Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum DotsClick to copy article linkArticle link copied!
Abstract
Highly luminescent CdSe and CdTe quantum dots (QDs) are prepared in a hot solvent of capping molecules (TOP/TOPO/HDA for CdSe and TOP/DDA for CdTe). The influence of exchange of the capping molecules with different types of thiol molecules (amino ethanethiol, (3-mercaptopropyl)trimethoxysilane, hexanethiol, 2-propenethiol, and 4-mercaptophenol) is investigated for both CdSe and CdTe QDs. A remarkable difference is observed: capping exchange with thiol molecules results in an increased luminescence efficiency for CdTe QDs but induces quenching of the excitonic emission of CdSe QDs. The striking difference between the two types of II-VI QDs is explained by the difference in the energy of the valence band top. The lower energetic position of the valence band for CdSe results in hole trapping of the photogenerated hole on the thiol molecule, thus quenching the luminescence. For CdTe the valence band is situated at higher energies with respect to the redox level of most thiols, thus inhibiting hole trapping and maintaining a high luminescence efficiency.
*
To whom correspondence should be addressed. Phone: +31-30-2532207. Fax: +31-30-2532403. Email: [email protected].
Cited By
This article is cited by 461 publications.
- Ge Tang, Xiao-Hang He, Meng Liu, Hao Hao, Yi Liu, Feng-Lei Jiang. Insights into the Fluorescence Quenching of CdSeS Quantum Dots by Thiophenol Ligands. The Journal of Physical Chemistry C 2024, 128
(21)
, 8681-8688. https://doi.org/10.1021/acs.jpcc.4c01302
- Vinayakan Ramachandran Nair, Kulangara Sandeep, Madhavan Shanthil, Santhakumar Dhanya, Aravind Archana, Muthunayagam Vibin, Hareendran Divyalakshmi. Simple and Cost-Effective Quantum Dot Chemodosimeter for Visual Detection of Biothiols in Human Blood Serum. ACS Omega 2024, 9
(6)
, 6588-6594. https://doi.org/10.1021/acsomega.3c07518
- Alexandra R. McIsaac, Tamar Goldzak, Troy Van Voorhis. It Is a Trap!: The Effect of Self-Healing of Surface Defects on the Excited States of CdSe Nanocrystals. The Journal of Physical Chemistry Letters 2023, 14
(5)
, 1174-1181. https://doi.org/10.1021/acs.jpclett.2c03317
- Maksim Miropoltsev, K. David Wegner, Ines Häusler, Vasile-Dan Hodoroaba, Ute Resch-Genger. Influence of Hydrophilic Thiol Ligands of Varying Denticity on the Luminescence Properties and Colloidal Stability of Quaternary Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2022, 126
(47)
, 20101-20113. https://doi.org/10.1021/acs.jpcc.2c05342
- Haochen Sun, Paul Cavanaugh, Ilan Jen-La Plante, Maria J. Bautista, Ruiqing Ma, David F. Kelley. Reversible Interfacial Charge Transfer and Delayed Emission in InP/ZnSe/ZnS Quantum Dots with Hexadecanethiol. The Journal of Physical Chemistry C 2022, 126
(47)
, 20065-20073. https://doi.org/10.1021/acs.jpcc.2c06203
- Fuzhao Li, Lars F. Klepzig, Nils Keppler, Peter Behrens, Nadja C. Bigall, Henning Menzel, Jannika Lauth. Layer-by-Layer Deposition of 2D CdSe/CdS Nanoplatelets and Polymers for Photoluminescent Composite Materials. Langmuir 2022, 38
(37)
, 11149-11159. https://doi.org/10.1021/acs.langmuir.2c00455
- Nuwanthaka P. Jayaweera, John H. Dunlap, Fiaz Ahmed, Taylor Larison, Leman Buzoglu Kurnaz, Morgan Stefik, Perry J. Pellechia, Augustus W. Fountain, III, Andrew B. Greytak. Coordination of Quantum Dots in a Polar Solvent by Small-Molecule Imidazole Ligands. Inorganic Chemistry 2022, 61
(28)
, 10942-10949. https://doi.org/10.1021/acs.inorgchem.2c01494
- Swati Khurana, Md. Samim Hassan, Priyesh Yadav, Dibyajyoti Ghosh, Sameer Sapra. Impact of Bifunctional Ligands on Charge Transfer Kinetics in CsPbBr3–CdSe/CdS/ZnS Nanohybrids. The Journal of Physical Chemistry Letters 2022, 13
(11)
, 2591-2599. https://doi.org/10.1021/acs.jpclett.2c00067
- Payel Mondal, Ranjani Viswanatha. Insights into the Oxidation State of Cu Dopants in II–VI Semiconductor Nanocrystals. The Journal of Physical Chemistry Letters 2022, 13
(8)
, 1952-1961. https://doi.org/10.1021/acs.jpclett.1c04076
- Irene Zabala Gutierrez, Christoph Gerke, Yingli Shen, Erving Ximendes, Miguel Manso Silvan, Riccardo Marin, Daniel Jaque, Oscar G Calderón, Sonia Melle, Jorge Rubio-Retama. Boosting the Near-Infrared Emission of Ag2S Nanoparticles by a Controllable Surface Treatment for Bioimaging Applications. ACS Applied Materials & Interfaces 2022, 14
(4)
, 4871-4881. https://doi.org/10.1021/acsami.1c19344
- Yanqing Luo, Tao Tan, Sen Wang, Ran Pang, Lihong Jiang, Da Li, Jing Feng, Hongjie Zhang, Su Zhang, Chengyu Li. Ligand-Induced Nucleation Growth Kinetics of CdTe QDs: Implications for White-Light-Emitting Diodes. ACS Applied Nano Materials 2022, 5
(1)
, 401-410. https://doi.org/10.1021/acsanm.1c03246
- Timothy G. Mack, Juliana Spinelli, Mark P. Andrews, Patanjali Kambhampati. Resonance Raman Vibrational Mode Enhancement of Adsorbed Benzenethiols on CdSe Is Predominantly Franck–Condon in Nature and Governed by Symmetry. The Journal of Physical Chemistry Letters 2021, 12
(33)
, 7935-7941. https://doi.org/10.1021/acs.jpclett.1c02051
- Caitlin R. McGranahan, Guy E. Wolfe, II, Alejandro Falca, David F. Watson. Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems. ACS Applied Materials & Interfaces 2021, 13
(26)
, 30980-30991. https://doi.org/10.1021/acsami.1c05653
- Jari Leemans, Kim C. Dümbgen, Matthias M. Minjauw, Qiang Zhao, André Vantomme, Ivan Infante, Christophe Detavernier, Zeger Hens. Acid–Base Mediated Ligand Exchange on Near-Infrared Absorbing, Indium-Based III–V Colloidal Quantum Dots. Journal of the American Chemical Society 2021, 143
(11)
, 4290-4301. https://doi.org/10.1021/jacs.0c12871
- Cherie R. Kagan, Lee C. Bassett, Christopher B. Murray, Sarah M. Thompson. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chemical Reviews 2021, 121
(5)
, 3186-3233. https://doi.org/10.1021/acs.chemrev.0c00831
- Haochen Sun, William E. Buhro. Contrasting Ligand-Exchange Behavior of Wurtzite and Zinc-Blende Cadmium Telluride Nanoplatelets. Chemistry of Materials 2021, 33
(5)
, 1683-1697. https://doi.org/10.1021/acs.chemmater.0c04247
- Christopher Melnychuk, Philippe Guyot-Sionnest. Multicarrier Dynamics in Quantum Dots. Chemical Reviews 2021, 121
(4)
, 2325-2372. https://doi.org/10.1021/acs.chemrev.0c00931
- Gerard Michael Carroll, Rens Limpens, Gregory F. Pach, Yaxin Zhai, Matthew C. Beard, Elisa M. Miller, Nathan R. Neale. Suppressing Auger Recombination in Multiply Excited Colloidal Silicon Nanocrystals with Ligand-Induced Hole Traps. The Journal of Physical Chemistry C 2021, 125
(4)
, 2565-2574. https://doi.org/10.1021/acs.jpcc.0c11388
- R. Peyton Cline, Joel D. Eaves. Surface-Trapped Hole Diffusion in CdS and CdSe: The Superexchange Mechanism. The Journal of Physical Chemistry C 2020, 124
(51)
, 28244-28251. https://doi.org/10.1021/acs.jpcc.0c07108
- H. Al-Bustami, B. P. Bloom, Amir Ziv, S. Goldring, S. Yochelis, R. Naaman, D. H. Waldeck, Y. Paltiel. Optical Multilevel Spin Bit Device Using Chiral Quantum Dots. Nano Letters 2020, 20
(12)
, 8675-8681. https://doi.org/10.1021/acs.nanolett.0c03445
- James K. Utterback, R. Peyton Cline, Katherine E. Shulenberger, Joel D. Eaves, Gordana Dukovic. The Motion of Trapped Holes on Nanocrystal Surfaces. The Journal of Physical Chemistry Letters 2020, 11
(22)
, 9876-9885. https://doi.org/10.1021/acs.jpclett.0c02618
- Xiao Shao, Yue Wu, Shuang Jiang, Bin Li, Tianyong Zhang, Yong Yan. Chiral 3D CdSe Nanotetrapods. Inorganic Chemistry 2020, 59
(19)
, 14382-14388. https://doi.org/10.1021/acs.inorgchem.0c02179
- Victor Gray, Zhilong Zhang, Simon Dowland, Jesse R. Allardice, Antonios M. Alvertis, James Xiao, Neil C. Greenham, John E. Anthony, Akshay Rao. Thiol-Anchored TIPS-Tetracene Ligands with Quantitative Triplet Energy Transfer to PbS Quantum Dots and Improved Thermal Stability. The Journal of Physical Chemistry Letters 2020, 11
(17)
, 7239-7244. https://doi.org/10.1021/acs.jpclett.0c02031
- Dipti Jasrasaria, John P. Philbin, Chang Yan, Daniel Weinberg, A. Paul Alivisatos, Eran Rabani. Sub-Bandgap Photoinduced Transient Absorption Features in CdSe Nanostructures: The Role of Trapped Holes. The Journal of Physical Chemistry C 2020, 124
(31)
, 17372-17378. https://doi.org/10.1021/acs.jpcc.0c04746
- Antonio Aires, Marco Möller, Aitziber L. Cortajarena. Protein Design for the Synthesis and Stabilization of Highly Fluorescent Quantum Dots. Chemistry of Materials 2020, 32
(13)
, 5729-5738. https://doi.org/10.1021/acs.chemmater.0c01484
- William M. Sanderson, Fudong Wang, Joshua Schrier, William E. Buhro, Richard A. Loomis. Intraband Relaxation Dynamics of Charge Carriers within CdTe Quantum Wires. The Journal of Physical Chemistry Letters 2020, 11
(12)
, 4901-4910. https://doi.org/10.1021/acs.jpclett.0c01326
- Guangmin Li, Xuening Fei, Hongfei Liu, Jing Gao, Jiayang Nie, Yuanbo Wang, Zhaodong Tian, Caicai He, Jiang-Long Wang, Chao Ji, Dan Oron, Gaoling Yang. Fluorescence and Optical Activity of Chiral CdTe Quantum Dots in Their Interaction with Amino Acids. ACS Nano 2020, 14
(4)
, 4196-4205. https://doi.org/10.1021/acsnano.9b09101
- Eric R. Kennehan, Kyle T. Munson, Grayson S. Doucette, Ashley R. Marshall, Matthew C. Beard, John B. Asbury. Dynamic Ligand Surface Chemistry of Excited PbS Quantum Dots. The Journal of Physical Chemistry Letters 2020, 11
(6)
, 2291-2297. https://doi.org/10.1021/acs.jpclett.0c00539
- Yuewei Yao, William E. Buhro. Thiol Versus Thiolate Ligation on Cadmium Selenide Quantum Belts. Chemistry of Materials 2020, 32
(1)
, 205-214. https://doi.org/10.1021/acs.chemmater.9b03363
- Marc Jäger, Jurek Schneider, Rolf Schäfer. Size- and Charge-Dependent Optoelectronic Properties of CdSe Clusters: Evolution of the Optical Gap from Molecular to Bulk Behavior. The Journal of Physical Chemistry A 2020, 124
(1)
, 185-196. https://doi.org/10.1021/acs.jpca.9b10401
- Joseph
C. Flanagan, Logan P. Keating, Muttanagoud N. Kalasad, Moonsub Shim. Extending the Spectral Range of Double-Heterojunction Nanorods by Cation Exchange-Induced Alloying. Chemistry of Materials 2019, 31
(22)
, 9307-9316. https://doi.org/10.1021/acs.chemmater.9b02615
- E. N. Bodunov, A. L. Simões Gamboa. Photoluminescence Decay of Colloidal Quantum Dots: Reversible Trapping and the Nature of the Relevant Trap States. The Journal of Physical Chemistry C 2019, 123
(41)
, 25515-25523. https://doi.org/10.1021/acs.jpcc.9b07619
- Jinyoung Choi, Wonseok Choi, Duk Young Jeon. Ligand-Exchange-Ready CuInS2/ZnS Quantum Dots via Surface-Ligand Composition Control for Film-Type Display Devices. ACS Applied Nano Materials 2019, 2
(9)
, 5504-5511. https://doi.org/10.1021/acsanm.9b01085
- Donghyo Hahm, Jun Hyuk Chang, Byeong Guk Jeong, Philip Park, Jaeyoul Kim, Seongjae Lee, Jongha Choi, Whi Dong Kim, Seunghyun Rhee, Jaehoon Lim, Doh C. Lee, Changhee Lee, Kookheon Char, Wan Ki Bae. Design Principle for Bright, Robust, and Color-Pure InP/ZnSexS1–x/ZnS Heterostructures. Chemistry of Materials 2019, 31
(9)
, 3476-3484. https://doi.org/10.1021/acs.chemmater.9b00740
- Timothy
G. Mack, Lakshay Jethi, Mark Andrews, Patanjali Kambhampati. Direct Observation of Vibronic Coupling between Excitonic States of CdSe Nanocrystals and Their Passivating Ligands. The Journal of Physical Chemistry C 2019, 123
(8)
, 5084-5091. https://doi.org/10.1021/acs.jpcc.8b11098
- David
A. Cagan, Arman C. Garcia, Kin Li, David Ashen-Garry, Abegail C. Tadle, Dong Zhang, Katherine J. Nelms, Yangyang Liu, Jeffrey R. Shallenberger, Joshua J. Stapleton, Matthias Selke. Chemistry of Singlet Oxygen with a Cadmium–Sulfur Cluster: Physical Quenching versus Photooxidation. Journal of the American Chemical Society 2019, 141
(1)
, 67-71. https://doi.org/10.1021/jacs.8b10516
- Ward van der Stam, Indy du Fossé, Gianluca Grimaldi, Julius O. V. Monchen, Nicholas Kirkwood, Arjan J. Houtepen. Spectroelectrochemical Signatures of Surface Trap Passivation on CdTe Nanocrystals. Chemistry of Materials 2018, 30
(21)
, 8052-8061. https://doi.org/10.1021/acs.chemmater.8b03893
- Finn Purcell-Milton, Maxime Chiffoleau, Yurii K. Gun’ko. Investigation of Quantum Dot–Metal Halide Interactions and Their Effects on Optical Properties. The Journal of Physical Chemistry C 2018, 122
(43)
, 25075-25084. https://doi.org/10.1021/acs.jpcc.8b08256
- Anoop Thomas, K. Sandeep, Sanoop Mambully Somasundaran, K. George Thomas. How Trap States Affect Charge Carrier Dynamics of CdSe and InP Quantum Dots: Visualization through Complexation with Viologen. ACS Energy Letters 2018, 3
(10)
, 2368-2375. https://doi.org/10.1021/acsenergylett.8b01532
- James
K. Utterback, Hayden Hamby, Orion M. Pearce, Joel D. Eaves, Gordana Dukovic. Trapped-Hole Diffusion in Photoexcited CdSe Nanorods. The Journal of Physical Chemistry C 2018, 122
(29)
, 16974-16982. https://doi.org/10.1021/acs.jpcc.8b05031
- R. Peyton Cline, James K. Utterback, Steven E. Strong, Gordana Dukovic, Joel D. Eaves. On the Nature of Trapped-Hole States in CdS Nanocrystals and the Mechanism of Their Diffusion. The Journal of Physical Chemistry Letters 2018, 9
(12)
, 3532-3537. https://doi.org/10.1021/acs.jpclett.8b01148
- Taisiia Berestok, Pablo Guardia, Javier Blanco Portals, Sònia Estradé, Jordi Llorca, Francesca Peiró, Andreu Cabot, Stephanie L. Brock. Surface Chemistry and Nano-/Microstructure Engineering on Photocatalytic In2S3 Nanocrystals. Langmuir 2018, 34
(22)
, 6470-6479. https://doi.org/10.1021/acs.langmuir.8b00406
- Ronald L. Birke, John R. Lombardi. TDDFT Study of Charge-Transfer Raman Spectra of 4-Mercaptopyridine on Various ZnSe Nanoclusters as a Model for the SERS of 4-Mpy on Semiconductors. The Journal of Physical Chemistry C 2018, 122
(9)
, 4908-4927. https://doi.org/10.1021/acs.jpcc.7b12392
- Mersedeh Saniepay, Chenjia Mi, Zhihui Liu, E. Paige Abel, and Rémi Beaulac . Insights into the Structural Complexity of Colloidal CdSe Nanocrystal Surfaces: Correlating the Efficiency of Nonradiative Excited-State Processes to Specific Defects. Journal of the American Chemical Society 2018, 140
(5)
, 1725-1736. https://doi.org/10.1021/jacs.7b10649
- Samuel Palato, Hélène Seiler, Lucie McGovern, Timothy G. Mack, Lakshay Jethi, and Patanjali Kambhampati . Electron Dynamics at the Surface of Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2017, 121
(47)
, 26519-26527. https://doi.org/10.1021/acs.jpcc.7b09145
- Emek G. Durmusoglu, Melike M. Yildizhan, Mehmet A. Gulgun, and Havva Yagci Acar . Production of Small, Stable PbS/CdS Quantum Dots via Room Temperature Cation Exchange Followed by a Low Temperature Annealing Processes. The Journal of Physical Chemistry C 2017, 121
(45)
, 25520-25530. https://doi.org/10.1021/acs.jpcc.7b06153
- Jamie J. Grenland, Cassandra J. A. Maddux, David F. Kelley, and Anne Myers Kelley . Charge Trapping versus Exciton Delocalization in CdSe Quantum Dots. The Journal of Physical Chemistry Letters 2017, 8
(20)
, 5113-5118. https://doi.org/10.1021/acs.jpclett.7b02242
- Natalia Razgoniaeva, Mingrui Yang, Cooper Colegrove, Natalia Kholmicheva, Pavel Moroz, Holly Eckard, Abigail Vore, and Mikhail Zamkov . Double-Well Colloidal Nanocrystals Featuring Two-Color Photoluminescence. Chemistry of Materials 2017, 29
(18)
, 7852-7858. https://doi.org/10.1021/acs.chemmater.7b02585
- Finn Purcell-Milton, Anastasia K. Visheratina, Vera A. Kuznetsova, Aisling Ryan, Anna O. Orlova, and Yurii K. Gun’ko . Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots. ACS Nano 2017, 11
(9)
, 9207-9214. https://doi.org/10.1021/acsnano.7b04199
- Aleksandrs Marinins, Reza Zandi Shafagh, Wouter van der Wijngaart, Tommy Haraldsson, Jan Linnros, Jonathan G. C. Veinot, Sergei Popov, and Ilya Sychugov . Light-Converting Polymer/Si Nanocrystal Composites with Stable 60–70% Quantum Efficiency and Their Glass Laminates. ACS Applied Materials & Interfaces 2017, 9
(36)
, 30267-30272. https://doi.org/10.1021/acsami.7b09265
- Yun Ye, Xiuli Wang, Sheng Ye, Yuxing Xu, Zhaochi Feng, and Can Li . Charge-Transfer Dynamics Promoted by Hole Trap States in CdSe Quantum Dots–Ni2+ Photocatalytic System. The Journal of Physical Chemistry C 2017, 121
(32)
, 17112-17120. https://doi.org/10.1021/acs.jpcc.7b05061
- Sreejith Kaniyankandy and Sandeep Verma . Role of Core–Shell Formation in Exciton Confinement Relaxation in Dithiocarbamate-Capped CdSe QDs. The Journal of Physical Chemistry Letters 2017, 8
(14)
, 3228-3233. https://doi.org/10.1021/acs.jpclett.7b01259
- Zhiyuan Huang, Ming L. Tang. Designing Transmitter Ligands That Mediate Energy Transfer between Semiconductor Nanocrystals and Molecules. Journal of the American Chemical Society 2017, 139
(28)
, 9412-9418. https://doi.org/10.1021/jacs.6b08783
- Valerio Pinchetti, Monica Lorenzon, Hunter McDaniel, Roberto Lorenzi, Francesco Meinardi, Victor I. Klimov, and Sergio Brovelli . Spectro-electrochemical Probing of Intrinsic and Extrinsic Processes in Exciton Recombination in I–III–VI2 Nanocrystals. Nano Letters 2017, 17
(7)
, 4508-4517. https://doi.org/10.1021/acs.nanolett.7b02040
- Hai I. Wang, Mischa Bonn, and Enrique Cánovas . Boosting Biexciton Collection Efficiency at Quantum Dot–Oxide Interfaces by Hole Localization at the Quantum Dot Shell. The Journal of Physical Chemistry Letters 2017, 8
(12)
, 2654-2658. https://doi.org/10.1021/acs.jpclett.7b00966
- Emek G. Durmusoglu , Yurdanur Turker , and Havva Yagci Acar . Green Synthesis of Strongly Luminescent, Ultrasmall PbS and PbSe Quantum Dots. The Journal of Physical Chemistry C 2017, 121
(22)
, 12407-12415. https://doi.org/10.1021/acs.jpcc.7b01083
- Jugun Prakash Chinta, Nir Waiskopf, Gur Lubin, David Rand, Yael Hanein, Uri Banin, and Shlomo Yitzchaik . Carbon Nanotube and Semiconductor Nanorods Hybrids: Preparation, Characterization, and Evaluation of Photocurrent Generation. Langmuir 2017, 33
(22)
, 5519-5526. https://doi.org/10.1021/acs.langmuir.6b04599
- Rui Tan, Yucheng Yuan, Yasutaka Nagaoka, Dennis Eggert, Xudong Wang, Sravan Thota, Peng Guo, Hongrong Yang, Jing Zhao, and Ou Chen . Monodisperse Hexagonal Pyramidal and Bipyramidal Wurtzite CdSe-CdS Core–Shell Nanocrystals. Chemistry of Materials 2017, 29
(9)
, 4097-4108. https://doi.org/10.1021/acs.chemmater.7b00968
- Stephen V. Kershaw, Nema M. Abdelazim, Yihua Zhao, Andrei S. Susha, Olga Zhovtiuk, Wey Yang Teoh, and Andrey L. Rogach . Investigation of the Exchange Kinetics and Surface Recovery of CdxHg1–xTe Quantum Dots during Cation Exchange Using a Microfluidic Flow Reactor. Chemistry of Materials 2017, 29
(7)
, 2756-2768. https://doi.org/10.1021/acs.chemmater.6b04544
- Yuqi Zhu, Ruiping Zhou, Lei Wang, Stanislaus S. Wong, and Joerg Appenzeller . Utilizing Electrical Characteristics of Individual Nanotube Devices to Study the Charge Transfer between CdSe Quantum Dots and Double-Walled Nanotubes. ACS Energy Letters 2017, 2
(3)
, 717-725. https://doi.org/10.1021/acsenergylett.7b00023
- Mykhailo Sytnyk, Sergii Yakunin, Wolfgang Schöfberger, Rainer T. Lechner, Max Burian, Lukas Ludescher, Niall A. Killilea, AmirAbbas YousefiAmin, Dominik Kriegner, Julian Stangl, Heiko Groiss, and Wolfgang Heiss . Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals. ACS Nano 2017, 11
(2)
, 1246-1256. https://doi.org/10.1021/acsnano.6b04721
- Simanta Kundu and Amitava Patra . Nanoscale Strategies for Light Harvesting. Chemical Reviews 2017, 117
(2)
, 712-757. https://doi.org/10.1021/acs.chemrev.6b00036
- Arjan J. Houtepen, Zeger Hens, Jonathan S. Owen, and Ivan Infante . On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals. Chemistry of Materials 2017, 29
(2)
, 752-761. https://doi.org/10.1021/acs.chemmater.6b04648
- Assaf Ben-Moshe, Ayelet Teitelboim, Dan Oron, and Gil Markovich . Probing the Interaction of Quantum Dots with Chiral Capping Molecules Using Circular Dichroism Spectroscopy. Nano Letters 2016, 16
(12)
, 7467-7473. https://doi.org/10.1021/acs.nanolett.6b03143
- Lihong Jing, Stephen V. Kershaw, Yilin Li, Xiaodan Huang, Yingying Li, Andrey L. Rogach, and Mingyuan Gao . Aqueous Based Semiconductor Nanocrystals. Chemical Reviews 2016, 116
(18)
, 10623-10730. https://doi.org/10.1021/acs.chemrev.6b00041
- Natalia Rivera-González, Saurabh Chauhan, and David F. Watson . Aminoalkanoic Acids as Alternatives to Mercaptoalkanoic Acids for the Linker-Assisted Attachment of Quantum Dots to TiO2. Langmuir 2016, 32
(36)
, 9206-9215. https://doi.org/10.1021/acs.langmuir.6b02704
- G. Krishnamurthy Grandhi, Arunkumar M., and Ranjani Viswanatha . Understanding the Role of Surface Capping Ligands in Passivating the Quantum Dots Using Copper Dopants as Internal Sensor. The Journal of Physical Chemistry C 2016, 120
(35)
, 19785-19795. https://doi.org/10.1021/acs.jpcc.6b04060
- Taro Uematsu, Eisuke Shimomura, Tsukasa Torimoto, and Susumu Kuwabata . Evaluation of Surface Ligands on Semiconductor Nanoparticle Surfaces Using Electron Transfer to Redox Species. The Journal of Physical Chemistry C 2016, 120
(29)
, 16012-16023. https://doi.org/10.1021/acs.jpcc.5b12698
- Brian P. Bloom, Vankayala Kiran, Vaibhav Varade, Ron Naaman, and David. H. Waldeck . Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots. Nano Letters 2016, 16
(7)
, 4583-4589. https://doi.org/10.1021/acs.nanolett.6b01880
- Ye Yang, Kaifeng Wu, Andrew Shabaev, Alexander L. Efros, Tianquan Lian, and Matthew C. Beard . Direct Observation of Photoexcited Hole Localization in CdSe Nanorods. ACS Energy Letters 2016, 1
(1)
, 76-81. https://doi.org/10.1021/acsenergylett.6b00036
- Chun Hao Lin, Evan Lafalce, Jaehan Jung, Marcus J. Smith, Sidney T. Malak, Sandip Aryal, Young Jun Yoon, Yaxin Zhai, Zhiqun Lin, Z. Valy Vardeny, and Vladimir V. Tsukruk . Core/Alloyed-Shell Quantum Dot Robust Solid Films with High Optical Gains. ACS Photonics 2016, 3
(4)
, 647-658. https://doi.org/10.1021/acsphotonics.5b00743
- Kenneth O. Aruda, Victor A. Amin, Christopher M. Thompson, Bryan Lau, Alexander B. Nepomnyashchii, and Emily A. Weiss . Description of the Adsorption and Exciton Delocalizing Properties of p-Substituted Thiophenols on CdSe Quantum Dots. Langmuir 2016, 32
(14)
, 3354-3364. https://doi.org/10.1021/acs.langmuir.6b00689
- Nathaniel K. Swenson, Mark A. Ratner, and Emily A. Weiss . Computational Study of the Influence of the Binding Geometries of Organic Ligands on the Photoluminescence Quantum Yield of CdSe Clusters. The Journal of Physical Chemistry C 2016, 120
(12)
, 6859-6868. https://doi.org/10.1021/acs.jpcc.5b12770
- Kwang Seob Jeong and Philippe Guyot-Sionnest . Mid-Infrared Photoluminescence of CdS and CdSe Colloidal Quantum Dots. ACS Nano 2016, 10
(2)
, 2225-2231. https://doi.org/10.1021/acsnano.5b06882
- Jacob H. Olshansky, Tina X. Ding, Youjin V. Lee, Stephen R. Leone, and A. Paul Alivisatos . Hole Transfer from Photoexcited Quantum Dots: The Relationship between Driving Force and Rate. Journal of the American Chemical Society 2015, 137
(49)
, 15567-15575. https://doi.org/10.1021/jacs.5b10856
- Diane G. Sellers, Amanda A. Button, Justin N. Nasca, Guy E. Wolfe, II, Saurabh Chauhan, and David F. Watson . Excited-State Charge Transfer within Covalently Linked Quantum Dot Heterostructures. The Journal of Physical Chemistry C 2015, 119
(49)
, 27737-27748. https://doi.org/10.1021/acs.jpcc.5b07504
- Lei Wang, Jinkyu Han, Yuqi Zhu, Ruiping Zhou, Cherno Jaye, Haiqing Liu, Zhuo-Qun Li, Gordon T. Taylor, Daniel A. Fischer, Joerg Appenzeller, and Stanislaus S. Wong . Probing the Dependence of Electron Transfer on Size and Coverage in Carbon Nanotube–Quantum Dot Heterostructures. The Journal of Physical Chemistry C 2015, 119
(47)
, 26327-26338. https://doi.org/10.1021/acs.jpcc.5b08681
- Efrat Lifshitz . Evidence in Support of Exciton to Ligand Vibrational Coupling in Colloidal Quantum Dots. The Journal of Physical Chemistry Letters 2015, 6
(21)
, 4336-4347. https://doi.org/10.1021/acs.jpclett.5b01567
- Joseph C. Flanagan and Moonsub Shim . Enhanced Air Stability, Charge Separation, and Photocurrent in CdSe/CdTe Heterojunction Nanorods by Thiols. The Journal of Physical Chemistry C 2015, 119
(34)
, 20162-20168. https://doi.org/10.1021/acs.jpcc.5b06334
- Cunming Liu, Fen Qiu, Jeffrey J. Peterson, and Todd D. Krauss . Aqueous Photogeneration of H2 with CdSe Nanocrystals and Nickel Catalysts: Electron Transfer Dynamics. The Journal of Physical Chemistry B 2015, 119
(24)
, 7349-7357. https://doi.org/10.1021/jp510935w
- Philipp Sippel, Wiebke Albrecht, Johanna C. van der Bok, Relinde J. A. Van Dijk-Moes, Thomas Hannappel, Rainer Eichberger, and Daniel Vanmaekelbergh . Femtosecond Cooling of Hot Electrons in CdSe Quantum-Well Platelets. Nano Letters 2015, 15
(4)
, 2409-2416. https://doi.org/10.1021/nl504706w
- Dhara J. Trivedi, Linjun Wang, and Oleg V. Prezhdo . Auger-Mediated Electron Relaxation Is Robust to Deep Hole Traps: Time-Domain Ab Initio Study of CdSe Quantum Dots. Nano Letters 2015, 15
(3)
, 2086-2091. https://doi.org/10.1021/nl504982k
- Michael E. Turk, Patrick M. Vora, Aaron T. Fafarman, Benjamin T. Diroll, Christopher B. Murray, Cherie R. Kagan, and James M. Kikkawa . Ultrafast Electron Trapping in Ligand-Exchanged Quantum Dot Assemblies. ACS Nano 2015, 9
(2)
, 1440-1447. https://doi.org/10.1021/nn505862g
- Tina X. Ding, Jacob H. Olshansky, Stephen R. Leone, and A. Paul Alivisatos . Efficiency of Hole Transfer from Photoexcited Quantum Dots to Covalently Linked Molecular Species. Journal of the American Chemical Society 2015, 137
(5)
, 2021-2029. https://doi.org/10.1021/ja512278a
- Ding Zhou, Min Liu, Min Lin, Xinyuan Bu, Xintao Luo, Hao Zhang, and Bai Yang . Hydrazine-Mediated Construction of Nanocrystal Self-Assembly Materials. ACS Nano 2014, 8
(10)
, 10569-10581. https://doi.org/10.1021/nn5040444
- Biswajit Kundu, Sudipto Chakrabarti, and Amlan J. Pal . Redox Levels of Dithiols in II–VI Quantum Dots vis-à-vis Photoluminescence Quenching: Insight from Scanning Tunneling Spectroscopy. Chemistry of Materials 2014, 26
(19)
, 5506-5513. https://doi.org/10.1021/cm501469f
- Shengye Jin, Rachel D. Harris, Bryan Lau, Kenneth O. Aruda, Victor A. Amin, and Emily A. Weiss . Enhanced Rate of Radiative Decay in CdSe Quantum Dots upon Adsorption of an Exciton-Delocalizing Ligand. Nano Letters 2014, 14
(9)
, 5323-5328. https://doi.org/10.1021/nl5023699
- Kaibo Zheng, Karel Žídek, Mohamed Abdellah, Wei Zhang, Pavel Chábera, Nils Lenngren, Arkady Yartsev, and Tõnu Pullerits . Ultrafast Charge Transfer from CdSe Quantum Dots to p-Type NiO: Hole Injection vs Hole Trapping. The Journal of Physical Chemistry C 2014, 118
(32)
, 18462-18471. https://doi.org/10.1021/jp506963q
- Sourav Maiti, Hsiang-Yun Chen, Yerok Park, and Dong Hee Son . Evidence for the Ligand-Assisted Energy Transfer from Trapped Exciton to Dopant in Mn-Doped CdS/ZnS Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2014, 118
(31)
, 18226-18232. https://doi.org/10.1021/jp505162c
- Darren C. J. Neo, Cheng Cheng, Samuel D. Stranks, Simon M. Fairclough, Judy S. Kim, Angus I. Kirkland, Jason M. Smith, Henry J. Snaith, Hazel E. Assender, and Andrew A. R. Watt . Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells. Chemistry of Materials 2014, 26
(13)
, 4004-4013. https://doi.org/10.1021/cm501595u
- Kartick Tarafder, Yogesh Surendranath, Jacob H. Olshansky, A. Paul Alivisatos, and Lin-Wang Wang . Hole Transfer Dynamics from a CdSe/CdS Quantum Rod to a Tethered Ferrocene Derivative. Journal of the American Chemical Society 2014, 136
(13)
, 5121-5131. https://doi.org/10.1021/ja500936n
- Jannise J. Buckley, Elsa Couderc, Matthew J. Greaney, James Munteanu, Carson T. Riche, Stephen E. Bradforth, and Richard L. Brutchey . Chalcogenol Ligand Toolbox for CdSe Nanocrystals and Their Influence on Exciton Relaxation Pathways. ACS Nano 2014, 8
(3)
, 2512-2521. https://doi.org/10.1021/nn406109v
- Jinkyu Han, Lei Wang, and Stanislaus S. Wong . Observation of Photoinduced Charge Transfer in Novel Luminescent CdSe Quantum Dot–CePO4:Tb Metal Oxide Nanowire Composite Heterostructures. The Journal of Physical Chemistry C 2014, 118
(11)
, 5671-5682. https://doi.org/10.1021/jp4113816
- Douglas A. Hines and Prashant V. Kamat . Recent Advances in Quantum Dot Surface Chemistry. ACS Applied Materials & Interfaces 2014, 6
(5)
, 3041-3057. https://doi.org/10.1021/am405196u
- Haiming Zhu, Ye Yang, Kim Hyeon-Deuk, Marco Califano, Nianhui Song, Youwei Wang, Wenqing Zhang, Oleg V. Prezhdo, and Tianquan Lian . Auger-Assisted Electron Transfer from Photoexcited Semiconductor Quantum Dots. Nano Letters 2014, 14
(3)
, 1263-1269. https://doi.org/10.1021/nl4041687
- L. Sudheendra, Gautom K. Das, Changqing Li, Daniel Stark, Jake Cena, Simon Cherry, and Ian M. Kennedy . NaGdF4:Eu3+ Nanoparticles for Enhanced X-ray Excited Optical Imaging. Chemistry of Materials 2014, 26
(5)
, 1881-1888. https://doi.org/10.1021/cm404044n
- Anielle Christine A. Silva, Sebastião W. da Silva, Paulo C. Morais, and Noelio O. Dantas . Shell Thickness Modulation in Ultrasmall CdSe/CdSxSe1–x/CdS Core/Shell Quantum Dots via 1-Thioglycerol. ACS Nano 2014, 8
(2)
, 1913-1922. https://doi.org/10.1021/nn406478f
- Christopher M. Bernt, Peter T. Burks, Anthony W. DeMartino, Agustin E. Pierri, Elizabeth S. Levy, David F. Zigler, and Peter C. Ford . Photocatalytic Carbon Disulfide Production via Charge Transfer Quenching of Quantum Dots. Journal of the American Chemical Society 2014, 136
(6)
, 2192-2195. https://doi.org/10.1021/ja4083599
- Illan J. Kramer and Edward H. Sargent . The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices. Chemical Reviews 2014, 114
(1)
, 863-882. https://doi.org/10.1021/cr400299t
- Yizheng Tan, Song Jin, and Robert J. Hamers . Photostability of CdSe Quantum Dots Functionalized with Aromatic Dithiocarbamate Ligands. ACS Applied Materials & Interfaces 2013, 5
(24)
, 12975-12983. https://doi.org/10.1021/am403744g
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.