ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Introduction to Active Thermochemical Tables:  Several “Key” Enthalpies of Formation Revisited

View Author Information
Chemistry Division and Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Cite this: J. Phys. Chem. A 2004, 108, 45, 9979–9997
Publication Date (Web):October 15, 2004
https://doi.org/10.1021/jp047912y
Copyright © 2004 American Chemical Society

    Article Views

    4840

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The concept behind active thermochemical tables (ATcT) is presented. As opposed to traditional sequential thermochemistry, ATcT provides reliable, accurate, and internally consistent thermochemistry by utilizing the thermochemical network (TN) approach. This involves, inter alia, a statistical analysis of thermochemically relevant determinations that define the TN, made possible by redundancies in the TN, such as competing measurements and alternate network pathways that interrelate the various chemical species. The statistical analysis produces a self-consistent TN, from which the optimal thermochemical values are obtained by simultaneous solution in error-weighted space, thus allowing optimal use of all of the knowledge present in the TN. ATcT offers a number of additional features that are not present nor possible in the traditional approach. With ATcT, new knowledge can be painlessly propagated through all affected thermochemical values. ATcT also allows hypothesis testing and evaluation, as well as discovery of weak links in the TN. The latter provides pointers to new experimental or theoretical determinations that will most efficiently improve the underlying thermochemical body of knowledge. The ATcT approach is illustrated by providing improved thermochemistry for several key thermochemical species.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Part of the special issue “Tomas Baer Festschrift”.

    *

     To whom correspondence should be addressed. E-mail:  [email protected].

     Chemistry Division.

    §

     Mathematics and Computer Science Division.

    Cited By

    This article is cited by 570 publications.

    1. Bei Qu, Hao Chen, Xiaolong Fu, Frederick Nii Ofei Bruce, Xin Bai, Shuyuan Liu, Kiran Yalamanchi, Tairan Wang, Daoan Sun, Yang Li. Probing the Chemistry of Sulfurous Pollutants: Accurate Thermochemistry Determination of Extensive Sulfur-Containing Species. ACS Omega 2024, 9 (14) , 16581-16591. https://doi.org/10.1021/acsomega.4c00477
    2. Peerapat Wangchingchai, Momiji Karino, Katsuyoshi Yamasaki, Hiroshi Kohguchi. N–H and N–C Bond Dissociation Pathways in Ultraviolet Photodissociation of Dimethylamine. The Journal of Physical Chemistry A 2024, 128 (10) , 1871-1879. https://doi.org/10.1021/acs.jpca.4c00001
    3. Olga V. Dorofeeva, Oxana N. Ryzhova, Anna I. Druzhinina. Thermochemistry of Furan and Its Derivatives: A High-Level Ab Initio Study. Journal of Chemical & Engineering Data 2024, 69 (3) , 895-903. https://doi.org/10.1021/acs.jced.3c00615
    4. Emmanouil Semidalas, Amir Karton, Jan M. L. Martin. W4Λ: Leveraging Λ Coupled-Cluster for Accurate Computational Thermochemistry Approaches. The Journal of Physical Chemistry A 2024, 128 (9) , 1715-1724. https://doi.org/10.1021/acs.jpca.3c08158
    5. Jacopo Lupi, Leandro Ayarde-Henríquez, Mark Kelly, Stephen Dooley. Ab Initio and Kinetic Modeling of β-d-Xylopyranose under Fast Pyrolysis Conditions. The Journal of Physical Chemistry A 2024, 128 (6) , 1009-1024. https://doi.org/10.1021/acs.jpca.3c07063
    6. Huajie Xu, Bo Wang, Lingxian Liao, Yang Wang, Quan Zhu, Haisheng Ren. High-Throughput Predictions of Accurate Enthalpies of Formation for Larger Molecules Utilizing the Bond Difference Correction Method. The Journal of Physical Chemistry Letters 2024, 15 (4) , 998-1005. https://doi.org/10.1021/acs.jpclett.3c03390
    7. Chaoqun Zhang, Filippo Lipparini, Stella Stopkowicz, Jürgen Gauss, Lan Cheng. Cholesky Decomposition-Based Implementation of Relativistic Two-Component Coupled-Cluster Methods for Medium-Sized Molecules. Journal of Chemical Theory and Computation 2024, 20 (2) , 787-798. https://doi.org/10.1021/acs.jctc.3c01236
    8. Oisin J. Shiels, Samuel J. P. Marlton, Berwyck L. J. Poad, Stephen J. Blanksby, Gabriel da Silva, Adam J. Trevitt. Gas-Phase Phenyl Radical + O2 Reacts via a Submerged Transition State. The Journal of Physical Chemistry A 2024, 128 (2) , 413-419. https://doi.org/10.1021/acs.jpca.3c06878
    9. P. Bryan Changala, Peter R. Franke, John F. Stanton, G. Barney Ellison, Michael C. McCarthy. Direct Probes of π-Delocalization in Prototypical Resonance-Stabilized Radicals: Hyperfine-Resolved Microwave Spectroscopy of Isotopic Propargyl and Cyanomethyl. Journal of the American Chemical Society 2024, 146 (2) , 1512-1521. https://doi.org/10.1021/jacs.3c11220
    10. Eno Paenurk, Peter Chen. Robustness of Threshold Collision-Induced Dissociation Simulations for Bond Dissociation Energies. The Journal of Physical Chemistry A 2024, 128 (1) , 333-342. https://doi.org/10.1021/acs.jpca.3c06862
    11. P. B. Armentrout. Quantitative Aspects of Gas-Phase Metal Ion Chemistry: Conservation of Spin, Participation of f Orbitals, and C–H Activation and C–C Coupling. The Journal of Physical Chemistry A 2023, 127 (46) , 9641-9653. https://doi.org/10.1021/acs.jpca.3c06023
    12. Stephen J. Klippenstein, Clayton R. Mulvihill, Peter Glarborg. Theoretical Kinetics Predictions for Reactions on the NH2O Potential Energy Surface. The Journal of Physical Chemistry A 2023, 127 (41) , 8650-8662. https://doi.org/10.1021/acs.jpca.3c05181
    13. Devon M. Andriola, Kirk A. Peterson. Coupled Cluster Study of the Heats of Formation of UF6 and the Uranium Oxyhalides, UO2X2 (X = F, Cl, Br, I, and At). The Journal of Physical Chemistry A 2023, 127 (36) , 7579-7585. https://doi.org/10.1021/acs.jpca.3c04420
    14. Bjarne Kreitz, Kento Abeywardane, C. Franklin Goldsmith. Linking Experimental and Ab Initio Thermochemistry of Adsorbates with a Generalized Thermochemical Hierarchy. Journal of Chemical Theory and Computation 2023, 19 (13) , 4149-4162. https://doi.org/10.1021/acs.jctc.3c00112
    15. Pengxiao Liang, Emília Valença Ferreira de Aragão, Lisa Giani, Luca Mancini, Giacomo Pannacci, Demian Marchione, Gianmarco Vanuzzo, Noelia Faginas-Lago, Marzio Rosi, Dimitrios Skouteris, Piergiorgio Casavecchia, Nadia Balucani. OH(2Π) + C2H4 Reaction: A Combined Crossed Molecular Beam and Theoretical Study. The Journal of Physical Chemistry A 2023, 127 (21) , 4609-4623. https://doi.org/10.1021/acs.jpca.2c08662
    16. Yiqin Hu, Zongtang Fang, Monica Vasiliu, David A. Dixon. Computational Study of Dehydration and Dehydrogenation of Ethanol on (TiO2)n (n = 2–4) Nanoclusters. The Journal of Physical Chemistry A 2023, 127 (16) , 3614-3624. https://doi.org/10.1021/acs.jpca.3c00776
    17. Mark A. Blitz, Lavinia Onel, Struan H. Robertson, Paul W. Seakins. Studies on the Kinetics of the CH + H2 Reaction and Implications for the Reverse Reaction, 3CH2 + H. The Journal of Physical Chemistry A 2023, 127 (10) , 2367-2375. https://doi.org/10.1021/acs.jpca.2c08097
    18. Carles Martí, Hope A. Michelsen, Habib N. Najm, Judit Zádor. Comprehensive Kinetics on the C7H7 Potential Energy Surface under Combustion Conditions. The Journal of Physical Chemistry A 2023, 127 (8) , 1941-1959. https://doi.org/10.1021/acs.jpca.2c08035
    19. Jorge L. Galvez Vallejo, Garrett M. Tow, Edward J. Maginn, Buu Q. Pham, Dipayan Datta, Mark S. Gordon. Quantum Chemical Modeling of Propellant Degradation. The Journal of Physical Chemistry A 2023, 127 (8) , 1874-1882. https://doi.org/10.1021/acs.jpca.2c08722
    20. Pengxiao Liang, Emilia V. F. de Aragão, Giacomo Pannacci, Gianmarco Vanuzzo, Andrea Giustini, Demian Marchione, Pedro Recio, Francesco Ferlin, Domenico Stranges, Noelia Faginas Lago, Marzio Rosi, Piergiorgio Casavecchia, Nadia Balucani. Reactions O(3P, 1D) + HCCCN(X1Σ+) (Cyanoacetylene): Crossed-Beam and Theoretical Studies and Implications for the Chemistry of Extraterrestrial Environments. The Journal of Physical Chemistry A 2023, 127 (3) , 685-703. https://doi.org/10.1021/acs.jpca.2c07708
    21. David H. Bross, George B. Bacskay, Kirk A. Peterson, Branko Ruscic. Active Thermochemical Tables: Enthalpies of Formation of Bromo- and Iodo-Methanes, Ethenes and Ethynes. The Journal of Physical Chemistry A 2023, 127 (3) , 704-723. https://doi.org/10.1021/acs.jpca.2c07897
    22. Maryam Ghiassee, Elizabeth G. Christensen, Talley Fenn, P. B. Armentrout. Guided Ion Beam Studies of the Dy + O → DyO+ + e– Chemi-ionization Reaction Thermochemistry and Dysprosium Oxide, Carbide, Sulfide, Dioxide, and Sulfoxide Cation Bond Energies. The Journal of Physical Chemistry A 2023, 127 (1) , 169-180. https://doi.org/10.1021/acs.jpca.2c07638
    23. Gabriel F. de Melo, Monica Vasiliu, Gaoxiang Liu, Sandra Ciborowski, Zhaoguo Zhu, Moritz Blankenhorn, Rachel Harris, Chalynette Martinez-Martinez, Maria Dipalo, Kirk A. Peterson, Kit H. Bowen, David A. Dixon. Theoretical and Experimental Study of the Spectroscopy and Thermochemistry of UC+/0/–. The Journal of Physical Chemistry A 2022, 126 (50) , 9392-9407. https://doi.org/10.1021/acs.jpca.2c06978
    24. Ashley S. McNeill, David M. Stanbury, David A. Dixon. Absolute Hydration Free Energy of Small Anions and the Aqueous pKa of Simple Acids. The Journal of Physical Chemistry A 2022, 126 (49) , 9190-9206. https://doi.org/10.1021/acs.jpca.2c06205
    25. Marcos M. Mason, David A. Dixon. Electronic Structure Investigation of NO2 and NO Binding on Vanadium Oxides. The Journal of Physical Chemistry A 2022, 126 (46) , 8618-8632. https://doi.org/10.1021/acs.jpca.2c05340
    26. Olga V. Dorofeeva, Valeriy V. Andreychev. Benchmark Thermochemistry of Polycyclic Aromatic Hydrocarbons. The Journal of Physical Chemistry A 2022, 126 (44) , 8315-8325. https://doi.org/10.1021/acs.jpca.2c04956
    27. Yiqin Hu, Anne Chaka, David A. Dixon. Thermodynamics of the Metal Carbonates and Bicarbonates of Mn, Co, Ni, Cu, and Zn Relevant to Mineral Energetics. The Journal of Physical Chemistry A 2022, 126 (43) , 7874-7887. https://doi.org/10.1021/acs.jpca.2c05341
    28. Gabriel F. de Melo, Monica Vasiliu, Gaoxiang Liu, Sandra Ciborowski, Zhaoguo Zhu, Moritz Blankenhorn, Rachel Harris, Chalynette Martinez-Martinez, Maria Dipalo, Kirk A. Peterson, Kit H. Bowen, David A. Dixon. Electronic Properties of UN and UN– from Photoelectron Spectroscopy and Correlated Molecular Orbital Theory. The Journal of Physical Chemistry A 2022, 126 (43) , 7944-7953. https://doi.org/10.1021/acs.jpca.2c06012
    29. Martin DeWitt, Mark C. Babin, Jascha A. Lau, Tonia Solomis, Daniel M. Neumark. High Resolution Photoelectron Spectroscopy of the Acetyl Anion. The Journal of Physical Chemistry A 2022, 126 (43) , 7962-7970. https://doi.org/10.1021/acs.jpca.2c06214
    30. Kenneth McKee, Mark A. Blitz, Robin J. Shannon, Michael J. Pilling. HO2 + NO2: Kinetics, Thermochemistry, and Evidence for a Bimolecular Product Channel. The Journal of Physical Chemistry A 2022, 126 (41) , 7514-7522. https://doi.org/10.1021/acs.jpca.2c04601
    31. Nadav Genossar, P. Bryan Changala, Bérenger Gans, Jean-Christophe Loison, Sebastian Hartweg, Marie-Aline Martin-Drumel, Gustavo A. Garcia, John F. Stanton, Branko Ruscic, Joshua H. Baraban. Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation. Journal of the American Chemical Society 2022, 144 (40) , 18518-18525. https://doi.org/10.1021/jacs.2c07740
    32. Bjarne Kreitz, Patrick Lott, Jongyoon Bae, Katrín Blöndal, Sofia Angeli, Zachary W. Ulissi, Felix Studt, C. Franklin Goldsmith, Olaf Deutschmann. Detailed Microkinetics for the Oxidation of Exhaust Gas Emissions through Automated Mechanism Generation. ACS Catalysis 2022, 12 (18) , 11137-11151. https://doi.org/10.1021/acscatal.2c03378
    33. Oscar N. Ventura, Marc Segovia, Mauricio Vega-Teijido, Aline Katz, Martina Kieninger, Nicola Tasinato, Zoi Salta. Correcting the Experimental Enthalpies of Formation of Some Members of the Biologically Significant Sulfenic Acids Family. The Journal of Physical Chemistry A 2022, 126 (36) , 6091-6109. https://doi.org/10.1021/acs.jpca.2c04235
    34. Gabriel F. de Melo, David A. Dixon. Protactinium and Actinium Monohydrides: A Theoretical Study on Their Spectroscopic and Thermodynamic Properties. The Journal of Physical Chemistry A 2022, 126 (36) , 6171-6184. https://doi.org/10.1021/acs.jpca.2c04690
    35. Barbaro Zulueta, Sonia V. Tulyani, Phillip R. Westmoreland, Michael J. Frisch, E. James Petersson, George A. Petersson, John A. Keith. A Bond-Energy/Bond-Order and Populations Relationship. Journal of Chemical Theory and Computation 2022, 18 (8) , 4774-4794. https://doi.org/10.1021/acs.jctc.2c00334
    36. Arseniy A. Otlyotov, Yury Minenkov, Dzmitry H. Zaitsau, Kseniya V. Zherikova, Sergey P. Verevkin. “In Vitro” and “In Vivo” Diagnostic Check for the Thermochemistry of Metal–Organic Compounds. Inorganic Chemistry 2022, 61 (28) , 10743-10755. https://doi.org/10.1021/acs.inorgchem.2c00959
    37. Chaoqun Zhang, Lan Cheng. Atomic Mean-Field Approach within Exact Two-Component Theory Based on the Dirac–Coulomb–Breit Hamiltonian. The Journal of Physical Chemistry A 2022, 126 (27) , 4537-4553. https://doi.org/10.1021/acs.jpca.2c02181
    38. Gabriel F. de Melo, Monica Vasiliu, Mary Marshall, Zhaoguo Zhu, Burak A. Tufekci, Sandra M. Ciborowski, Moritz Blankenhorn, Rachel M. Harris, Kit H. Bowen, David A. Dixon. Experimental and Computational Description of the Interaction of H and H– with U. The Journal of Physical Chemistry A 2022, 126 (27) , 4432-4443. https://doi.org/10.1021/acs.jpca.2c03115
    39. Dirk Bakowies. ATOMIC-2 Protocol for Thermochemistry. Journal of Chemical Theory and Computation 2022, 18 (7) , 4142-4163. https://doi.org/10.1021/acs.jctc.1c01272
    40. James L. Gole, Carl L. Chalek, Marcos M. Mason, Gabriel F. de Melo, Monica Vasiliu, David A. Dixon. Observation of Selectively Populated Monohalide Excited States from the Reactions of Group 3 Metal (Sc, Y, and La) Monomers and Dimers with Halogen-Containing Molecules. The Journal of Physical Chemistry A 2022, 126 (22) , 3403-3426. https://doi.org/10.1021/acs.jpca.2c01779
    41. Petra Tóth, Tímea Szűcs, Gábor Czakó. Benchmark Ab Initio Characterization of the Abstraction and Substitution Pathways of the Cl + CH3CN Reaction. The Journal of Physical Chemistry A 2022, 126 (18) , 2802-2810. https://doi.org/10.1021/acs.jpca.2c01376
    42. Monica Vasiliu, Kyle C. Edwards, Daniela Tapu, Clarisa E. Castillo, Trent H. Stein, Raluca Craciun, Anthony J. Arduengo, III, David A. Dixon. Bond Dissociation Energies of Carbene–Carbene and Carbene–Main Group Adducts. The Journal of Physical Chemistry A 2022, 126 (17) , 2658-2669. https://doi.org/10.1021/acs.jpca.2c00921
    43. Monica Vasiliu, Mary Marshall, Zhaoguo Zhu, Kit H. Bowen, David A. Dixon. Molecular Properties of Thorium Hydrides: Electron Affinities and Thermochemistry. The Journal of Physical Chemistry A 2022, 126 (15) , 2388-2396. https://doi.org/10.1021/acs.jpca.2c01460
    44. Thomas C. Devore, He Wang, Chris B. Winstead, James L. Gole, Yiqin Hu, David A. Dixon. Electronically Excited Complex Formation in Magnesium Cluster–Halogen Atom Reactions. The Journal of Physical Chemistry A 2022, 126 (11) , 1848-1860. https://doi.org/10.1021/acs.jpca.2c00196
    45. Kazuumi Fujioka, Karl-Michael Weitzel, Rui Sun. The Potential Energy Profile of the HBr+ + HCl Bimolecular Collision. The Journal of Physical Chemistry A 2022, 126 (9) , 1465-1474. https://doi.org/10.1021/acs.jpca.1c08300
    46. Monica Vasiliu, Kirk A. Peterson, Mary Marshall, Zhaoguo Zhu, Burak A. Tufekci, Kit H. Bowen, David A. Dixon. Interaction of Th with H0/–/+: Combined Experimental and Theoretical Thermodynamic Properties. The Journal of Physical Chemistry A 2022, 126 (2) , 198-210. https://doi.org/10.1021/acs.jpca.1c07598
    47. Andrea Giustini, Matthew Winfough, Joseph Czekner, Bálint Sztáray, Giovanni Meloni, Andras Bodi. Photoionization of Two Potential Biofuel Additives: γ-Valerolactone and Methyl Butyrate. The Journal of Physical Chemistry A 2021, 125 (51) , 10711-10724. https://doi.org/10.1021/acs.jpca.1c08033
    48. Zachary R. Lee, La’Darious J. Quinn, Christopher W. Jones, Sophia E. Hayes, David A. Dixon. Predicting the Mechanism and Products of CO2 Capture by Amines in the Presence of H2O. The Journal of Physical Chemistry A 2021, 125 (45) , 9802-9818. https://doi.org/10.1021/acs.jpca.1c05950
    49. Juan Soto, Manuel Algarra. Electronic Structure of Nitrobenzene: A Benchmark Example of the Accuracy of the Multi-State CASPT2 Theory. The Journal of Physical Chemistry A 2021, 125 (43) , 9431-9437. https://doi.org/10.1021/acs.jpca.1c04595
    50. Mark A. Blitz, Michael J. Pilling, Struan H. Robertson, Paul W. Seakins, Thomas H. Speak. Global Master Equation Analysis of Rate Data for the Reaction C2H4 + H ⇄ C2H5: ΔfH0⊖C2H5. The Journal of Physical Chemistry A 2021, 125 (43) , 9548-9565. https://doi.org/10.1021/acs.jpca.1c05911
    51. Bjarne Kreitz, Khachik Sargsyan, Katrín Blöndal, Emily J. Mazeau, Richard H. West, Gregor D. Wehinger, Thomas Turek, C. Franklin Goldsmith. Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO2 Hydrogenation on Ni(111). JACS Au 2021, 1 (10) , 1656-1673. https://doi.org/10.1021/jacsau.1c00276
    52. Hossein Janbazi, Christof Schulz, Irenäus Wlokas, Sebastian Peukert. Thermochemistry of Oxygen-Containing Organosilane Radicals and Uncertainty Estimations of Organosilane Group-Additivity Values. The Journal of Physical Chemistry A 2021, 125 (39) , 8699-8711. https://doi.org/10.1021/acs.jpca.1c06941
    53. Katrín Blöndal, Khachik Sargsyan, David H. Bross, Branko Ruscic, C. Franklin Goldsmith. Adsorbate Partition Functions via Phase Space Integration: Quantifying the Effect of Translational Anharmonicity on Thermodynamic Properties. The Journal of Physical Chemistry C 2021, 125 (37) , 20249-20260. https://doi.org/10.1021/acs.jpcc.1c04009
    54. Wen-Jing Zhang, Maria Demireva, JungSoo Kim, Wibe A. de Jong, P. B. Armentrout. Reactions of U+ with H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Theory. The Journal of Physical Chemistry A 2021, 125 (36) , 7825-7839. https://doi.org/10.1021/acs.jpca.1c05409
    55. Amir Karton, Bun Chan. Accurate Heats of Formation for Polycyclic Aromatic Hydrocarbons: A High-Level Ab Initio Perspective. Journal of Chemical & Engineering Data 2021, 66 (9) , 3453-3462. https://doi.org/10.1021/acs.jced.1c00256
    56. Chenyao Shang, Jun Chen, Xin Xu, Shu Liu, Liucheng Li, Liping Duo, Dong H. Zhang. Quantum Wave Packet Study of the H + Br2 → HBr + Br Reaction on a New Ab Initio Potential Energy Surface. The Journal of Physical Chemistry A 2021, 125 (33) , 7289-7296. https://doi.org/10.1021/acs.jpca.1c05867
    57. Maitreyee P. Sharma, Richard L. Jaffe, Marco Panesi. Carbon Clusters: Thermochemistry and Electronic Structure at High Temperatures. The Journal of Physical Chemistry A 2021, 125 (32) , 7038-7051. https://doi.org/10.1021/acs.jpca.1c04619
    58. Jennifer Power, Kieran P. Somers, Shashank S. Nagaraja, Henry J. Curran. Hierarchical Study of the Reactions of Hydrogen Atoms with Alkenes: A Theoretical Study of the Reactions of Hydrogen Atoms with C2–C4 Alkenes. The Journal of Physical Chemistry A 2021, 125 (23) , 5124-5145. https://doi.org/10.1021/acs.jpca.1c03168
    59. A. Valera-Medina, F. Amer-Hatem, A. K. Azad, I. C. Dedoussi, M. de Joannon, R. X. Fernandes, P. Glarborg, H. Hashemi, X. He, S. Mashruk, J. McGowan, C. Mounaim-Rouselle, A. Ortiz-Prado, A. Ortiz-Valera, I. Rossetti, B. Shu, M. Yehia, H. Xiao, M. Costa. Review on Ammonia as a Potential Fuel: From Synthesis to Economics. Energy & Fuels 2021, 35 (9) , 6964-7029. https://doi.org/10.1021/acs.energyfuels.0c03685
    60. Hanwei Li, Bernardino Tirri, Eric Brémond, Juan Carlos Sancho-García, Carlo Adamo. Beyond Chemical Accuracy for Alkane Thermochemistry: The DHthermo Approach. The Journal of Organic Chemistry 2021, 86 (8) , 5538-5545. https://doi.org/10.1021/acs.joc.1c00058
    61. Guilherme Luiz Chinini, Rogério Custodio. Systematic Convergence of the Numerical Taylor Series to the Best Standard and Its Potential Implication for the Development of Composite Methods. Journal of Chemical Theory and Computation 2021, 17 (4) , 2231-2243. https://doi.org/10.1021/acs.jctc.0c01345
    62. Andras Bodi, Patrick Hemberger, Richard P. Tuckett. From Energetics to Intracluster Chemistry: Valence Photoionization of Trifluoromethylsulfur Pentafluoride (CF3SF5) by Double Velocity Map Imaging. The Journal of Physical Chemistry A 2021, 125 (12) , 2601-2611. https://doi.org/10.1021/acs.jpca.1c00918
    63. Monica Vasiliu, Kirk A. Peterson, David A. Dixon. Bond Dissociation Energies in Heavy Element Chalcogen and Halogen Small Molecules. The Journal of Physical Chemistry A 2021, 125 (9) , 1892-1902. https://doi.org/10.1021/acs.jpca.0c11393
    64. Eno Paenurk, Peter Chen. Modeling Gas-Phase Unimolecular Dissociation for Bond Dissociation Energies: Comparison of Statistical Rate Models within RRKM Theory. The Journal of Physical Chemistry A 2021, 125 (9) , 1927-1940. https://doi.org/10.1021/acs.jpca.1c00183
    65. Daniel P. Zaleski, Raghu Sivaramakrishnan, Hailey R. Weller, Nathan A. Seifert, David H. Bross, Branko Ruscic, Kevin B. Moore, III, Sarah N. Elliott, Andreas V. Copan, Lawrence B. Harding, Stephen J. Klippenstein, Robert W. Field, Kirill Prozument. Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm. Journal of the American Chemical Society 2021, 143 (8) , 3124-3142. https://doi.org/10.1021/jacs.0c11677
    66. Bjarne Kreitz, Gregor D. Wehinger, C. Franklin Goldsmith, Thomas Turek. Microkinetic Modeling of the CO2 Desorption from Supported Multifaceted Ni Catalysts. The Journal of Physical Chemistry C 2021, 125 (5) , 2984-3000. https://doi.org/10.1021/acs.jpcc.0c09985
    67. Zhaoguo Zhu, Mary Marshall, Rachel M. Harris, Kit H. Bowen, Monica Vasiliu, David A. Dixon. Th2O–, Th2Au–, and Th2AuO1,2– Anions: Photoelectron Spectroscopic and Computational Characterization of Energetics and Bonding. The Journal of Physical Chemistry A 2021, 125 (1) , 258-271. https://doi.org/10.1021/acs.jpca.0c09766
    68. Sebastian Mosbach, Angiras Menon, Feroz Farazi, Nenad Krdzavac, Xiaochi Zhou, Jethro Akroyd, Markus Kraft. Multiscale Cross-Domain Thermochemical Knowledge-Graph. Journal of Chemical Information and Modeling 2020, 60 (12) , 6155-6166. https://doi.org/10.1021/acs.jcim.0c01145
    69. Jennifer Power, Kieran P. Somers, Shashank S. Nagaraja, Weronika Wyrebak, Henry J. Curran. Theoretical Study of the Reaction of Hydrogen Atoms with Three Pentene Isomers: 2-Methyl-1-butene, 2-Methyl-2-butene, and 3-Methyl-1-butene. The Journal of Physical Chemistry A 2020, 124 (51) , 10649-10666. https://doi.org/10.1021/acs.jpca.0c06389
    70. Irina Minenkova, Evgeniya L. Osina, Luigi Cavallo, Yury Minenkov. Gas-Phase Thermochemistry of MX3 and M2X6 (M = Sc, Y; X = F, Cl, Br, I) from a Composite Reaction-Based Approach: Homolytic versus Heterolytic Cleavage. Inorganic Chemistry 2020, 59 (23) , 17084-17095. https://doi.org/10.1021/acs.inorgchem.0c02292
    71. Zachary R. Lee, Luis A. Flores, William B. Copeland, Julia G. Murphy, David A. Dixon. Reaction of NO2 with Groups IV and VI Transition Metal Oxide Clusters. The Journal of Physical Chemistry A 2020, 124 (44) , 9222-9236. https://doi.org/10.1021/acs.jpca.0c06760
    72. Marek Bot, Vladimir Gorbachev, Alexandra Tsybizova, Peter Chen. Bond Dissociation Energies in the Gas Phase for Large Molecular Ions by Threshold Collision-Induced Dissociation Experiments: Stretching the Limits. The Journal of Physical Chemistry A 2020, 124 (42) , 8692-8707. https://doi.org/10.1021/acs.jpca.0c05712
    73. Dorra Khiri, Florent Louis, Ivan Černušák, Theodore S. Dibble. BrHgO• + CO: Analogue of OH + CO and Reduction Path for Hg(II) in the Atmosphere. ACS Earth and Space Chemistry 2020, 4 (10) , 1777-1784. https://doi.org/10.1021/acsearthspacechem.0c00171
    74. Karl K. Irikura. Multireaction Approach to Quantum Thermochemistry. The Journal of Physical Chemistry A 2020, 124 (39) , 8088-8099. https://doi.org/10.1021/acs.jpca.0c05662
    75. Yang Li, Qian Zhao, Yingjia Zhang, Zuohua Huang, S. Mani Sarathy. A Systematic Theoretical Kinetics Analysis for the Waddington Mechanism in the Low-Temperature Oxidation of Butene and Butanol Isomers. The Journal of Physical Chemistry A 2020, 124 (27) , 5646-5656. https://doi.org/10.1021/acs.jpca.0c03515
    76. Monica Vasiliu, Tarek Trabelsi, Joseph S. Francisco, Karl O. Christe, David A. Dixon. Energetic Properties, Spectroscopy, and Reactivity of NF3O. The Journal of Physical Chemistry A 2020, 124 (25) , 5237-5245. https://doi.org/10.1021/acs.jpca.0c03733
    77. Robert D. Bach, H. Bernhard Schlegel. Bond Dissociation Energy of Peroxides Revisited. The Journal of Physical Chemistry A 2020, 124 (23) , 4742-4751. https://doi.org/10.1021/acs.jpca.0c02859
    78. Yiqin Hu, Monica Vasiliu, K. Sahan Thanthiriwatte, Virgil E. Jackson, Anne M. Chaka, David A. Dixon. Thermodynamics of Metal Carbonates and Bicarbonates and Their Hydrates for Mg, Ca, Fe, and Cd Relevant to Mineral Energetics. The Journal of Physical Chemistry A 2020, 124 (9) , 1829-1840. https://doi.org/10.1021/acs.jpca.9b11741
    79. P. B. Armentrout, Kirk A. Peterson. Guided Ion Beam and Quantum Chemical Investigation of the Thermochemistry of Thorium Dioxide Cations: Thermodynamic Evidence for Participation of f Orbitals in Bonding. Inorganic Chemistry 2020, 59 (5) , 3118-3131. https://doi.org/10.1021/acs.inorgchem.9b03488
    80. Dirk Bakowies. Estimating Systematic Error and Uncertainty in Ab Initio Thermochemistry: II. ATOMIC(hc) Enthalpies of Formation for a Large Set of Hydrocarbons. Journal of Chemical Theory and Computation 2020, 16 (1) , 399-426. https://doi.org/10.1021/acs.jctc.9b00974
    81. Olga V. Dorofeeva, Marina A. Filimonova, Ilya I. Marochkin. Aliphatic Amines: A Critical Analysis of the Experimental Enthalpies of Formation by Comparison with Theoretical Calculations. Journal of Chemical & Engineering Data 2019, 64 (12) , 5630-5647. https://doi.org/10.1021/acs.jced.9b00680
    82. Divita Gupta, Sidaty Cheikh Sid Ely, Ilsa R. Cooke, Théo Guillaume, Omar Abdelkader Khedaoui, Thomas S. Hearne, Brian M. Hays, Ian R. Sims. Low Temperature Kinetics of the Reaction Between Methanol and the CN Radical. The Journal of Physical Chemistry A 2019, 123 (46) , 9995-10003. https://doi.org/10.1021/acs.jpca.9b08472
    83. Alyson Shoji, David Schanzenbach, Ron Merrill, Jiaxu Zhang, Li Yang, Rui Sun. Theoretical Study of the Potential Energy Profile of the HBr+ + CO2 → HOCO+ + Br· Reaction. The Journal of Physical Chemistry A 2019, 123 (45) , 9791-9799. https://doi.org/10.1021/acs.jpca.9b07651
    84. Yanjin Sun, Chong-Wen Zhou, Kieran P. Somers, Henry J. Curran. Ab Initio/Transition-State Theory Study of the Reactions of Ċ5H9 Species of Relevance to 1,3-Pentadiene, Part I: Potential Energy Surfaces, Thermochemistry, and High-Pressure Limiting Rate Constants. The Journal of Physical Chemistry A 2019, 123 (42) , 9019-9052. https://doi.org/10.1021/acs.jpca.9b06628
    85. Jennifer Power, Kieran P. Somers, Chong-Wen Zhou, Sebastian Peukert, Henry J. Curran. Theoretical, Experimental, and Modeling Study of the Reaction of Hydrogen Atoms with 1- and 2-Pentene. The Journal of Physical Chemistry A 2019, 123 (40) , 8506-8526. https://doi.org/10.1021/acs.jpca.9b06378
    86. Dirk Bakowies. Estimating Systematic Error and Uncertainty in Ab Initio Thermochemistry. I. Atomization Energies of Hydrocarbons in the ATOMIC(hc) Protocol. Journal of Chemical Theory and Computation 2019, 15 (10) , 5230-5251. https://doi.org/10.1021/acs.jctc.9b00343
    87. Katrin Blondal, Jelena Jelic, Emily Mazeau, Felix Studt, Richard H. West, C. Franklin Goldsmith. Computer-Generated Kinetics for Coupled Heterogeneous/Homogeneous Systems: A Case Study in Catalytic Combustion of Methane on Platinum. Industrial & Engineering Chemistry Research 2019, 58 (38) , 17682-17691. https://doi.org/10.1021/acs.iecr.9b01464
    88. Chi Hong Yuen, David Lapierre, Fabien Gatti, Viatcheslav Kokoouline, Vladimir G. Tyuterev. The Role of Ozone Vibrational Resonances in the Isotope Exchange Reaction 16O16O + 18O → 18O16O + 16O: The Time-Dependent Picture. The Journal of Physical Chemistry A 2019, 123 (36) , 7733-7743. https://doi.org/10.1021/acs.jpca.9b06139
    89. Amir Karton. Highly Accurate CCSDT(Q)/CBS Reaction Barrier Heights for a Diverse Set of Transition Structures: Basis Set Convergence and Cost-Effective Approaches for Estimating Post-CCSD(T) Contributions. The Journal of Physical Chemistry A 2019, 123 (31) , 6720-6732. https://doi.org/10.1021/acs.jpca.9b04611
    90. Bradley K. Welch, Richard Dawes, David H. Bross, Branko Ruscic. An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families. The Journal of Physical Chemistry A 2019, 123 (26) , 5673-5682. https://doi.org/10.1021/acs.jpca.9b04381
    91. David H. Bross, Hua-Gen Yu, Lawrence B. Harding, Branko Ruscic. Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited. The Journal of Physical Chemistry A 2019, 123 (19) , 4212-4231. https://doi.org/10.1021/acs.jpca.9b02295
    92. David Feller, David H. Bross, Branko Ruscic. Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach. The Journal of Physical Chemistry A 2019, 123 (16) , 3481-3496. https://doi.org/10.1021/acs.jpca.8b12329
    93. Satya P. Joshi, Timo T. Pekkanen, Raimo S. Timonen, György Lendvay, Arkke J. Eskola. Kinetics of the Methyl–Vinyl Radical + O2 Reactions Associated with Propene Oxidation. The Journal of Physical Chemistry A 2019, 123 (5) , 999-1006. https://doi.org/10.1021/acs.jpca.8b11017
    94. Rhayla Mendes Ferreira, Orlando Roberto-Neto, Francisco B. C. Machado, Rene F. K. Spada. Reply to “Comment on ‘Thermochemical and Kinetics of the CH3OH+(4S)N Reactional System’”. The Journal of Physical Chemistry A 2019, 123 (4) , 967-969. https://doi.org/10.1021/acs.jpca.8b10115
    95. Douglas L. Purnell, Jr., Joseph W. Bozzelli. Thermochemical Properties: Enthalpy, Entropy, and Heat Capacity of C2–C3 Fluorinated Aldehydes. Radicals and Fluorocarbon Group Additivity. The Journal of Physical Chemistry A 2019, 123 (3) , 650-665. https://doi.org/10.1021/acs.jpca.8b09065
    96. Krishna P. Shrestha, Lars Seidel, Thomas Zeuch, Fabian Mauss. Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides. Energy & Fuels 2018, 32 (10) , 10202-10217. https://doi.org/10.1021/acs.energyfuels.8b01056
    97. John A. Bumpus. Gas-Phase Heat of Formation Values for Buckminsterfullerene (C60), C70 Fullerene (C70), Corannulene, Coronene, Sumanene, and Other Polycyclic Aromatic Hydrocarbons Calculated Using Density Functional Theory (M06 2X) Coupled with a Versatile Inexpensive Group-Equivalent Approach. The Journal of Physical Chemistry A 2018, 122 (32) , 6615-6632. https://doi.org/10.1021/acs.jpca.8b03321
    98. Ádám Ganyecz, Mihály Kállay, József Csontos. High Accuracy Quantum Chemical and Thermochemical Network Data for the Heats of Formation of Fluorinated and Chlorinated Methanes and Ethanes. The Journal of Physical Chemistry A 2018, 122 (28) , 5993-6006. https://doi.org/10.1021/acs.jpca.8b00614
    99. Domonkos A. Tasi, Zita Fábián, Gábor Czakó. Benchmark ab Initio Characterization of the Inversion and Retention Pathways of the OH– + CH3Y [Y = F, Cl, Br, I] SN2 Reactions. The Journal of Physical Chemistry A 2018, 122 (26) , 5773-5780. https://doi.org/10.1021/acs.jpca.8b04218
    100. Simone L. Waite, Bun Chan, Amir Karton, Alister J. Page. Accurate Thermochemical and Kinetic Stabilities of C84 Isomers. The Journal of Physical Chemistry A 2018, 122 (20) , 4768-4777. https://doi.org/10.1021/acs.jpca.8b02404
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect