Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots
My Activity

Figure 1Loading Img
    Article

    Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots
    Click to copy article linkArticle link copied!

    View Author Information
    Condensed Matter and Interfaces, Debye Institute, Utrecht University, P.O. Box 80 000, 3508 TA Utrecht, The Netherlands
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2004, 108, 45, 17393–17397
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp047078c
    Published October 16, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Highly luminescent CdSe and CdTe quantum dots (QDs) are prepared in a hot solvent of capping molecules (TOP/TOPO/HDA for CdSe and TOP/DDA for CdTe). The influence of exchange of the capping molecules with different types of thiol molecules (amino ethanethiol, (3-mercaptopropyl)trimethoxysilane, hexanethiol, 2-propenethiol, and 4-mercaptophenol) is investigated for both CdSe and CdTe QDs. A remarkable difference is observed:  capping exchange with thiol molecules results in an increased luminescence efficiency for CdTe QDs but induces quenching of the excitonic emission of CdSe QDs. The striking difference between the two types of II-VI QDs is explained by the difference in the energy of the valence band top. The lower energetic position of the valence band for CdSe results in hole trapping of the photogenerated hole on the thiol molecule, thus quenching the luminescence. For CdTe the valence band is situated at higher energies with respect to the redox level of most thiols, thus inhibiting hole trapping and maintaining a high luminescence efficiency.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. Phone:  +31-30-2532207. Fax:  +31-30-2532403. Email: [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 461 publications.

    1. Ge Tang, Xiao-Hang He, Meng Liu, Hao Hao, Yi Liu, Feng-Lei Jiang. Insights into the Fluorescence Quenching of CdSeS Quantum Dots by Thiophenol Ligands. The Journal of Physical Chemistry C 2024, 128 (21) , 8681-8688. https://doi.org/10.1021/acs.jpcc.4c01302
    2. Vinayakan Ramachandran Nair, Kulangara Sandeep, Madhavan Shanthil, Santhakumar Dhanya, Aravind Archana, Muthunayagam Vibin, Hareendran Divyalakshmi. Simple and Cost-Effective Quantum Dot Chemodosimeter for Visual Detection of Biothiols in Human Blood Serum. ACS Omega 2024, 9 (6) , 6588-6594. https://doi.org/10.1021/acsomega.3c07518
    3. Alexandra R. McIsaac, Tamar Goldzak, Troy Van Voorhis. It Is a Trap!: The Effect of Self-Healing of Surface Defects on the Excited States of CdSe Nanocrystals. The Journal of Physical Chemistry Letters 2023, 14 (5) , 1174-1181. https://doi.org/10.1021/acs.jpclett.2c03317
    4. Maksim Miropoltsev, K. David Wegner, Ines Häusler, Vasile-Dan Hodoroaba, Ute Resch-Genger. Influence of Hydrophilic Thiol Ligands of Varying Denticity on the Luminescence Properties and Colloidal Stability of Quaternary Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2022, 126 (47) , 20101-20113. https://doi.org/10.1021/acs.jpcc.2c05342
    5. Haochen Sun, Paul Cavanaugh, Ilan Jen-La Plante, Maria J. Bautista, Ruiqing Ma, David F. Kelley. Reversible Interfacial Charge Transfer and Delayed Emission in InP/ZnSe/ZnS Quantum Dots with Hexadecanethiol. The Journal of Physical Chemistry C 2022, 126 (47) , 20065-20073. https://doi.org/10.1021/acs.jpcc.2c06203
    6. Fuzhao Li, Lars F. Klepzig, Nils Keppler, Peter Behrens, Nadja C. Bigall, Henning Menzel, Jannika Lauth. Layer-by-Layer Deposition of 2D CdSe/CdS Nanoplatelets and Polymers for Photoluminescent Composite Materials. Langmuir 2022, 38 (37) , 11149-11159. https://doi.org/10.1021/acs.langmuir.2c00455
    7. Nuwanthaka P. Jayaweera, John H. Dunlap, Fiaz Ahmed, Taylor Larison, Leman Buzoglu Kurnaz, Morgan Stefik, Perry J. Pellechia, Augustus W. Fountain, III, Andrew B. Greytak. Coordination of Quantum Dots in a Polar Solvent by Small-Molecule Imidazole Ligands. Inorganic Chemistry 2022, 61 (28) , 10942-10949. https://doi.org/10.1021/acs.inorgchem.2c01494
    8. Swati Khurana, Md. Samim Hassan, Priyesh Yadav, Dibyajyoti Ghosh, Sameer Sapra. Impact of Bifunctional Ligands on Charge Transfer Kinetics in CsPbBr3–CdSe/CdS/ZnS Nanohybrids. The Journal of Physical Chemistry Letters 2022, 13 (11) , 2591-2599. https://doi.org/10.1021/acs.jpclett.2c00067
    9. Payel Mondal, Ranjani Viswanatha. Insights into the Oxidation State of Cu Dopants in II–VI Semiconductor Nanocrystals. The Journal of Physical Chemistry Letters 2022, 13 (8) , 1952-1961. https://doi.org/10.1021/acs.jpclett.1c04076
    10. Irene Zabala Gutierrez, Christoph Gerke, Yingli Shen, Erving Ximendes, Miguel Manso Silvan, Riccardo Marin, Daniel Jaque, Oscar G Calderón, Sonia Melle, Jorge Rubio-Retama. Boosting the Near-Infrared Emission of Ag2S Nanoparticles by a Controllable Surface Treatment for Bioimaging Applications. ACS Applied Materials & Interfaces 2022, 14 (4) , 4871-4881. https://doi.org/10.1021/acsami.1c19344
    11. Yanqing Luo, Tao Tan, Sen Wang, Ran Pang, Lihong Jiang, Da Li, Jing Feng, Hongjie Zhang, Su Zhang, Chengyu Li. Ligand-Induced Nucleation Growth Kinetics of CdTe QDs: Implications for White-Light-Emitting Diodes. ACS Applied Nano Materials 2022, 5 (1) , 401-410. https://doi.org/10.1021/acsanm.1c03246
    12. Timothy G. Mack, Juliana Spinelli, Mark P. Andrews, Patanjali Kambhampati. Resonance Raman Vibrational Mode Enhancement of Adsorbed Benzenethiols on CdSe Is Predominantly Franck–Condon in Nature and Governed by Symmetry. The Journal of Physical Chemistry Letters 2021, 12 (33) , 7935-7941. https://doi.org/10.1021/acs.jpclett.1c02051
    13. Caitlin R. McGranahan, Guy E. Wolfe, II, Alejandro Falca, David F. Watson. Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems. ACS Applied Materials & Interfaces 2021, 13 (26) , 30980-30991. https://doi.org/10.1021/acsami.1c05653
    14. Jari Leemans, Kim C. Dümbgen, Matthias M. Minjauw, Qiang Zhao, André Vantomme, Ivan Infante, Christophe Detavernier, Zeger Hens. Acid–Base Mediated Ligand Exchange on Near-Infrared Absorbing, Indium-Based III–V Colloidal Quantum Dots. Journal of the American Chemical Society 2021, 143 (11) , 4290-4301. https://doi.org/10.1021/jacs.0c12871
    15. Cherie R. Kagan, Lee C. Bassett, Christopher B. Murray, Sarah M. Thompson. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chemical Reviews 2021, 121 (5) , 3186-3233. https://doi.org/10.1021/acs.chemrev.0c00831
    16. Haochen Sun, William E. Buhro. Contrasting Ligand-Exchange Behavior of Wurtzite and Zinc-Blende Cadmium Telluride Nanoplatelets. Chemistry of Materials 2021, 33 (5) , 1683-1697. https://doi.org/10.1021/acs.chemmater.0c04247
    17. Christopher Melnychuk, Philippe Guyot-Sionnest. Multicarrier Dynamics in Quantum Dots. Chemical Reviews 2021, 121 (4) , 2325-2372. https://doi.org/10.1021/acs.chemrev.0c00931
    18. Gerard Michael Carroll, Rens Limpens, Gregory F. Pach, Yaxin Zhai, Matthew C. Beard, Elisa M. Miller, Nathan R. Neale. Suppressing Auger Recombination in Multiply Excited Colloidal Silicon Nanocrystals with Ligand-Induced Hole Traps. The Journal of Physical Chemistry C 2021, 125 (4) , 2565-2574. https://doi.org/10.1021/acs.jpcc.0c11388
    19. R. Peyton Cline, Joel D. Eaves. Surface-Trapped Hole Diffusion in CdS and CdSe: The Superexchange Mechanism. The Journal of Physical Chemistry C 2020, 124 (51) , 28244-28251. https://doi.org/10.1021/acs.jpcc.0c07108
    20. H. Al-Bustami, B. P. Bloom, Amir Ziv, S. Goldring, S. Yochelis, R. Naaman, D. H. Waldeck, Y. Paltiel. Optical Multilevel Spin Bit Device Using Chiral Quantum Dots. Nano Letters 2020, 20 (12) , 8675-8681. https://doi.org/10.1021/acs.nanolett.0c03445
    21. James K. Utterback, R. Peyton Cline, Katherine E. Shulenberger, Joel D. Eaves, Gordana Dukovic. The Motion of Trapped Holes on Nanocrystal Surfaces. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9876-9885. https://doi.org/10.1021/acs.jpclett.0c02618
    22. Xiao Shao, Yue Wu, Shuang Jiang, Bin Li, Tianyong Zhang, Yong Yan. Chiral 3D CdSe Nanotetrapods. Inorganic Chemistry 2020, 59 (19) , 14382-14388. https://doi.org/10.1021/acs.inorgchem.0c02179
    23. Victor Gray, Zhilong Zhang, Simon Dowland, Jesse R. Allardice, Antonios M. Alvertis, James Xiao, Neil C. Greenham, John E. Anthony, Akshay Rao. Thiol-Anchored TIPS-Tetracene Ligands with Quantitative Triplet Energy Transfer to PbS Quantum Dots and Improved Thermal Stability. The Journal of Physical Chemistry Letters 2020, 11 (17) , 7239-7244. https://doi.org/10.1021/acs.jpclett.0c02031
    24. Dipti Jasrasaria, John P. Philbin, Chang Yan, Daniel Weinberg, A. Paul Alivisatos, Eran Rabani. Sub-Bandgap Photoinduced Transient Absorption Features in CdSe Nanostructures: The Role of Trapped Holes. The Journal of Physical Chemistry C 2020, 124 (31) , 17372-17378. https://doi.org/10.1021/acs.jpcc.0c04746
    25. Antonio Aires, Marco Möller, Aitziber L. Cortajarena. Protein Design for the Synthesis and Stabilization of Highly Fluorescent Quantum Dots. Chemistry of Materials 2020, 32 (13) , 5729-5738. https://doi.org/10.1021/acs.chemmater.0c01484
    26. William M. Sanderson, Fudong Wang, Joshua Schrier, William E. Buhro, Richard A. Loomis. Intraband Relaxation Dynamics of Charge Carriers within CdTe Quantum Wires. The Journal of Physical Chemistry Letters 2020, 11 (12) , 4901-4910. https://doi.org/10.1021/acs.jpclett.0c01326
    27. Guangmin Li, Xuening Fei, Hongfei Liu, Jing Gao, Jiayang Nie, Yuanbo Wang, Zhaodong Tian, Caicai He, Jiang-Long Wang, Chao Ji, Dan Oron, Gaoling Yang. Fluorescence and Optical Activity of Chiral CdTe Quantum Dots in Their Interaction with Amino Acids. ACS Nano 2020, 14 (4) , 4196-4205. https://doi.org/10.1021/acsnano.9b09101
    28. Eric R. Kennehan, Kyle T. Munson, Grayson S. Doucette, Ashley R. Marshall, Matthew C. Beard, John B. Asbury. Dynamic Ligand Surface Chemistry of Excited PbS Quantum Dots. The Journal of Physical Chemistry Letters 2020, 11 (6) , 2291-2297. https://doi.org/10.1021/acs.jpclett.0c00539
    29. Yuewei Yao, William E. Buhro. Thiol Versus Thiolate Ligation on Cadmium Selenide Quantum Belts. Chemistry of Materials 2020, 32 (1) , 205-214. https://doi.org/10.1021/acs.chemmater.9b03363
    30. Marc Jäger, Jurek Schneider, Rolf Schäfer. Size- and Charge-Dependent Optoelectronic Properties of CdSe Clusters: Evolution of the Optical Gap from Molecular to Bulk Behavior. The Journal of Physical Chemistry A 2020, 124 (1) , 185-196. https://doi.org/10.1021/acs.jpca.9b10401
    31. Joseph C. Flanagan, Logan P. Keating, Muttanagoud N. Kalasad, Moonsub Shim. Extending the Spectral Range of Double-Heterojunction Nanorods by Cation Exchange-Induced Alloying. Chemistry of Materials 2019, 31 (22) , 9307-9316. https://doi.org/10.1021/acs.chemmater.9b02615
    32. E. N. Bodunov, A. L. Simões Gamboa. Photoluminescence Decay of Colloidal Quantum Dots: Reversible Trapping and the Nature of the Relevant Trap States. The Journal of Physical Chemistry C 2019, 123 (41) , 25515-25523. https://doi.org/10.1021/acs.jpcc.9b07619
    33. Jinyoung Choi, Wonseok Choi, Duk Young Jeon. Ligand-Exchange-Ready CuInS2/ZnS Quantum Dots via Surface-Ligand Composition Control for Film-Type Display Devices. ACS Applied Nano Materials 2019, 2 (9) , 5504-5511. https://doi.org/10.1021/acsanm.9b01085
    34. Donghyo Hahm, Jun Hyuk Chang, Byeong Guk Jeong, Philip Park, Jaeyoul Kim, Seongjae Lee, Jongha Choi, Whi Dong Kim, Seunghyun Rhee, Jaehoon Lim, Doh C. Lee, Changhee Lee, Kookheon Char, Wan Ki Bae. Design Principle for Bright, Robust, and Color-Pure InP/ZnSexS1–x/ZnS Heterostructures. Chemistry of Materials 2019, 31 (9) , 3476-3484. https://doi.org/10.1021/acs.chemmater.9b00740
    35. Timothy G. Mack, Lakshay Jethi, Mark Andrews, Patanjali Kambhampati. Direct Observation of Vibronic Coupling between Excitonic States of CdSe Nanocrystals and Their Passivating Ligands. The Journal of Physical Chemistry C 2019, 123 (8) , 5084-5091. https://doi.org/10.1021/acs.jpcc.8b11098
    36. David A. Cagan, Arman C. Garcia, Kin Li, David Ashen-Garry, Abegail C. Tadle, Dong Zhang, Katherine J. Nelms, Yangyang Liu, Jeffrey R. Shallenberger, Joshua J. Stapleton, Matthias Selke. Chemistry of Singlet Oxygen with a Cadmium–Sulfur Cluster: Physical Quenching versus Photooxidation. Journal of the American Chemical Society 2019, 141 (1) , 67-71. https://doi.org/10.1021/jacs.8b10516
    37. Ward van der Stam, Indy du Fossé, Gianluca Grimaldi, Julius O. V. Monchen, Nicholas Kirkwood, Arjan J. Houtepen. Spectroelectrochemical Signatures of Surface Trap Passivation on CdTe Nanocrystals. Chemistry of Materials 2018, 30 (21) , 8052-8061. https://doi.org/10.1021/acs.chemmater.8b03893
    38. Finn Purcell-Milton, Maxime Chiffoleau, Yurii K. Gun’ko. Investigation of Quantum Dot–Metal Halide Interactions and Their Effects on Optical Properties. The Journal of Physical Chemistry C 2018, 122 (43) , 25075-25084. https://doi.org/10.1021/acs.jpcc.8b08256
    39. Anoop Thomas, K. Sandeep, Sanoop Mambully Somasundaran, K. George Thomas. How Trap States Affect Charge Carrier Dynamics of CdSe and InP Quantum Dots: Visualization through Complexation with Viologen. ACS Energy Letters 2018, 3 (10) , 2368-2375. https://doi.org/10.1021/acsenergylett.8b01532
    40. James K. Utterback, Hayden Hamby, Orion M. Pearce, Joel D. Eaves, Gordana Dukovic. Trapped-Hole Diffusion in Photoexcited CdSe Nanorods. The Journal of Physical Chemistry C 2018, 122 (29) , 16974-16982. https://doi.org/10.1021/acs.jpcc.8b05031
    41. R. Peyton Cline, James K. Utterback, Steven E. Strong, Gordana Dukovic, Joel D. Eaves. On the Nature of Trapped-Hole States in CdS Nanocrystals and the Mechanism of Their Diffusion. The Journal of Physical Chemistry Letters 2018, 9 (12) , 3532-3537. https://doi.org/10.1021/acs.jpclett.8b01148
    42. Taisiia Berestok, Pablo Guardia, Javier Blanco Portals, Sònia Estradé, Jordi Llorca, Francesca Peiró, Andreu Cabot, Stephanie L. Brock. Surface Chemistry and Nano-/Microstructure Engineering on Photocatalytic In2S3 Nanocrystals. Langmuir 2018, 34 (22) , 6470-6479. https://doi.org/10.1021/acs.langmuir.8b00406
    43. Ronald L. Birke, John R. Lombardi. TDDFT Study of Charge-Transfer Raman Spectra of 4-Mercaptopyridine on Various ZnSe Nanoclusters as a Model for the SERS of 4-Mpy on Semiconductors. The Journal of Physical Chemistry C 2018, 122 (9) , 4908-4927. https://doi.org/10.1021/acs.jpcc.7b12392
    44. Mersedeh Saniepay, Chenjia Mi, Zhihui Liu, E. Paige Abel, and Rémi Beaulac . Insights into the Structural Complexity of Colloidal CdSe Nanocrystal Surfaces: Correlating the Efficiency of Nonradiative Excited-State Processes to Specific Defects. Journal of the American Chemical Society 2018, 140 (5) , 1725-1736. https://doi.org/10.1021/jacs.7b10649
    45. Samuel Palato, Hélène Seiler, Lucie McGovern, Timothy G. Mack, Lakshay Jethi, and Patanjali Kambhampati . Electron Dynamics at the Surface of Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2017, 121 (47) , 26519-26527. https://doi.org/10.1021/acs.jpcc.7b09145
    46. Emek G. Durmusoglu, Melike M. Yildizhan, Mehmet A. Gulgun, and Havva Yagci Acar . Production of Small, Stable PbS/CdS Quantum Dots via Room Temperature Cation Exchange Followed by a Low Temperature Annealing Processes. The Journal of Physical Chemistry C 2017, 121 (45) , 25520-25530. https://doi.org/10.1021/acs.jpcc.7b06153
    47. Jamie J. Grenland, Cassandra J. A. Maddux, David F. Kelley, and Anne Myers Kelley . Charge Trapping versus Exciton Delocalization in CdSe Quantum Dots. The Journal of Physical Chemistry Letters 2017, 8 (20) , 5113-5118. https://doi.org/10.1021/acs.jpclett.7b02242
    48. Natalia Razgoniaeva, Mingrui Yang, Cooper Colegrove, Natalia Kholmicheva, Pavel Moroz, Holly Eckard, Abigail Vore, and Mikhail Zamkov . Double-Well Colloidal Nanocrystals Featuring Two-Color Photoluminescence. Chemistry of Materials 2017, 29 (18) , 7852-7858. https://doi.org/10.1021/acs.chemmater.7b02585
    49. Finn Purcell-Milton, Anastasia K. Visheratina, Vera A. Kuznetsova, Aisling Ryan, Anna O. Orlova, and Yurii K. Gun’ko . Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots. ACS Nano 2017, 11 (9) , 9207-9214. https://doi.org/10.1021/acsnano.7b04199
    50. Aleksandrs Marinins, Reza Zandi Shafagh, Wouter van der Wijngaart, Tommy Haraldsson, Jan Linnros, Jonathan G. C. Veinot, Sergei Popov, and Ilya Sychugov . Light-Converting Polymer/Si Nanocrystal Composites with Stable 60–70% Quantum Efficiency and Their Glass Laminates. ACS Applied Materials & Interfaces 2017, 9 (36) , 30267-30272. https://doi.org/10.1021/acsami.7b09265
    51. Yun Ye, Xiuli Wang, Sheng Ye, Yuxing Xu, Zhaochi Feng, and Can Li . Charge-Transfer Dynamics Promoted by Hole Trap States in CdSe Quantum Dots–Ni2+ Photocatalytic System. The Journal of Physical Chemistry C 2017, 121 (32) , 17112-17120. https://doi.org/10.1021/acs.jpcc.7b05061
    52. Sreejith Kaniyankandy and Sandeep Verma . Role of Core–Shell Formation in Exciton Confinement Relaxation in Dithiocarbamate-Capped CdSe QDs. The Journal of Physical Chemistry Letters 2017, 8 (14) , 3228-3233. https://doi.org/10.1021/acs.jpclett.7b01259
    53. Zhiyuan Huang, Ming L. Tang. Designing Transmitter Ligands That Mediate Energy Transfer between Semiconductor Nanocrystals and Molecules. Journal of the American Chemical Society 2017, 139 (28) , 9412-9418. https://doi.org/10.1021/jacs.6b08783
    54. Valerio Pinchetti, Monica Lorenzon, Hunter McDaniel, Roberto Lorenzi, Francesco Meinardi, Victor I. Klimov, and Sergio Brovelli . Spectro-electrochemical Probing of Intrinsic and Extrinsic Processes in Exciton Recombination in I–III–VI2 Nanocrystals. Nano Letters 2017, 17 (7) , 4508-4517. https://doi.org/10.1021/acs.nanolett.7b02040
    55. Hai I. Wang, Mischa Bonn, and Enrique Cánovas . Boosting Biexciton Collection Efficiency at Quantum Dot–Oxide Interfaces by Hole Localization at the Quantum Dot Shell. The Journal of Physical Chemistry Letters 2017, 8 (12) , 2654-2658. https://doi.org/10.1021/acs.jpclett.7b00966
    56. Emek G. Durmusoglu , Yurdanur Turker , and Havva Yagci Acar . Green Synthesis of Strongly Luminescent, Ultrasmall PbS and PbSe Quantum Dots. The Journal of Physical Chemistry C 2017, 121 (22) , 12407-12415. https://doi.org/10.1021/acs.jpcc.7b01083
    57. Jugun Prakash Chinta, Nir Waiskopf, Gur Lubin, David Rand, Yael Hanein, Uri Banin, and Shlomo Yitzchaik . Carbon Nanotube and Semiconductor Nanorods Hybrids: Preparation, Characterization, and Evaluation of Photocurrent Generation. Langmuir 2017, 33 (22) , 5519-5526. https://doi.org/10.1021/acs.langmuir.6b04599
    58. Rui Tan, Yucheng Yuan, Yasutaka Nagaoka, Dennis Eggert, Xudong Wang, Sravan Thota, Peng Guo, Hongrong Yang, Jing Zhao, and Ou Chen . Monodisperse Hexagonal Pyramidal and Bipyramidal Wurtzite CdSe-CdS Core–Shell Nanocrystals. Chemistry of Materials 2017, 29 (9) , 4097-4108. https://doi.org/10.1021/acs.chemmater.7b00968
    59. Stephen V. Kershaw, Nema M. Abdelazim, Yihua Zhao, Andrei S. Susha, Olga Zhovtiuk, Wey Yang Teoh, and Andrey L. Rogach . Investigation of the Exchange Kinetics and Surface Recovery of CdxHg1–xTe Quantum Dots during Cation Exchange Using a Microfluidic Flow Reactor. Chemistry of Materials 2017, 29 (7) , 2756-2768. https://doi.org/10.1021/acs.chemmater.6b04544
    60. Yuqi Zhu, Ruiping Zhou, Lei Wang, Stanislaus S. Wong, and Joerg Appenzeller . Utilizing Electrical Characteristics of Individual Nanotube Devices to Study the Charge Transfer between CdSe Quantum Dots and Double-Walled Nanotubes. ACS Energy Letters 2017, 2 (3) , 717-725. https://doi.org/10.1021/acsenergylett.7b00023
    61. Mykhailo Sytnyk, Sergii Yakunin, Wolfgang Schöfberger, Rainer T. Lechner, Max Burian, Lukas Ludescher, Niall A. Killilea, AmirAbbas YousefiAmin, Dominik Kriegner, Julian Stangl, Heiko Groiss, and Wolfgang Heiss . Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals. ACS Nano 2017, 11 (2) , 1246-1256. https://doi.org/10.1021/acsnano.6b04721
    62. Simanta Kundu and Amitava Patra . Nanoscale Strategies for Light Harvesting. Chemical Reviews 2017, 117 (2) , 712-757. https://doi.org/10.1021/acs.chemrev.6b00036
    63. Arjan J. Houtepen, Zeger Hens, Jonathan S. Owen, and Ivan Infante . On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals. Chemistry of Materials 2017, 29 (2) , 752-761. https://doi.org/10.1021/acs.chemmater.6b04648
    64. Assaf Ben-Moshe, Ayelet Teitelboim, Dan Oron, and Gil Markovich . Probing the Interaction of Quantum Dots with Chiral Capping Molecules Using Circular Dichroism Spectroscopy. Nano Letters 2016, 16 (12) , 7467-7473. https://doi.org/10.1021/acs.nanolett.6b03143
    65. Lihong Jing, Stephen V. Kershaw, Yilin Li, Xiaodan Huang, Yingying Li, Andrey L. Rogach, and Mingyuan Gao . Aqueous Based Semiconductor Nanocrystals. Chemical Reviews 2016, 116 (18) , 10623-10730. https://doi.org/10.1021/acs.chemrev.6b00041
    66. Natalia Rivera-González, Saurabh Chauhan, and David F. Watson . Aminoalkanoic Acids as Alternatives to Mercaptoalkanoic Acids for the Linker-Assisted Attachment of Quantum Dots to TiO2. Langmuir 2016, 32 (36) , 9206-9215. https://doi.org/10.1021/acs.langmuir.6b02704
    67. G. Krishnamurthy Grandhi, Arunkumar M., and Ranjani Viswanatha . Understanding the Role of Surface Capping Ligands in Passivating the Quantum Dots Using Copper Dopants as Internal Sensor. The Journal of Physical Chemistry C 2016, 120 (35) , 19785-19795. https://doi.org/10.1021/acs.jpcc.6b04060
    68. Taro Uematsu, Eisuke Shimomura, Tsukasa Torimoto, and Susumu Kuwabata . Evaluation of Surface Ligands on Semiconductor Nanoparticle Surfaces Using Electron Transfer to Redox Species. The Journal of Physical Chemistry C 2016, 120 (29) , 16012-16023. https://doi.org/10.1021/acs.jpcc.5b12698
    69. Brian P. Bloom, Vankayala Kiran, Vaibhav Varade, Ron Naaman, and David. H. Waldeck . Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots. Nano Letters 2016, 16 (7) , 4583-4589. https://doi.org/10.1021/acs.nanolett.6b01880
    70. Ye Yang, Kaifeng Wu, Andrew Shabaev, Alexander L. Efros, Tianquan Lian, and Matthew C. Beard . Direct Observation of Photoexcited Hole Localization in CdSe Nanorods. ACS Energy Letters 2016, 1 (1) , 76-81. https://doi.org/10.1021/acsenergylett.6b00036
    71. Chun Hao Lin, Evan Lafalce, Jaehan Jung, Marcus J. Smith, Sidney T. Malak, Sandip Aryal, Young Jun Yoon, Yaxin Zhai, Zhiqun Lin, Z. Valy Vardeny, and Vladimir V. Tsukruk . Core/Alloyed-Shell Quantum Dot Robust Solid Films with High Optical Gains. ACS Photonics 2016, 3 (4) , 647-658. https://doi.org/10.1021/acsphotonics.5b00743
    72. Kenneth O. Aruda, Victor A. Amin, Christopher M. Thompson, Bryan Lau, Alexander B. Nepomnyashchii, and Emily A. Weiss . Description of the Adsorption and Exciton Delocalizing Properties of p-Substituted Thiophenols on CdSe Quantum Dots. Langmuir 2016, 32 (14) , 3354-3364. https://doi.org/10.1021/acs.langmuir.6b00689
    73. Nathaniel K. Swenson, Mark A. Ratner, and Emily A. Weiss . Computational Study of the Influence of the Binding Geometries of Organic Ligands on the Photoluminescence Quantum Yield of CdSe Clusters. The Journal of Physical Chemistry C 2016, 120 (12) , 6859-6868. https://doi.org/10.1021/acs.jpcc.5b12770
    74. Kwang Seob Jeong and Philippe Guyot-Sionnest . Mid-Infrared Photoluminescence of CdS and CdSe Colloidal Quantum Dots. ACS Nano 2016, 10 (2) , 2225-2231. https://doi.org/10.1021/acsnano.5b06882
    75. Jacob H. Olshansky, Tina X. Ding, Youjin V. Lee, Stephen R. Leone, and A. Paul Alivisatos . Hole Transfer from Photoexcited Quantum Dots: The Relationship between Driving Force and Rate. Journal of the American Chemical Society 2015, 137 (49) , 15567-15575. https://doi.org/10.1021/jacs.5b10856
    76. Diane G. Sellers, Amanda A. Button, Justin N. Nasca, Guy E. Wolfe, II, Saurabh Chauhan, and David F. Watson . Excited-State Charge Transfer within Covalently Linked Quantum Dot Heterostructures. The Journal of Physical Chemistry C 2015, 119 (49) , 27737-27748. https://doi.org/10.1021/acs.jpcc.5b07504
    77. Lei Wang, Jinkyu Han, Yuqi Zhu, Ruiping Zhou, Cherno Jaye, Haiqing Liu, Zhuo-Qun Li, Gordon T. Taylor, Daniel A. Fischer, Joerg Appenzeller, and Stanislaus S. Wong . Probing the Dependence of Electron Transfer on Size and Coverage in Carbon Nanotube–Quantum Dot Heterostructures. The Journal of Physical Chemistry C 2015, 119 (47) , 26327-26338. https://doi.org/10.1021/acs.jpcc.5b08681
    78. Efrat Lifshitz . Evidence in Support of Exciton to Ligand Vibrational Coupling in Colloidal Quantum Dots. The Journal of Physical Chemistry Letters 2015, 6 (21) , 4336-4347. https://doi.org/10.1021/acs.jpclett.5b01567
    79. Joseph C. Flanagan and Moonsub Shim . Enhanced Air Stability, Charge Separation, and Photocurrent in CdSe/CdTe Heterojunction Nanorods by Thiols. The Journal of Physical Chemistry C 2015, 119 (34) , 20162-20168. https://doi.org/10.1021/acs.jpcc.5b06334
    80. Cunming Liu, Fen Qiu, Jeffrey J. Peterson, and Todd D. Krauss . Aqueous Photogeneration of H2 with CdSe Nanocrystals and Nickel Catalysts: Electron Transfer Dynamics. The Journal of Physical Chemistry B 2015, 119 (24) , 7349-7357. https://doi.org/10.1021/jp510935w
    81. Philipp Sippel, Wiebke Albrecht, Johanna C. van der Bok, Relinde J. A. Van Dijk-Moes, Thomas Hannappel, Rainer Eichberger, and Daniel Vanmaekelbergh . Femtosecond Cooling of Hot Electrons in CdSe Quantum-Well Platelets. Nano Letters 2015, 15 (4) , 2409-2416. https://doi.org/10.1021/nl504706w
    82. Dhara J. Trivedi, Linjun Wang, and Oleg V. Prezhdo . Auger-Mediated Electron Relaxation Is Robust to Deep Hole Traps: Time-Domain Ab Initio Study of CdSe Quantum Dots. Nano Letters 2015, 15 (3) , 2086-2091. https://doi.org/10.1021/nl504982k
    83. Michael E. Turk, Patrick M. Vora, Aaron T. Fafarman, Benjamin T. Diroll, Christopher B. Murray, Cherie R. Kagan, and James M. Kikkawa . Ultrafast Electron Trapping in Ligand-Exchanged Quantum Dot Assemblies. ACS Nano 2015, 9 (2) , 1440-1447. https://doi.org/10.1021/nn505862g
    84. Tina X. Ding, Jacob H. Olshansky, Stephen R. Leone, and A. Paul Alivisatos . Efficiency of Hole Transfer from Photoexcited Quantum Dots to Covalently Linked Molecular Species. Journal of the American Chemical Society 2015, 137 (5) , 2021-2029. https://doi.org/10.1021/ja512278a
    85. Ding Zhou, Min Liu, Min Lin, Xinyuan Bu, Xintao Luo, Hao Zhang, and Bai Yang . Hydrazine-Mediated Construction of Nanocrystal Self-Assembly Materials. ACS Nano 2014, 8 (10) , 10569-10581. https://doi.org/10.1021/nn5040444
    86. Biswajit Kundu, Sudipto Chakrabarti, and Amlan J. Pal . Redox Levels of Dithiols in II–VI Quantum Dots vis-à-vis Photoluminescence Quenching: Insight from Scanning Tunneling Spectroscopy. Chemistry of Materials 2014, 26 (19) , 5506-5513. https://doi.org/10.1021/cm501469f
    87. Shengye Jin, Rachel D. Harris, Bryan Lau, Kenneth O. Aruda, Victor A. Amin, and Emily A. Weiss . Enhanced Rate of Radiative Decay in CdSe Quantum Dots upon Adsorption of an Exciton-Delocalizing Ligand. Nano Letters 2014, 14 (9) , 5323-5328. https://doi.org/10.1021/nl5023699
    88. Kaibo Zheng, Karel Žídek, Mohamed Abdellah, Wei Zhang, Pavel Chábera, Nils Lenngren, Arkady Yartsev, and Tõnu Pullerits . Ultrafast Charge Transfer from CdSe Quantum Dots to p-Type NiO: Hole Injection vs Hole Trapping. The Journal of Physical Chemistry C 2014, 118 (32) , 18462-18471. https://doi.org/10.1021/jp506963q
    89. Sourav Maiti, Hsiang-Yun Chen, Yerok Park, and Dong Hee Son . Evidence for the Ligand-Assisted Energy Transfer from Trapped Exciton to Dopant in Mn-Doped CdS/ZnS Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2014, 118 (31) , 18226-18232. https://doi.org/10.1021/jp505162c
    90. Darren C. J. Neo, Cheng Cheng, Samuel D. Stranks, Simon M. Fairclough, Judy S. Kim, Angus I. Kirkland, Jason M. Smith, Henry J. Snaith, Hazel E. Assender, and Andrew A. R. Watt . Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells. Chemistry of Materials 2014, 26 (13) , 4004-4013. https://doi.org/10.1021/cm501595u
    91. Kartick Tarafder, Yogesh Surendranath, Jacob H. Olshansky, A. Paul Alivisatos, and Lin-Wang Wang . Hole Transfer Dynamics from a CdSe/CdS Quantum Rod to a Tethered Ferrocene Derivative. Journal of the American Chemical Society 2014, 136 (13) , 5121-5131. https://doi.org/10.1021/ja500936n
    92. Jannise J. Buckley, Elsa Couderc, Matthew J. Greaney, James Munteanu, Carson T. Riche, Stephen E. Bradforth, and Richard L. Brutchey . Chalcogenol Ligand Toolbox for CdSe Nanocrystals and Their Influence on Exciton Relaxation Pathways. ACS Nano 2014, 8 (3) , 2512-2521. https://doi.org/10.1021/nn406109v
    93. Jinkyu Han, Lei Wang, and Stanislaus S. Wong . Observation of Photoinduced Charge Transfer in Novel Luminescent CdSe Quantum Dot–CePO4:Tb Metal Oxide Nanowire Composite Heterostructures. The Journal of Physical Chemistry C 2014, 118 (11) , 5671-5682. https://doi.org/10.1021/jp4113816
    94. Douglas A. Hines and Prashant V. Kamat . Recent Advances in Quantum Dot Surface Chemistry. ACS Applied Materials & Interfaces 2014, 6 (5) , 3041-3057. https://doi.org/10.1021/am405196u
    95. Haiming Zhu, Ye Yang, Kim Hyeon-Deuk, Marco Califano, Nianhui Song, Youwei Wang, Wenqing Zhang, Oleg V. Prezhdo, and Tianquan Lian . Auger-Assisted Electron Transfer from Photoexcited Semiconductor Quantum Dots. Nano Letters 2014, 14 (3) , 1263-1269. https://doi.org/10.1021/nl4041687
    96. L. Sudheendra, Gautom K. Das, Changqing Li, Daniel Stark, Jake Cena, Simon Cherry, and Ian M. Kennedy . NaGdF4:Eu3+ Nanoparticles for Enhanced X-ray Excited Optical Imaging. Chemistry of Materials 2014, 26 (5) , 1881-1888. https://doi.org/10.1021/cm404044n
    97. Anielle Christine A. Silva, Sebastião W. da Silva, Paulo C. Morais, and Noelio O. Dantas . Shell Thickness Modulation in Ultrasmall CdSe/CdSxSe1–x/CdS Core/Shell Quantum Dots via 1-Thioglycerol. ACS Nano 2014, 8 (2) , 1913-1922. https://doi.org/10.1021/nn406478f
    98. Christopher M. Bernt, Peter T. Burks, Anthony W. DeMartino, Agustin E. Pierri, Elizabeth S. Levy, David F. Zigler, and Peter C. Ford . Photocatalytic Carbon Disulfide Production via Charge Transfer Quenching of Quantum Dots. Journal of the American Chemical Society 2014, 136 (6) , 2192-2195. https://doi.org/10.1021/ja4083599
    99. Illan J. Kramer and Edward H. Sargent . The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices. Chemical Reviews 2014, 114 (1) , 863-882. https://doi.org/10.1021/cr400299t
    100. Yizheng Tan, Song Jin, and Robert J. Hamers . Photostability of CdSe Quantum Dots Functionalized with Aromatic Dithiocarbamate Ligands. ACS Applied Materials & Interfaces 2013, 5 (24) , 12975-12983. https://doi.org/10.1021/am403744g
    Load more citations

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2004, 108, 45, 17393–17397
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp047078c
    Published October 16, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    7123

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.