.2.215
    72. Henk-Jan van Manen, Yvonne M. Kraan, Dirk Roos, Cees Otto. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proceedings of the National Academy of Sciences 2005, 102 (29) , 10159-10164. https://doi.org/10.1073/pnas.0502746102

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect