ACS Publications. Most Trusted. Most Cited. Most Read
Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
My Activity

Figure 1Loading Img
    Article

    Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
    Click to copy article linkArticle link copied!

    • J. K. Nørskov*
      J. K. Nørskov
      Center for Atomic-scale Materials Physics, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
       Corresponding author. E-mail:  [email protected].
    • J. Rossmeisl
      J. Rossmeisl
      Center for Atomic-scale Materials Physics, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
      More by J. Rossmeisl
    • A. Logadottir
      A. Logadottir
      Center for Atomic-scale Materials Physics, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
    • L. Lindqvist
      L. Lindqvist
      Center for Atomic-scale Materials Physics, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
      More by L. Lindqvist
    • J. R. Kitchin
      J. R. Kitchin
      Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716
    • T. Bligaard
      T. Bligaard
      Science Institute, VR-II, University of Iceland, IS-107 Reykjavík, Iceland
      More by T. Bligaard
    • H. Jónsson
      H. Jónsson
      Faculty of Science, VR-II, University of Iceland, IS-107 Reykjavík, Iceland
      More by H. Jónsson
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2004, 108, 46, 17886–17892
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp047349j
    Published October 22, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We present a method for calculating the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations. We used that method in combination with detailed density functional calculations to develop a detailed description of the free-energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias. This allowed us to identify the origin of the overpotential found for this reaction. Adsorbed oxygen and hydroxyl are found to be very stable intermediates at potentials close to equilibrium, and the calculated rate constant for the activated proton/electron transfer to adsorbed oxygen or hydroxyl can account quantitatively for the observed kinetics. On the basis of a database of calculated oxygen and hydroxyl adsorption energies, the trends in the oxygen reduction rate for a large number of different transition and noble metals can be accounted for. Alternative reaction mechanisms involving proton/electron transfer to adsorbed molecular oxygen were also considered, and this peroxide mechanism was found to dominate for the most noble metals. The model suggests ways to improve the electrocatalytic properties of fuel-cell cathodes.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 9643 publications.

    1. Xiang Ao, Haoran Wang, Xia Zhang, Chundong Wang. Atomically Dispersed Metal–Nitrogen–Carbon Catalysts for Acidic Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2025, 17 (2) , 2844-2862. https://doi.org/10.1021/acsami.4c16972
    2. Jiaqi Wu, Bo Peng. Smallest [5,6]Fullerene as Building Blocks for 2D Networks with Superior Stability and Enhanced Photocatalytic Performance. Journal of the American Chemical Society 2025, 147 (2) , 1749-1757. https://doi.org/10.1021/jacs.4c13167
    3. Fangting Xie, Xu Cai, Yi Li, Yongfan Zhang, Wei Lin. Theoretical Insights into the Efficient Reduction of Nitrate to Ammonia on Crystalline Carbon Nitride. ACS Applied Materials & Interfaces 2025, 17 (2) , 3366-3375. https://doi.org/10.1021/acsami.4c18690
    4. Tahereh Jangjooye Shaldehi, Soosan Rowshanzamir, Kai S. Exner, Francesc Viñes, Francesc Illas. Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts. ACS Applied Materials & Interfaces 2025, Article ASAP.
    5. Amir Omranpour, Jan Elsner, K. Nikolas Lausch, Jörg Behler. Machine Learning Potentials for Heterogeneous Catalysis. ACS Catalysis 2025, Article ASAP.
    6. Giuseppe Mattioli, Leonardo Guidoni. Multiple Reaction Pathways for Oxygen Evolution as a Key Factor for the Catalytic Activity of Nickel–Iron (Oxy)Hydroxides. Journal of the American Chemical Society 2025, Article ASAP.
    7. Yi Sheng Ng, Jin-Cheng Zheng. Hydrogen Evolution Reaction in Borophene: Puckering Mechanism and the Role of Coordination Number. ACS Omega 2025, 10 (1) , 904-911. https://doi.org/10.1021/acsomega.4c08031
    8. Thamarainathan Doulassiramane, Ramanathan Padmanaban. Modulating the Coordination Environment of Cu-Embedded MoX2 (X = S, Se, and Te) Monolayers for Electrocatalytic Reduction of CO2 to CH4: Unveiling the Origin of Catalytic Activity. Langmuir 2025, 41 (1) , 329-339. https://doi.org/10.1021/acs.langmuir.4c03564
    9. Yu Jin, Tianyun Liu, Xuefei Liu, Wei Deng, Wenjun Xiao, Yaqiong Su, Xiaosi Qi, Gang Wang, Degui Wang, Mingqiang Liu, Yan Wu, Abuduwayiti Aierken, Xuan Chen, Xu Wang, Changsong Gao, Hui Xiong, Xiangyu Wu, Jiajin Ge, Jinshun Bi. Efficient Bifunctional Electrocatalysts for Oxygen Evolution/Reduction Reactions in Two-Dimensional Metal–Organic Frameworks by a Constant Potential Method. Langmuir 2025, 41 (1) , 745-754. https://doi.org/10.1021/acs.langmuir.4c04034
    10. Kai Wang, Xiangyu Guo, Chen Han, Lihong Liu, Zhiliang Wang, Lars Thomsen, Peng Chen, Zongping Shao, Xudong Wang, Fang Xie, Gang Liu, Lianzhou Wang, Shaomin Liu. Creation of Piezoelectricity in Quadruple Perovskite Oxides by Harnessing Cation Defects and Their Application in Piezo-Photocatalysis. ACS Nano 2025, Article ASAP.
    11. Hui-Min Yan, Gang Wang, Xin-Mao Lv, Hao Cao, Gang-Qiang Qin, Yang-Gang Wang. Revealing the Potential-Dependent Rate-Determining Step of Oxygen Reduction Reaction on Single-Atom Catalysts. Journal of the American Chemical Society 2025, Article ASAP.
    12. Peng-Fei Qu, Dong Fu, Gui-Chang Wang. Dry Reforming of Methane Over Ru2/CeO2: Dynamic Behavior of Lattice Oxygen. The Journal of Physical Chemistry C 2025, Article ASAP.
    13. Honghong Lin, Chen Ling, Hongfei Jia, Liang Wang, Gaohua Zhu, Siwen Wang. Dual Role of Alkyl-Substituted Phosphonic Acids on Oxygen Reduction Reaction on Platinum. ACS Energy Letters 2025, Article ASAP.
    14. Tao Sun, Tong Yang, Wenjie Zang, Jing Li, Xiaoyu Sheng, Enzhou Liu, Jiali Li, Xiao Hai, Huihui Lin, Cheng-Hao Chuang, Chenliang Su, Maohong Fan, Ming Yang, Ming Lin, Shibo Xi, Ruqiang Zou, Jiong Lu. Atomic Gap-State Engineering of MoS2 for Alkaline Water and Seawater Splitting. ACS Nano 2025, Article ASAP.
    15. Xiangyi Zhou, Mohsen Tamtaji, Weijun Zhou, William A. Goddard, III, GuanHua Chen. Nonprecious Triple-Atom Catalysts with Ultrahigh Activity for Electrochemical Reduction of Nitrate to Ammonia: A DFT Screening. ACS Applied Materials & Interfaces 2025, Article ASAP.
    16. Eoin M. O’Sullivan, Nicole Grobert, Marcel Swart. Density Functional Theory Investigation of 2D Phase Separated Graphene/Hexagonal Boron Nitride Monolayers; Band Gap, Band Edge Positions, and Photo Activity. The Journal of Physical Chemistry C 2025, 129 (1) , 638-647. https://doi.org/10.1021/acs.jpcc.4c06121
    17. Aishwarya Rao, Vance Gustin, Jonathan Hightower, Seval Gunduz, Dishari Basu, Yehia Khalifa, Anant Sohale, Anne C. Co, Aravind Asthagiri, Umit S. Ozkan. CO2 Poisoning of CNx Catalysts for the Oxygen Reduction Reaction. The Journal of Physical Chemistry C 2025, 129 (1) , 379-390. https://doi.org/10.1021/acs.jpcc.4c07363
    18. Ana S. Dobrota, Igor A. Pašti. Single-Atom Catalysts: Are You Really Single?. The Journal of Physical Chemistry Letters 2025, 16 (1) , 77-86. https://doi.org/10.1021/acs.jpclett.4c02844
    19. Minghao He, Chong-Hui Jiang, Hui-Min Yan, Guofeng Wang, Yang-Gang Wang. Unraveling the C–C Coupling Mechanism on Dual-Atom Catalysts for CO2/CO Reduction Reaction: The Critical Role of CO Hydrogenation. The Journal of Physical Chemistry Letters 2025, 16 (1) , 324-332. https://doi.org/10.1021/acs.jpclett.4c03123
    20. Ryosuke Jinnouchi, Saori Minami. The Melamine-Driven Solvation Effect Promotes Oxygen Reduction on a Platinum Catalyst: Machine Learning-Aided Free Energy Calculations. The Journal of Physical Chemistry Letters 2025, 16 (1) , 265-273. https://doi.org/10.1021/acs.jpclett.4c03437
    21. Marciélli K. R. Souza, Eduardo S. F. Cardoso, Leandro M. C. Pinto, Isabela S. C. Crivelli, Clauber D. Rodrigues, Robson S. Souto, Ary T. Rezende-Filho, Marcos R. V. Lanza, Gilberto Maia. Effective Nitrate Electroconversion to Ammonia Using an Entangled Co3O4/Graphene Nanoribbon Catalyst. ACS Applied Materials & Interfaces 2025, 17 (1) , 1295-1310. https://doi.org/10.1021/acsami.4c18269
    22. Gege Tao, Zhiqiang Wang, Xiaohui Liu, Yanqin Wang, Yong Guo. Enhanced Acidic Oxygen Evolution Reaction Performance by Anchoring Iridium Oxide Nanoparticles on Co3O4. ACS Applied Materials & Interfaces 2025, 17 (1) , 1350-1360. https://doi.org/10.1021/acsami.4c18974
    23. Silvia Favero, Ruixuan Chen, Joyce Cheung, Luke Higgins, Hui Luo, Mengnan Wang, Jesus Barrio, Maria Magdalena Titirici, Alexander Bagger, Ifan E. L. Stephens. Same FeN4 Active Site, Different Activity: How Redox Peaks Control Oxygen Reduction on Fe Macrocycles. ACS Electrochemistry 2025, Article ASAP.
    24. Er-Fei Zhen, Bing-Yu Liu, Meng-Ke Zhang, Lu−Lu Zhang, Chen-Yu Zhang, Jun Cai, Marko M. Melander, Jun Huang, Yan-Xia Chen. Disentangling Multiple pH-Dependent Factors on the Hydrogen Evolution Reaction at Au(111). Precision Chemistry 2025, Article ASAP.
    25. Jianye Wang, Zengxuan Chen, Xiaojing Lin, Zhaojie Wang, Xiaodong Chen, Xingheng Zhang, Jiao Li, Jinpeng Liu, Siyuan Liu, Shuxian Wei, Daofeng Sun, Xiaoqing Lu. Deciphering the Radial Ligand Effect of Biomimetic Amino Acid toward Stable Alkaline Oxygen Evolution. Inorganic Chemistry 2025, Article ASAP.
    26. Yi-Wen Yang, Hong-Da Ren, Han-Yu Zhang, Ying-Nan Zhao, Hua-Qiao Tan, Zhong-Ling Lang. Linkage Regulation of β-Ketoamine Covalent Organic Frameworks for Boosting Photocatalytic Overall Water Splitting. ACS Applied Materials & Interfaces 2025, Article ASAP.
    27. Poobodin Mano, Kaito Takahashi, Chularat Wattanakit, Supawadee Namuangruk. Spillover Promoted Dual CO2 Reduction to Ethanol via Low C–C Coupling Barrier on Co-Embedded γ-Graphyne with d−π Orbital Centers. ACS Applied Energy Materials 2025, Article ASAP.
    28. Nishchal Bharadwaj, Diptendu Roy, Amitabha Das, Biswarup Pathak. Machine Learning-Driven Screening of Atomically Precise Pure Metal Nanoclusters for Oxygen Reduction. ACS Materials Letters 2025, Article ASAP.
    29. Mohammad Imran Hossain, Syed Abdul Monim, Zannatul Mumtarin Moushumy, Neamul H. Khansur, Iqbal Mahmud, Mostafizur Rahaman, Ali Aldalbahi, Shakhawat H. Firoz, Mohammad A. Hasnat. Synthesis of La2NiMnO6 Double Perovskite as a Highly Selective Electrocatalyst for Oxygen Reduction to Hydrogen Peroxide in Electrochemical Energy Conversion. ACS Applied Energy Materials 2025, Article ASAP.
    30. Xianxian Xie, Valentín Briega-Martos, Pere Alemany, Athira Lekshmi Mohandas Sandhya, Tomáš Skála, Miquel Gamón Rodríguez, Jaroslava Nováková, Milan Dopita, Michael Vorochta, Albert Bruix, Serhiy Cherevko, Konstantin M. Neyman, Iva Matolínová, Ivan Khalakhan. Balancing Activity and Stability through Compositional Engineering of Ternary PtNi–Au Alloy ORR Catalysts. ACS Catalysis 2025, 15 (1) , 234-245. https://doi.org/10.1021/acscatal.4c05269
    31. Jiajia Wang, Zhuodong Ou, Chengbo Dong, Mengying Su, Amjad Ali, Artem V. Kuklin, Hans Ågren, Glib V. Baryshnikov, Yang Liu, Xue Zhao, Haibo Zhang. Electronic Structure Modulated by B-Doped Cu Promotes Electrocatalytic Nitrate Reduction for Ammonia Production. ACS Catalysis 2025, 15 (1) , 156-166. https://doi.org/10.1021/acscatal.4c05954
    32. Xinge Wu, Zhaoying Yang, Chao Li, Shuai Shao, Gaowu Qin, Xiangying Meng. Organizational and Mechanistic Modulation of ORR/OER Activity in M1M2–N–C Bimetallic Catalysts. ACS Catalysis 2025, 15 (1) , 432-446. https://doi.org/10.1021/acscatal.4c06280
    33. Sunny Gupta, Jun-Jie Zhang, Jincheng Lei, Henry Yu, Mingjie Liu, Xiaolong Zou, Boris I. Yakobson. Two-Dimensional Transition Metal Dichalcogenides: A Theory and Simulation Perspective. Chemical Reviews 2025, Article ASAP.
    34. Yulin Li, Yanna Guo, Naoya Ebato, Yusuke Yamauchi, Yoshiyuki Sugahara. Hierarchically Meso-Macroporous N-Doped Carbon Embedded with CoFe-Based Composite for the Oxygen Reduction Reaction. ACS Electrochemistry 2025, Article ASAP.
    35. Junfang Cheng, Hao Chen, Enping Wang, Huimin Wang, Zehao Tan, Cheng Yan, Yongjian Su, Xinyi Li, Aiming Wu, Yangge Guo, Guanghua Wei, Junliang Zhang. Core@Shell Pt3Co@Pt/C Nanoparticles as an Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Nano Materials 2024, 7 (24) , 28229-28241. https://doi.org/10.1021/acsanm.4c05129
    36. Avinash Sharma, Prakash Majee, Pooja, Ravinder Pawar, Yadagiri Naik Banothu, Mukul Pradhan. Conversion of Waste Tecoma Leaves into Heteroatom Doped Graphitic Carbon via a One-Step Chemical Activation Method for the Catalytic Oxygen Reduction Reaction and Supercapacitor Application. ACS Sustainable Resource Management 2024, 1 (12) , 2564-2574. https://doi.org/10.1021/acssusresmgt.4c00329
    37. Prem D. Nayak, Büsra Dereli, David Ohayon, Shofarul Wustoni, Tania Cecilia Hidalgo Castillo, Victor Druet, Yazhou Wang, Adel Hama, Craig Combe, Sophie Griggs, Maryam Alsufyani, Rajendar Sheelamanthula, Iain McCulloch, Luigi Cavallo, Sahika Inal. Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices. ACS Central Science 2024, 10 (12) , 2229-2241. https://doi.org/10.1021/acscentsci.4c00654
    38. Xinyi Li, Feiyan Liu, Wenting Lu, Huafeng Fan, Meiling Xiao, Xiaoqiang Cui, Lu Li, Xiaoxin Zou, Weitao Zheng, Xiao Zhao. Dopant-Tuned Restructuring Kinetic for the Formation of Heterophase-Confined Metal-Nonmetal Diatomic Sites for Efficient Oxygen Evolution Reaction. ACS Catalysis 2024, Article ASAP.
    39. Luis Acuña-Saavedra, Ana María Méndez-Torres, Gloria Cárdenas-Jirón, Rubén Oñate, Benjamín Sánchez-Allende, Ricardo Venegas, Roberto Bernal, Francisco Melo, Elizabeth Imbarack, José H. Zagal, Ingrid Ponce. The On/Off pH-Dependent Electrocatalytic Activity of the Perfluorinated Iron Phthalocyanine for the Oxygen Reduction Reaction and Electrochemical Hardness as a Reactivity Descriptor: Experimental and Theoretical Study. ACS Catalysis 2024, Article ASAP.
    40. Muhammad Usama, Samad Razzaq, Kai S. Exner. Design Criteria for Active and Selective Catalysts in the Nitrogen Oxidation Reaction. ACS Physical Chemistry Au 2024, Article ASAP.
    41. Tiyao Ren, Yan Zheng, Ruikuan Xie, Guoliang Chai, Dong Xia, Huan Xie, Changlei Xia. Stabilizing Sn/SnO2 Mott–Schottky Heterojunction on Biomass-Derived Carbon Boosting Highly Selective and Robust Formate Production for Electrochemical CO2 Reduction. ACS Sustainable Chemistry & Engineering 2024, 12 (51) , 18434-18444. https://doi.org/10.1021/acssuschemeng.4c07981
    42. Shyama Charan Mandal, Frank Abild-Pedersen. Metal-Independent Correlations for Site-Specific Binding Energies of Relevant Catalytic Intermediates. JACS Au 2024, 4 (12) , 4790-4798. https://doi.org/10.1021/jacsau.4c00759
    43. Zhanwei Chen, Shaowei Yang, Jie Yang, Bo Zhang, Hao Jiang, Runze Gao, Tianshuai Wang, Qiuyu Zhang, Hepeng Zhang. Boosting Catalytic Hydrogen Transfer Cascade Reactions via Tandem Catalyst Design by Coupling Co Single Atoms with Adjacent Co Clusters. ACS Catalysis 2024, 14 (24) , 18256-18267. https://doi.org/10.1021/acscatal.4c05569
    44. Menglei Yuan, Hongyu Jiang, Ruyi Jiang, Zhao Wang, Zhi-Hao Zhao, Bao-lian Su, Jian Zhang. Disrupted Spin Degeneracy Promoted C≡C Triple Bond Activation for Efficient Electrochemical Acetylene Semihydrogenation. ACS Catalysis 2024, 14 (24) , 18385-18396. https://doi.org/10.1021/acscatal.4c06191
    45. Zhikeng Zheng, Bin Liu, Jiaxiang Qiu, Shaojun Xu, Yuchen Wang, Man Zhang, Ke Li, Zhongti Sun, Ziang Li, Yangyang Wan, C. Richard A. Catlow, Kai Yan. Effectively Regulating Electrooxidation of Formic Acid over Bimetallic PtCo Alloys via the Integration of Theory and Experiment. ACS Catalysis 2024, 14 (24) , 18333-18344. https://doi.org/10.1021/acscatal.4c06198
    46. Alexandra M. Dudzinski, Elias Diesen, Karsten Reuter, Vanessa J. Bukas. Oxygen Adsorption at the Electrochemical Metal/Water Interface: Au(111) vs Pt(111). The Journal of Physical Chemistry C 2024, 128 (49) , 20886-20894. https://doi.org/10.1021/acs.jpcc.4c06384
    47. Qian Wang, Jingyu Feng, Tao Yang, Yao Qin, Jiacheng Xie, Zengxi Wei, Shuangliang Zhao. Epoxidized Single-Atom Co–N–C Catalysts Promote the Oxygen Reduction Reaction via a Two-Electron Pathway. ACS Applied Materials & Interfaces 2024, 16 (49) , 68221-68228. https://doi.org/10.1021/acsami.4c17354
    48. Fan Xia, Bomin Li, Bowen An, Michael J. Zachman, Xiaohong Xie, Yiqi Liu, Shicheng Xu, Sulay Saha, Qin Wu, Siyuan Gao, Iddrisu B. Abdul Razak, Dennis E. Brown, Vijay Ramani, Rongyue Wang, Tobin J. Marks, Yuyan Shao, Yingwen Cheng. Cooperative Atomically Dispersed Fe–N4 and Sn–Nx Moieties for Durable and More Active Oxygen Electroreduction in Fuel Cells. Journal of the American Chemical Society 2024, 146 (49) , 33569-33578. https://doi.org/10.1021/jacs.4c11121
    49. Dong Hyeon Mok, Seoin Back. Generative Pretrained Transformer for Heterogeneous Catalysts. Journal of the American Chemical Society 2024, 146 (49) , 33712-33722. https://doi.org/10.1021/jacs.4c11504
    50. Longhai Zhang, Yingjie Deng, Jiaxi Zhang, Weiquan Tan, Liming Wang, Li Du, Huiyu Song, Shijun Liao, Dai Dang, Shuhui Sun, Zhiming Cui. Optimized Surface Strain in L10-Type Pt0.8Ga0.2Co Intermetallic Catalyst for Enhanced Oxygen Reduction in Fuel Cells. Chemistry of Materials 2024, 36 (23) , 11404-11411. https://doi.org/10.1021/acs.chemmater.4c01968
    51. Qiang Wang, Mingqi He, Pengxin Yang, Yanan Zhou, Xing Wang, Kaifu Zhang, Zhuo Jiang, Qiquan Luo, Shan Gao, Jinlong Yang. Selective Photocatalytic Conversion of CO2 to Ethanol via Unsaturated Cu–O Domains. ACS Nano 2024, 18 (49) , 33576-33586. https://doi.org/10.1021/acsnano.4c11842
    52. Rajib Adhikary, Jayati Datta. The Exceptional Tandem Catalyst Pt1Pd1 NPs Embedded on a Fe3O4-Polypyrrole Composite Serving in Both the Ethanol Oxidation Reaction and Oxygen Reduction Reaction in Direct Ethanol Fuel Cells. ACS Applied Energy Materials 2024, 7 (23) , 10950-10959. https://doi.org/10.1021/acsaem.4c01819
    53. Shihan Qin, Sayan Banerjee, Mehmet Gokhan Sensoy, Andrew M. Rappe. Unveiling the Electrocatalytic Hydrogen Evolution Reaction Pathway on RuP2 through Ab Initio Grand Canonical Monte Carlo. ACS Catalysis 2024, 14 (23) , 17253-17262. https://doi.org/10.1021/acscatal.4c04913
    54. Shengqin Guan, Baoen Xu, Xingbo Yu, Yonghong Ye, Yuting Liu, Taotao Guan, Yu Yang, Jiali Gao, Kaixi Li, Jianlong Wang. Activation of Lattice Oxygen in Nitrogen-Doped High-Entropy Oxide Nanosheets for Highly Efficient Oxygen Evolution Reaction. ACS Catalysis 2024, 14 (23) , 17806-17817. https://doi.org/10.1021/acscatal.4c05997
    55. Chen Chen, Yi Liu, Xuefang Yu, Zhongwei Li, Wenzuo Li, Qingzhong Li, Xiaolong Zhang, Bo Xiao. Unlocking the Nitrogen Reduction Electrocatalyst with a Dual-Metal–Boron System: From High-Throughput Screening to Machine Learning. ACS Applied Materials & Interfaces 2024, 16 (48) , 66149-66158. https://doi.org/10.1021/acsami.4c15263
    56. Cooper Tezak, Jacob Clary, Sophie Gerits, Joshua Quinton, Benjamin Rich, Nicholas Singstock, Abdulaziz Alherz, Taylor Aubry, Struan Clark, Rachel Hurst, Mauro Del Ben, Christopher Sutton, Ravishankar Sundararaman, Charles Musgrave, Derek Vigil-Fowler. BEAST DB: Grand-Canonical Database of Electrocatalyst Properties. The Journal of Physical Chemistry C 2024, 128 (47) , 20165-20176. https://doi.org/10.1021/acs.jpcc.4c06826
    57. Christian M. Schott, Peter M. Schneider, Kun-Ting Song, Haiting Yu, Rainer Götz, Felix Haimerl, Elena Gubanova, Jian Zhou, Thorsten O. Schmidt, Qiwei Zhang, Vitaly Alexandrov, Aliaksandr S. Bandarenka. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chemical Reviews 2024, 124 (22) , 12391-12462. https://doi.org/10.1021/acs.chemrev.3c00806
    58. Ryusuke Mizuochi, Yuuki Sugawara, Kengo Oka, Yoshiyuki Inaguma, Shunsuke Nozawa, Toshiyuki Yokoi, Takeo Yamaguchi, Kazuhiko Maeda. Iron-Based Layered Perovskite Oxyfluoride Electrocatalyst for Oxygen Evolution: Insights from Crystal Facets with Heteroanionic Coordination. Journal of the American Chemical Society 2024, 146 (47) , 32343-32355. https://doi.org/10.1021/jacs.4c05740
    59. Yang Lu, Yi-Fan Huang. Spectroscopically Elucidating the Local Proton-Coupled Electron Transfer Loop from Amino to Nitro Groups via the Au Surface in a N2 Atmosphere. Analytical Chemistry 2024, 96 (47) , 18859-18864. https://doi.org/10.1021/acs.analchem.4c04579
    60. Haoyang Qiu, Huohai Yang, Peng Wang, Manxi Leng, Xingbo Ge, Xu Yang, Xin Chen. Transition Metals Doped into g-C3N4 via N,O Coordination as Efficient Electrocatalysts for the Carbon Dioxide Reduction Reaction. Langmuir 2024, 40 (47) , 25344-25353. https://doi.org/10.1021/acs.langmuir.4c03938
    61. Zhiping Deng, Song Jin, Mingxing Gong, Ning Chen, Weifeng Chen, Min Ho Seo, Xiaolei Wang. Potential-Driven Coordinated Oxygen Migration in an Electrocatalyst for Sustainable H2O2 Synthesis. ACS Nano 2024, 18 (47) , 32834-32846. https://doi.org/10.1021/acsnano.4c11307
    62. Guilherme R. Nascimento, Marionir M. C. B. Neto, Juarez L. F. Da Silva, Breno R. L. Galvão. Influence of Co Doping on Copper Nanoclusters for CO2 Electroreduction. ACS Omega 2024, 9 (47) , 47114-47121. https://doi.org/10.1021/acsomega.4c07514
    63. Kiruthika Pandiyan, Dinesh Kumar Dhanthala Chittibabu, Hsin-Tsung Chen. Theoretical Establishment and Screening of Double-Atom Catalysts Supported on Biphenylene for an Efficient Electrocatalytic Nitrogen Reduction Reaction. ACS Applied Energy Materials 2024, 7 (22) , 10758-10769. https://doi.org/10.1021/acsaem.4c02582
    64. Tom Demeyere, Chris-Kriton Skylaris. A Comparison of Modern Solvation Models for Oxygen Reduction at the Pt(111) Interface. The Journal of Physical Chemistry C 2024, 128 (46) , 19586-19600. https://doi.org/10.1021/acs.jpcc.4c04924
    65. Yanan Zhou, Li Sheng, Lanlan Chen, Wenhua Zhang, Jinlong Yang. Theoretical Investigation of Single-, Double-, and Triple- p-block Metals Anchored on g-CN Monolayer for Oxygen Electrocatalysis. The Journal of Physical Chemistry Letters 2024, 15 (46) , 11454-11461. https://doi.org/10.1021/acs.jpclett.4c02399
    66. Michele Re Fiorentin, Francesca Risplendi, Clara Salvini, Juqin Zeng, Giancarlo Cicero, Hannes Jónsson. Silver Electrodes Are Highly Selective for CO in CO2 Electroreduction due to Interplay between Voltage Dependent Kinetics and Thermodynamics. The Journal of Physical Chemistry Letters 2024, 15 (46) , 11538-11545. https://doi.org/10.1021/acs.jpclett.4c02869
    67. Rahul Kumar Sharma, Milan Kumar Jena, Harpriya Minhas, Biswarup Pathak. Machine-Learning-Assisted Screening of Nanocluster Electrocatalysts: Mapping and Reshaping the Activity Volcano for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2024, 16 (46) , 63589-63601. https://doi.org/10.1021/acsami.4c14076
    68. Tomaz Neves-Garcia, Mahmudul Hasan, Quansong Zhu, Jing Li, Zhan Jiang, Yongye Liang, Hailiang Wang, Liane M. Rossi, Robert E. Warburton, L. Robert Baker. Integrated Carbon Dioxide Capture by Amines and Conversion to Methane on Single-Atom Nickel Catalysts. Journal of the American Chemical Society 2024, 146 (46) , 31633-31646. https://doi.org/10.1021/jacs.4c09744
    69. Neung-Kyung Yu, Letícia F. Rasteiro, Van Son Nguyen, Kinga M. Gołąbek, Carsten Sievers, Andrew J. Medford. Evaluating the Role of Metastable Surfaces in Mechanochemical Reduction of Molybdenum Oxide. JACS Au 2024, Article ASAP.
    70. Su-Min Chen, Lai-Ke Chen, Na Tian, Sheng-Nan Hu, Shuang-Li Yang, Jun-Fei Shen, Jing-Xiao Tang, De-Yin Wu, Ming-Shu Chen, Zhi-You Zhou, Shi-Gang Sun. Double-Shell Confinement Strategy Enhancing Durability of PtFeTi Intermetallic Catalysts for the Oxygen Reduction Reaction. ACS Catalysis 2024, 14 (22) , 16664-16672. https://doi.org/10.1021/acscatal.4c04779
    71. Samuel A. Olusegun, Yancun Qi, Nishithan C. Kani, Meenesh R. Singh, Joseph A. Gauthier. Understanding Activity Trends in Electrochemical Dinitrogen Oxidation over Transition Metal Oxides. ACS Catalysis 2024, 14 (22) , 16885-16896. https://doi.org/10.1021/acscatal.4c05036
    72. Yousef A. Alsunni, Abdulaziz W. Alherz, Charles B. Musgrave. Prediction of Potential-Dependent Kinetics for the Electrocatalytic Reduction of CO2 to CO over Ti@4N-Gr. ACS Electrochemistry 2024, Article ASAP.
    73. Zhiguo Chen, Jingkun Chen, Jingbo Fu, Qiheng Wang, Yonghong Chen, Jingjun Liu. Guinier–Preston Zones Featuring PtCu Nanocrystals: Coherency Strain Fields Reshaping the Band Structure for Oxygen Reduction Electrocatalysis. Chemistry of Materials 2024, 36 (21) , 10857-10870. https://doi.org/10.1021/acs.chemmater.4c01485
    74. Mingjie Xu, Ye Xiao, Jingxi Zhang, Yuting Xia, Tianli Liu, Yanhao Dong, Chang-An Wang. Dynamic Surface Dealloying for Pt3Co/C Catalysts with a Pt-Enriched Surface for the Oxygen Reduction Reaction. ACS Applied Energy Materials 2024, 7 (21) , 9996-10003. https://doi.org/10.1021/acsaem.4c02062
    75. Jing Zhang, Lin Ju, Zhenjie Tang, Shu Zhang, Genqiang Zhang, Wentao Wang. Bifunctional Oxygen Reduction/Evolution Reaction Activity of Transition Metal-Doped T-C3N2 Monolayer: A Density Functional Theory Study Assisted by Machine Learning. ACS Applied Nano Materials 2024, 7 (21) , 24653-24662. https://doi.org/10.1021/acsanm.4c04467
    76. Wei Zhang, Xueqi Cheng, Xiongyi Liang, Keke Mao, Xiao Cheng Zeng. Mechanistic Study of Highly Active Bifunctional Double-Atom Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. The Journal of Physical Chemistry Letters 2024, 15 (44) , 10977-10984. https://doi.org/10.1021/acs.jpclett.4c02759
    77. Bartłomiej M. Szyja, Joanna Zasada. On the Design of the Metal–Support Interface in Methanol Electrocatalytic Oxidation. Crystal Growth & Design 2024, 24 (21) , 8709-8718. https://doi.org/10.1021/acs.cgd.3c01466
    78. Radha N Somaiya, Muhammad Sajjad, Nirpendra Singh, Aftab Alam. Efficient CO2 Reduction Reaction on Cu-Decorated Biphenylene. ACS Applied Materials & Interfaces 2024, 16 (44) , 60094-60102. https://doi.org/10.1021/acsami.4c08499
    79. Xiaoting Chen, Man-Rong Zhao, Bingyi Song, Guoliang Li, Li-Ming Yang. Diatomic Active Sites Embedded Graphyne as Electrocatalysts for Ammonia Synthesis. ACS Applied Materials & Interfaces 2024, 16 (44) , 60231-60242. https://doi.org/10.1021/acsami.4c13025
    80. Haibin Ma, Enric Ibáñez-Alé, Futian You, Núria López, Boon Siang Yeo. Electrochemical Formation of C2+ Products Steered by Bridge-Bonded *CO Confined by *OH Domains. Journal of the American Chemical Society 2024, 146 (44) , 30183-30193. https://doi.org/10.1021/jacs.4c08755
    81. Yuxing Lin, Fangqi Yu, Lei Li, Yameng Li, Rao Huang, Yuhua Wen. Modulating CO2 Electroreduction Activity on Mo2C and Promoting C2 Product by Grain Boundary Engineering: Insights from First-Principles Calculations. ACS Catalysis 2024, 14 (21) , 16423-16433. https://doi.org/10.1021/acscatal.4c03202
    82. Bill Yan, Suljo Linic. Engineering Chemical and Catalytic Activity of Metal Surface Sites by Controlling Strain and Ligand Effects in Nonmodel Nanoparticle Catalysts. ACS Catalysis 2024, 14 (21) , 16383-16391. https://doi.org/10.1021/acscatal.4c03857
    83. Wenfeng Hu, Bingyi Song, Li-Ming Yang. Catalyst Screening and Mechanism Elucidation of Two-Dimensional Transition Metal Coordinated Porphyrin-Analogue Materials for Nitrogen Fixation. The Journal of Physical Chemistry C 2024, 128 (43) , 18225-18235. https://doi.org/10.1021/acs.jpcc.4c04313
    84. Arunendu Das, Diptendu Roy, Amitabha Das, Biswarup Pathak. Machine Learning-Enhanced Screening of Single-Atom Alloy Clusters for Nitrogen Reduction Reaction. ACS Applied Materials & Interfaces 2024, 16 (43) , 58648-58656. https://doi.org/10.1021/acsami.4c12184
    85. Zhe Chen, Tao Wang. Toward High-Performance Electrochemical Ammonia Synthesis by Circumventing the Surface H-Mediated N2 Reduction. JACS Au 2024, 4 (10) , 4023-4031. https://doi.org/10.1021/jacsau.4c00741
    86. Junkai Xu, Yunhao Wang, Xiaoxue Yu, Jianjun Fang, Xianfang Yue, Breno R. L. Galvão, Jing Li. Single-Atom Doped Fullerene (MN4–C54) as Bifunctional Catalysts for the Oxygen Reduction and Oxygen Evolution Reactions. The Journal of Physical Chemistry A 2024, 128 (42) , 9167-9174. https://doi.org/10.1021/acs.jpca.4c03413
    87. Jose M. Abad, Alba Duprat-Alvaro, Raquel Sainz, María Victoria Martínez-Huerta, Marcos Pita, Antonio L. De Lacey. Synergistic Effect of Cobalt/Ferrocene as a Catalyst for the Oxygen Evolution Reaction. The Journal of Physical Chemistry Letters 2024, 15 (42) , 10638-10643. https://doi.org/10.1021/acs.jpclett.4c02039
    88. Saeed Saeed, Simon Fleischmann, Takeshi Kobayashi, Zenonas Jusys, Eugene Mamontov, Naresh C. Osti, Noah P. Holzapfel, Haohong Song, Tao Wang, Sheng Dai, De-en Jiang, Veronica Augustyn. Oxide Acidity Modulates Structural Transformations in Hydrogen Titanates during Electrochemical Li-Ion Insertion. Journal of the American Chemical Society 2024, 146 (42) , 28795-28808. https://doi.org/10.1021/jacs.4c08063
    89. Yuan Huang, Zeyu Wang, Hai Xiao, Qingda Liu, Xun Wang. Activating and Stabilizing Lattice Oxygen via Self-Adaptive Zn–NiOOH Sub-Nanowires for Oxygen Evolution Reaction. Journal of the American Chemical Society 2024, 146 (42) , 29006-29016. https://doi.org/10.1021/jacs.4c09931
    90. Ling Meng, Francesc Viñes, Francesc Illas. Unveiling the Synergy between Surface Terminations and Boron Configuration in Boron-Based Ti3C2 MXenes Electrocatalysts for Nitrogen Reduction Reaction. ACS Catalysis 2024, 14 (20) , 15429-15443. https://doi.org/10.1021/acscatal.4c03415
    91. Subin Choi, Se-Jun Kim, Sunghoon Han, Jian Wang, Juwon Kim, Bonho Koo, Alexander A. Ryabin, Sebastian Kunze, Hyejeong Hyun, Jeongwoo Han, Shu-Chih Haw, Keun Hwa Chae, Chang Hyuck Choi, Hyungjun Kim, Jongwoo Lim. Enhancing Oxygen Evolution Reaction via a Surface Reconstruction-Induced Lattice Oxygen Mechanism. ACS Catalysis 2024, 14 (20) , 15096-15107. https://doi.org/10.1021/acscatal.4c03594
    92. Aleksandr S. Kramarenko, Dmitry I. Sharapa, Evgeny A. Pidko, Felix Studt. Ab Initio Kinetics of Electrochemical Reactions Using the Computational Fc0/Fc+ Electrode. The Journal of Physical Chemistry A 2024, 128 (41) , 9063-9070. https://doi.org/10.1021/acs.jpca.4c04923
    93. Subhash Kumar, Atish Ghosh, Pranab Sarkar. Promoting Overall Water Splitting in MoS2/BSe Heterostructures: Insights from Time-Domain Atomistic Dynamics. The Journal of Physical Chemistry C 2024, 128 (41) , 17361-17371. https://doi.org/10.1021/acs.jpcc.4c03902
    94. Hemjot Kaur, Sanchit Sharma, Neetu Goel. Boosting the Efficiency and Selectivity of Electrocatalytic Reduction of CO2 to C1 Products by Mn-Porphyrin via Axial Ligation. The Journal of Physical Chemistry C 2024, 128 (41) , 17399-17409. https://doi.org/10.1021/acs.jpcc.4c04330
    95. Xin Song, Pengxin Pu, Haisong Feng, Hu Ding, Yuan Deng, Zhen Ge, Shiquan Zhao, Tianyong Liu, Yusen Yang, Min Wei, Xin Zhang. Integrating Active Learning and DFT for Fast-Tracking Single-Atom Alloy Catalysts in CO2-to-Fuel Conversion. ACS Applied Materials & Interfaces 2024, 16 (41) , 55416-55428. https://doi.org/10.1021/acsami.4c11695
    96. Bin Li, Jing Liu, Chuan Zhao, Anjun Hu, Xuping Sun, Bingbao Mei, Jianping Long. Carbothermal Reduction-Assisted Synthesis of a Carbon-Supported Highly Dispersed PtSn Nanoalloy for the Oxygen Reduction Reaction. Inorganic Chemistry 2024, 63 (41) , 19322-19331. https://doi.org/10.1021/acs.inorgchem.4c03099
    97. Xin Cai, Xin Liu, Xuezhe Wei, Rui Lin. Effect of Nitrogen-Doped Carbon Support on the Performance of Catalysts for the Oxygen Reduction Reaction. ACS Applied Energy Materials 2024, 7 (19) , 8705-8714. https://doi.org/10.1021/acsaem.4c01662
    98. Gaurav Deshmukh, Pushkar Ghanekar, Jeffrey Greeley. A Combined First-Principles and Data-Driven Computational Framework to Analyze the Surface Structure, Composition, and Stability of Binary Alloy Catalysts. The Journal of Physical Chemistry C 2024, 128 (40) , 16952-16964. https://doi.org/10.1021/acs.jpcc.4c04150
    99. Jie Wang, Meng Shi, Li-Ping Tang, Sheng-Nan Ruan, Ying-Ying Chao, Peng Chen, Feng-Cui Shen. Customizing Ionic Liquids Functionalized MOFs Composites with Hydrophobic Interface for Electrochemical CO2 Reduction. ACS Applied Materials & Interfaces 2024, 16 (40) , 53775-53784. https://doi.org/10.1021/acsami.4c10640
    100. Yue Fei, Zhenfeng Li, Pengcheng Li, Xuzi Zhang, Zhixiao Xu, Wenjing Deng, Hao Zhang, Ge Li. Dual-Functional Metal–Organic Framework Freestanding Aerogel Boosts Sulfur Reduction Reaction for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2024, 16 (40) , 53833-53842. https://doi.org/10.1021/acsami.4c11244
    Load more citations

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2004, 108, 46, 17886–17892
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp047349j
    Published October 22, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    136k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.