ACS Publications. Most Trusted. Most Cited. Most Read
Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation with Single Particle Mass Spectrometry
My Activity

Figure 1Loading Img
    Article

    Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation with Single Particle Mass Spectrometry
    Click to copy article linkArticle link copied!

    View Author Information
    Center for NanoEnergetics Research, Departments of Chemistry and Mechanical Engineering, University of Maryland, College Park, Maryland 20852
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2005, 109, 15, 7290–7299
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp048041v
    Published March 22, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Aluminum nanoparticles are being considered as a possible fuel in advanced energetic materials application. Of considerable interest therefore is a knowledge of just how reactive these materials are, and what the effect of size on reactivity is. In this paper we describe results of size resolved oxidation rate using a recently developed quantitative single particle mass spectrometer (SPMS). Aluminum nanoparticles used were either generated by DC Arc discharge or laser ablation, or by use of commercial aluminum nanopowders. These particles were oxidized in an aerosol flow reactor in air for specified various temperatures (25−1100 °C), and subsequently sampled by the SPMS. The mass spectra obtained were used to quantitatively determine the elemental composition of individual particles and their size. We found that the reactivity of aluminum nanoparticles is enhanced with decreasing primary particle size. Aluminum nanoparticles produced from the DC Arc, which produced the smallest primary particle size (∼19 nm), were found to be the most reactive (∼68% aluminum nanoparticles completely oxidized to aluminum oxide at 900 °C). In contrast, nanopowders with primary particle size greater than ∼50 nm were not fully oxidized even at 1100 °C (∼4%). The absolute rates observed were found to be consistent with an oxide diffusion controlled rate-limiting step. We also determined the size-dependent diffusion-limited rate constants and Arrehenius parameters (activation energy and pre-exponential factor). We found that as the particle size decreases, the rate constant increases and the activation energy decreases. This work provides a quantification of the known pyrophoric nature of fine metal particles.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Present address:  School of Mechanical Engineering, Pusan National University, 30 Jangjeon, Geumjeong, Busan 609-735, Korea.

    *

     Address correspondence to this author. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 231 publications.

    1. Shihao Wang, Zhengqing Zhou, Yulong Zhang, Guili Yang, Huiling Jiang, Zhiming Bai, Qing Deng, Jia Liu. Effect of Temperature and Particle Size on Early Oxidation Characteristics of Aluminum Nanoparticles. The Journal of Physical Chemistry C 2023, 127 (43) , 21161-21175. https://doi.org/10.1021/acs.jpcc.3c03073
    2. Prithwish Biswas, C. Huy Pham, Michael R. Zachariah. Magnesium-Induced Strain and Immobilized Radical Generation on the Boron Oxide Surface Enhances the Oxidation Rate of Boron Particles: A DFTB-MD Study. Langmuir 2023, 39 (39) , 13782-13789. https://doi.org/10.1021/acs.langmuir.3c00982
    3. Bao Wu, XinXin Wang, YinBo Zhu, HaoWen Wu, AnMin He, HengAn Wu, Pei Wang. Atomic Insight into the Oxidation Mechanism of a Core–Shell Aluminum Nanoparticle: Atomic Diffusion or Micro-Explosion?. The Journal of Physical Chemistry C 2023, 127 (34) , 16781-16791. https://doi.org/10.1021/acs.jpcc.3c02577
    4. Diego Chaparro, Eirini Goudeli. Oxidation Rate and Crystallinity Dynamics of Silver Nanoparticles at High Temperatures. The Journal of Physical Chemistry C 2023, 127 (27) , 13389-13397. https://doi.org/10.1021/acs.jpcc.3c03163
    5. Naadaa Zakiyyan, Cherian Mathai, Jacob McFarland, Shubhra Gangopadhyay, Matthew R. Maschmann. Spallation of Isolated Aluminum Nanoparticles by Rapid Photothermal Heating. ACS Applied Materials & Interfaces 2022, 14 (49) , 55277-55284. https://doi.org/10.1021/acsami.2c18678
    6. Xiaoya Chang, Qingzhao Chu, Dongping Chen. Shock-Induced Anisotropic Metal Combustion. The Journal of Physical Chemistry C 2020, 124 (24) , 13206-13214. https://doi.org/10.1021/acs.jpcc.0c02876
    7. Michael Lucas, Stephen J. Brotton, Ahreum Min, Connor Woodruff, Michelle L. Pantoya, Ralf I. Kaiser. Effects of Size and Prestressing of Aluminum Particles on the Oxidation of Levitated exo-Tetrahydrodicyclopentadiene Droplets. The Journal of Physical Chemistry A 2020, 124 (8) , 1489-1507. https://doi.org/10.1021/acs.jpca.9b10697
    8. Qingzhao Chu, Baolu Shi, Lijuan Liao, Kai H. Luo, Ningfei Wang, Chenguang Huang. Ignition and Oxidation of Core–Shell Al/Al2O3 Nanoparticles in an Oxygen Atmosphere: Insights from Molecular Dynamics Simulation. The Journal of Physical Chemistry C 2018, 122 (51) , 29620-29627. https://doi.org/10.1021/acs.jpcc.8b09858
    9. Jonathan M. Dilger, Eric J. Miklaszewski, Douglas M. Papenmeier, Kelly M. Thoreson, Patrick W. Fedick, Jessica E. Coleman, Brian C. Bohrer. Pyrolysis/GC/MS as a Method to Rapidly Profile Pyrotechnic Formulations for Objectionable Gaseous Emissions. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 16990-16999. https://doi.org/10.1021/acssuschemeng.8b04342
    10. Rahim Rahimi, Manuel Ochoa, Babak Ziaie. Comparison of Direct and Indirect Laser Ablation of Metallized Paper for Inexpensive Paper-Based Sensors. ACS Applied Materials & Interfaces 2018, 10 (42) , 36332-36341. https://doi.org/10.1021/acsami.8b09598
    11. Hongtao Sui, Boyu Li, John Z. Wen. Interaction between Single-Walled Carbon Nanotubes and Reactive Nanoparticle Constituents in Multilayered Al/NiO Nanocomposite. ACS Applied Energy Materials 2018, 1 (10) , 5245-5256. https://doi.org/10.1021/acsaem.8b00876
    12. HuaDong Zeng, XinLu Cheng, ChaoYang Zhang, ZhiPeng Lu. Responses of Core–Shell Al/Al2O3 Nanoparticles to Heating: ReaxFF Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2018, 122 (16) , 9191-9197. https://doi.org/10.1021/acs.jpcc.8b01088
    13. Mehmet Mutlu, Ju-Hyung Kang, Søren Raza, David Schoen, Xiaolin Zheng, Pieter G. Kik, Mark L. Brongersma. Thermoplasmonic Ignition of Metal Nanoparticles. Nano Letters 2018, 18 (3) , 1699-1706. https://doi.org/10.1021/acs.nanolett.7b04739
    14. Zhiyong Zhang, Miaofang Chi, Gabriel M. Veith, Pengfei Zhang, Daniel A. Lutterman, Joel Rosenthal, Steven H. Overbury, Sheng Dai, and Huiyuan Zhu . Rational Design of Bi Nanoparticles for Efficient Electrochemical CO2 Reduction: The Elucidation of Size and Surface Condition Effects. ACS Catalysis 2016, 6 (9) , 6255-6264. https://doi.org/10.1021/acscatal.6b01297
    15. Shijing Lu, Edward J. Mily, Douglas L. Irving, Jon-Paul Maria, and Donald W. Brenner . New Method for Extracting Diffusion-Controlled Kinetics from Differential Scanning Calorimetry: Application to Energetic Nanostructures. The Journal of Physical Chemistry C 2015, 119 (25) , 14411-14418. https://doi.org/10.1021/acs.jpcc.5b03317
    16. Yichen Zong, Rohit J. Jacob, Shuiqing Li, and Michael R. Zachariah . Size Resolved High Temperature Oxidation Kinetics of Nano-Sized Titanium and Zirconium Particles. The Journal of Physical Chemistry A 2015, 119 (24) , 6171-6178. https://doi.org/10.1021/acs.jpca.5b02590
    17. Francesco Bisio, Remo Proietti Zaccaria, Riccardo Moroni, Giulia Maidecchi, Alessandro Alabastri, Grazia Gonella, Angelo Giglia, Laura Andolfi, Stefano Nannarone, Lorenzo Mattera, and Maurizio Canepa . Pushing the High-Energy Limit of Plasmonics. ACS Nano 2014, 8 (9) , 9239-9247. https://doi.org/10.1021/nn503035b
    18. Tomomi Watanabe and Tatsuya Tsukuda . Structural Characterization of Unprecedented Al14O– and Al15O2–: Photoelectron Spectroscopy and Density Functional Calculations. The Journal of Physical Chemistry C 2013, 117 (13) , 6664-6668. https://doi.org/10.1021/jp312733t
    19. Dudi Adi Firmansyah, Kyle Sullivan, Kwang-Sung Lee, Yong Ho Kim, Riyan Zahaf, Michael R. Zachariah, and Donggeun Lee . Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles. The Journal of Physical Chemistry C 2012, 116 (1) , 404-411. https://doi.org/10.1021/jp2095483
    20. Snehaunshu Chowdhury, Kyle Sullivan, Nicholas Piekiel, Lei Zhou and Michael R. Zachariah. Diffusive vs Explosive Reaction at the Nanoscale. The Journal of Physical Chemistry C 2010, 114 (20) , 9191-9195. https://doi.org/10.1021/jp906613p
    21. Birce Dikici, Steven W. Dean, Michelle L. Pantoya, Valery I. Levitas and R. Jason Jouet . Influence of Aluminum Passivation on the Reaction Mechanism: Flame Propagation Studies. Energy & Fuels 2009, 23 (9) , 4231-4235. https://doi.org/10.1021/ef801116x
    22. Kihong Park, Jae-Seok Kim and Seung Ho Park. Measurements of Hygroscopicity and Volatility of Atmospheric Ultrafine Particles during Ultrafine Particle Formation Events at Urban, Industrial, and Coastal Sites. Environmental Science & Technology 2009, 43 (17) , 6710-6716. https://doi.org/10.1021/es900398q
    23. Xiaofei Ma and Michael R. Zachariah. Oxidation Anisotropy and Size-Dependent Reaction Kinetics of Zinc Nanocrystals. The Journal of Physical Chemistry C 2009, 113 (33) , 14644-14650. https://doi.org/10.1021/jp903502v
    24. Peter H. McMurry, Ajaya Ghimire, Hyo-Kueh Ahn, Hiromu Sakurai, Katharine Moore, Mark Stolzenburg and James N. Smith . Sampling Nanoparticles for Chemical Analysis by Low Resolution Electrical Mobility Classification. Environmental Science & Technology 2009, 43 (13) , 4653-4658. https://doi.org/10.1021/es8029335
    25. Chunhui Liu, Haiying He and Ravindra Pandey, Saber Hussain, Shashi P. Karna. Interaction of Metallic Nanoparticles with a Biologically Active Molecule, Dopamine. The Journal of Physical Chemistry B 2008, 112 (47) , 15256-15259. https://doi.org/10.1021/jp808009t
    26. Lei Zhou, Ashish Rai, Nicholas Piekiel, Xiaofei Ma and Michael R. Zachariah. Ion-Mobility Spectrometry of Nickel Nanoparticle Oxidation Kinetics: Application to Energetic Materials. The Journal of Physical Chemistry C 2008, 112 (42) , 16209-16218. https://doi.org/10.1021/jp711235a
    27. Zhiwei Huang, Fang Cui, Haixiao Kang, Jing Chen, Xinzhi Zhang and Chungu Xia. Highly Dispersed Silica-Supported Copper Nanoparticles Prepared by Precipitation−Gel Method: A Simple but Efficient and Stable Catalyst for Glycerol Hydrogenolysis. Chemistry of Materials 2008, 20 (15) , 5090-5099. https://doi.org/10.1021/cm8006233
    28. Katherine A. Dunphy Guzman,, Michael P. Finnegan, and, Jillian F. Banfield. Influence of Surface Potential on Aggregation and Transport of Titania Nanoparticles. Environmental Science & Technology 2006, 40 (24) , 7688-7693. https://doi.org/10.1021/es060847g
    29. Katherine A. Dunphy Guzmán,, Margaret R. Taylor, and, Jillian F. Banfield. Environmental Risks of Nanotechnology:  National Nanotechnology Initiative Funding, 2000−2004. Environmental Science & Technology 2006, 40 (5) , 1401-1407. https://doi.org/10.1021/es0515708
    30. Jialin Chen, Shutao Li, Mengnan Dai, Ming An, Rui Song, Yeqing Chen, Jiaxing Song, Quanwei Tian, Xiting Zhong, Qiushi Yan. Changes in the state of matter of KCIO4 to improve thermal and combustion properties of Al/MoO3 nanothermite. BMC Chemistry 2024, 18 (1) https://doi.org/10.1186/s13065-024-01202-6
    31. Yan Zhang, Xiao Xie, Chao Chen, Haijian Li, Jianhua Yi, Yi Xu, Zhihua Sun, Fengqi Zhao. A Review on the Gas‐Phase Modeling Study of Aluminum Combustion in Various Environments. Propellants, Explosives, Pyrotechnics 2024, 38 https://doi.org/10.1002/prep.202400068
    32. M. Gaber Zaky, M. S. Elwesemy, Mahmoud Abdelhafiz, A. K. Hussein, Tamer Elshenawy, Ahmed Elbeih. The impact of various metals on the performance of TNT. Journal of Physics: Conference Series 2024, 2830 (1) , 012028. https://doi.org/10.1088/1742-6596/2830/1/012028
    33. Kexin Zhu, Yifan Xie, Jian-Li Shao, Pengwan Chen. Atomistic Insights into Impact-Induced Energy Release and Deformation of Core–Shell-Structured Ni/Al Nanoparticle in an Oxygen Environment. Materials 2024, 17 (16) , 4034. https://doi.org/10.3390/ma17164034
    34. Yansong Yang, Chuanting Wang, Yuanpei Meng, Yue Ma, Lei Guo, Yuan He, Zhichao Sun, Yong He. Recent progress on impact induced reaction mechanism of reactive alloys. Defence Technology 2024, 37 , 69-95. https://doi.org/10.1016/j.dt.2023.11.002
    35. Zhiwei Han, Jingyan Wang, Biao He, Wei Liu, Yaning Li, Sen Xu. Study on the evolutionary mechanism of the cavity inside aluminum nanoparticles while reacting with oxygen. Computational Materials Science 2024, 241 , 113040. https://doi.org/10.1016/j.commatsci.2024.113040
    36. Yao Shu, Wenchao Zhang, Zhimin Fan, Songchen Yue, Bo Yin, Larry K.B. Li, Peijin Liu, Ping Ren, Wen Ao. Improving the combustion efficiency and agglomeration of aluminum-water propellants via n-Al/CuO metastable intermolecular composites. Combustion and Flame 2024, 260 , 113246. https://doi.org/10.1016/j.combustflame.2023.113246
    37. Dibyendu Mukherjee. New Frontiers for Heterostructured Nanocomposites with Interfacial Functionalities Synthesized via Laser Ablation Synthesis in Solution (LASiS). 2024, 157-199. https://doi.org/10.1007/978-3-031-39470-6_5
    38. M. Todera¸s, Faizah S. Aljohani, Mostafa El-Khatib. Impact of electrical current on cluster nucleation production: Phase, structure, and nanosize for Al2O3. Journal of Crystal Growth 2024, 625 , 127437. https://doi.org/10.1016/j.jcrysgro.2023.127437
    39. Fathyah Whba, Faizal Mohamed, Mohd Idzat Idris. Evaluation of physicochemical and biocompatibility characteristics of gadolinium oxide nanoparticles as magnetic resonance imaging contrast agents. Radiation Physics and Chemistry 2023, 213 , 111189. https://doi.org/10.1016/j.radphyschem.2023.111189
    40. Yiming Lu, Lili Ye, Fan Wang, Lei Zhang, Yubo Bi, Haiyong Cong, Mingshu Bi. Interplay of shell evolution and oxidation depth on the ignition and combustion behavior of aluminum nanoparticles. Fuel 2023, 353 , 129260. https://doi.org/10.1016/j.fuel.2023.129260
    41. A.M. Savеl'ev, D.A. Yagodnikov. Numerical simulation of the ignition of aluminum nanoparticles in oxygen-containing gases taking into consideration polymorphic transformations in an oxide film. Combustion and Flame 2023, 253 , 112777. https://doi.org/10.1016/j.combustflame.2023.112777
    42. Xingpeng Gu, Junwei Li, Lei Han, Yangbin Wang, Ningfei Wang. Theoretical Study on Heating Process of Micro-Al Particles in Laminar Flame. Combustion Science and Technology 2023, 195 (5) , 1106-1123. https://doi.org/10.1080/00102202.2021.1983805
    43. Elisabeth Mansfield, Mark Banash. Thermal analysis of nanoparticles: Methods, kinetics, and recent advances. 2023, 535-547. https://doi.org/10.1016/B978-0-12-819905-3.00019-1
    44. Deqi Wang, Guozhen Xu, Tianyu Tan, Shishuo Liu, Wei Dong, Fengsheng Li, Jie Liu. The Oxidation Process and Methods for Improving Reactivity of Al. Crystals 2022, 12 (9) , 1187. https://doi.org/10.3390/cryst12091187
    45. Wen Ao, Zhan Wen, Lu Liu, Yang Wang, Yu Zhang, Peijin Liu, Zhao Qin, Larry K.B. Li. Combustion and agglomeration characteristics of aluminized propellants containing Al/CuO/PVDF metastable intermolecular composites: A highly adjustable functional catalyst. Combustion and Flame 2022, 241 , 112110. https://doi.org/10.1016/j.combustflame.2022.112110
    46. Kun Yang, Lang Chen, Jianying Lu, Deshen Geng, Junying Wu. Reaction mechanism of aluminum nanoparticles in explosives under high temperature and high pressure by shock loading. Physical Chemistry Chemical Physics 2022, 24 (23) , 14552-14565. https://doi.org/10.1039/D2CP01424F
    47. Qingzhao Chu, Xiaoya Chang, Dongping Chen. A physiochemical model for the combustion of aluminum nano-agglomerates in high-speed flows. Combustion and Flame 2022, 237 , 111739. https://doi.org/10.1016/j.combustflame.2021.111739
    48. Frank C. De Lucia, Lily Giri, Rose A. Pesce-Rodriguez, Chi-Chin Wu, Steven W. Dean, Trenton M. Tovar, Rosario C. Sausa, Elliot R. Wainwright, Jennifer L. Gottfried. Commercial aluminum powders, Part I: Particle size characterization and slow heating rate thermal analysis. Powder Technology 2022, 399 , 117162. https://doi.org/10.1016/j.powtec.2022.117162
    49. Mingqian Zhang, Qianxu Ye, Rende Yu, Jie Wang, Zechen Xiao, Liexing Zhou, Jinming Cai. In-situ conversion of amorphous carbon to graphene enhances the oxidation resistance of dendritic copper powder. Diamond and Related Materials 2021, 120 , 108695. https://doi.org/10.1016/j.diamond.2021.108695
    50. Hee-joo Cho, Joonwoo Kim, Nohhyeon Kwak, Heesung Kwak, Taewan Son, Donggeun Lee, Kihong Park. Application of Single-Particle Mass Spectrometer to Obtain Chemical Signatures of Various Combustion Aerosols. International Journal of Environmental Research and Public Health 2021, 18 (21) , 11580. https://doi.org/10.3390/ijerph182111580
    51. Qingguan Song, Wei Cao, Xiao Wei, Jianzhong Liu, Jifei Yuan, Xinglong Li, Xiangli Guo, Dayuan Gao. Laser ignition and combustion characteristics of micro- and nano-sized boron under different atmospheres and pressures. Combustion and Flame 2021, 230 , 111420. https://doi.org/10.1016/j.combustflame.2021.111420
    52. Ahmed Fahd, Charles Dubois, Jamal Chaouki, J. Z. Wen, Ehab Youssef. Synthesis and Characterization of Tertiary Nanothermite CNMs/Al/KClO 4 with Enhanced Combustion Characteristics. Propellants, Explosives, Pyrotechnics 2021, 46 (6) , 995-1005. https://doi.org/10.1002/prep.202000222
    53. Sara I. Ahmad, Hicham Hamoudi, Janarthanan Ponraj, Khaled M. Youssef. In-situ growth of single-crystal plasmonic aluminum–lithium-graphene nanosheets with a hexagonal platelet-like morphology using ball-milling. Carbon 2021, 178 , 657-665. https://doi.org/10.1016/j.carbon.2021.03.053
    54. Vladimir B. Storozhev, Alexander N. Yermakov. Effect on combustion of oxide coating formed on aluminum nanoparticles burned in steam. Combustion and Flame 2021, 226 , 182-189. https://doi.org/10.1016/j.combustflame.2020.11.040
    55. A. Yu. Krainov, V. A. Poryazov, K. M. Moiseeva, D. A. Krainov. Numerical Simulation of the High-Temperature Oxidation of a Nanosize Aluminum Particle. Journal of Engineering Physics and Thermophysics 2021, 94 (1) , 79-87. https://doi.org/10.1007/s10891-021-02275-z
    56. Ruochen Sun, Pingan Liu, Hui Qi, Wenchao Wang, Fangwei Lv, Junpeng Liu. Aluminium nanoparticle modelling coupled with molecular dynamic simulation method to compare the effect of annealing rates on diethyl ether coating and oxidation behaviours. Journal of Molecular Graphics and Modelling 2020, 100 , 107667. https://doi.org/10.1016/j.jmgm.2020.107667
    57. Dung Nguyen-Trong, Phuong Nguyen-Tri. Understanding the heterogeneous kinetics of Al nanoparticles by simulations method. Journal of Molecular Structure 2020, 1218 , 128498. https://doi.org/10.1016/j.molstruc.2020.128498
    58. Vladimir Zarko, Anatoly Glazunov. Review of Experimental Methods for Measuring the Ignition and Combustion Characteristics of Metal Nanoparticles. Nanomaterials 2020, 10 (10) , 2008. https://doi.org/10.3390/nano10102008
    59. Xiao Jin, Shengji Li, Yihang Yang, Yanjing Yang, Xuefeng Huang. Effect of Heating Rate on Ignition Characteristics of Newly Prepared and Aged Aluminum Nanoparticles. Propellants, Explosives, Pyrotechnics 2020, 45 (9) , 1428-1435. https://doi.org/10.1002/prep.202000035
    60. Jinyun Wang, Zailin Yang, Mengjun Wang. Effect of non-spherical particles on burning behavior during aluminum combustion. Particuology 2020, 51 , 173-183. https://doi.org/10.1016/j.partic.2019.11.004
    61. Gang Li, Liangliang Niu, Weizhe Hao, Yu Liu, Chaoyang Zhang. Atomistic insight into the microexplosion-accelerated oxidation process of molten aluminum nanoparticles. Combustion and Flame 2020, 214 , 238-250. https://doi.org/10.1016/j.combustflame.2019.12.027
    62. Jing Gao, Jingyuan Yan, Beikai Zhao, Ze Zhang, Qian Yu. In situ observation of temperature-dependent atomistic and mesoscale oxidation mechanisms of aluminum nanoparticles. Nano Research 2020, 13 (1) , 183-187. https://doi.org/10.1007/s12274-019-2593-3
    63. Aldin Justin Sundararaj, B.C. Pillai, K.R. Guna. Experimental investigation of effect of temperature on ignition behaviour of seeded refined kerosene. Thermochimica Acta 2020, 683 , 178469. https://doi.org/10.1016/j.tca.2019.178469
    64. Bao Wu, FengChao Wu, YinBo Zhu, AnMin He, Pei Wang, HengAn Wu. Fast reaction of aluminum nanoparticles promoted by oxide shell. Journal of Applied Physics 2019, 126 (14) https://doi.org/10.1063/1.5115545
    65. Qiwen Lai, Yahui Sun, Ting Wang, Poojan Modi, Claudio Cazorla, Umit B. Demirci, Jose Ramon Ares Fernandez, Fabrice Leardini, Kondo‐François Aguey‐Zinsou. How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks. Advanced Sustainable Systems 2019, 3 (9) https://doi.org/10.1002/adsu.201900043
    66. D. Laboureur, G. Glabeke, J. B. Gouriet. Aluminum nanoparticles oxidation by TGA/DSC. Journal of Thermal Analysis and Calorimetry 2019, 137 (4) , 1199-1210. https://doi.org/10.1007/s10973-019-08058-2
    67. Liang Guo, Yajun Wang, Pengfei He, Shihui Li. Spin coating preparation and thermal properties of metastable Al/PVDF energetic film with graphene. Materials Research Express 2019, 6 (8) , 086415. https://doi.org/10.1088/2053-1591/ab1c1f
    68. M.R. Huston, T.R. Sippel. Confined flame propagation of Al/PTFE mechanically activated composites. Combustion and Flame 2019, 203 , 83-91. https://doi.org/10.1016/j.combustflame.2018.08.024
    69. Seyyed Ali Davari, Jennifer L. Gottfried, C. Liu, Erick L. Ribeiro, Gerd Duscher, Dibyendu Mukherjee. Graphitic coated Al nanoparticles manufactured as superior energetic materials via laser ablation synthesis in organic solvents. Applied Surface Science 2019, 473 , 156-163. https://doi.org/10.1016/j.apsusc.2018.11.238
    70. Ali A Salman, A Hadi Al-Janabi. Aluminum nanoparticles saturable absorber as a passive Q -switcher for erbium-doped fiber laser ring cavity configuration. Laser Physics 2019, 29 (4) , 045102. https://doi.org/10.1088/1555-6611/ab02f8
    71. Alexey Chudinov, Lei Li, Zhen Zhou, Zhengxu Huang, Wei Gao, Jiajun Yu, Sergei Nikiforov, Alexander Pikhtelev, Aygul Bukharina, Viacheslav Kozlovskiy. Improvement of peaks identification and dynamic range for bi-polar Single Particle Mass Spectrometer. International Journal of Mass Spectrometry 2019, 436 , 7-17. https://doi.org/10.1016/j.ijms.2018.11.013
    72. Fan Zhang, Andrew J. Allen, Aaron C. Johnston-Peck, Jingyu Liu, John M. Pettibone. Transformation of engineered nanomaterials through the prism of silver sulfidation. Nanoscale Advances 2019, 1 (1) , 241-253. https://doi.org/10.1039/C8NA00103K
    73. Rajagopalan Thiruvengadathan. Aluminum-Based Nano-energetic Materials: State of the Art and Future Perspectives. 2019, 9-35. https://doi.org/10.1007/978-981-13-3269-2_2
    74. Hema Singh, Shaibal Banerjee. Nanostructured Energetic Composites: An Emerging Paradigm. 2019, 37-80. https://doi.org/10.1007/978-981-13-3269-2_3
    75. A. V. Fedorov, T. A. Khmel. Problems of Closing Models that Describe Detonation of Gas Suspensions of Ultrafine Aluminum Particles (Review). Combustion, Explosion, and Shock Waves 2019, 55 (1) , 1-17. https://doi.org/10.1134/S0010508219010015
    76. Kyung Joo Kim, Myung Hoon Cho, Ji Hoon Kim, Soo Hyung Kim. Effect of paraffin wax on combustion properties and surface protection of Al/CuO-based nanoenergetic composite pellets. Combustion and Flame 2018, 198 , 169-175. https://doi.org/10.1016/j.combustflame.2018.09.010
    77. Eric Smith, Joshua Sloane, Raymond Sedwick. A low complexity time-of-flight mass spectrometer with ion size measurement based on secondary particle yield. International Journal of Mass Spectrometry 2018, 434 , 43-51. https://doi.org/10.1016/j.ijms.2018.09.001
    78. Shurik Yatom, Alexander Khrabry, James Mitrani, Andrei Khodak, Igor Kaganovich, Vladislav Vekselman, Brent Stratton, Yevgeny Raitses. Synthesis of nanoparticles in carbon arc: measurements and modeling. MRS Communications 2018, 8 (3) , 842-849. https://doi.org/10.1557/mrc.2018.91
    79. Xiaoning Zhao, Haopeng Liu, Dianjun Zhang, Yixing Li, Yanhui Zhang, Xuefeng Zhang. Ultralight and ultraelastic sponge/Al@Al2O3 nanocomposite with tunable electromagnetic properties. Journal of Applied Physics 2018, 124 (7) https://doi.org/10.1063/1.5031857
    80. Alexandre Ermoline. Thermal theory of aluminum particle ignition in continuum, free-molecular, and transition heat transfer regimes. Journal of Applied Physics 2018, 124 (5) https://doi.org/10.1063/1.5039691
    81. A. Abbasi, A. Barkhordari, S. Hekmatimoghaddam, A. Jebali. Reduction in environmental noise by a novel nanocomposite, containing cellulose, polyvinyl acetate, and aluminum oxide nanoparticles. International Journal of Environmental Science and Technology 2018, 15 (7) , 1423-1428. https://doi.org/10.1007/s13762-017-1472-2
    82. Junpeng Liu, Mengjun Wang, Pingan Liu. Molecular dynamical simulations of melting Al nanoparticles using a reaxff reactive force field. Materials Research Express 2018, 5 (6) , 065011. https://doi.org/10.1088/2053-1591/aac653
    83. Nikita V. Muravyev, Konstantin A. Monogarov, Alexey N. Zhigach, Mikhail L. Kuskov, Igor V. Fomenkov, Alla N. Pivkina. Exploring enhanced reactivity of nanosized titanium toward oxidation. Combustion and Flame 2018, 191 , 109-115. https://doi.org/10.1016/j.combustflame.2018.01.011
    84. Sheng Hu, Dibyendu Mukherjee. Colloidal Synthesis of Advanced Functional Nanostructured Composites and Alloys via Laser Ablation‐Based Techniques. 2018, 135-172. https://doi.org/10.1002/9783527342501.ch7
    85. Do Joong Shin, Whi Dong Kim, Seokwon Lee, Doh C. Lee. Nanothermite of Al nanoparticles and three-dimensionally ordered macroporous CuO: Mechanistic insight into oxidation during thermite reaction. Combustion and Flame 2018, 189 , 87-91. https://doi.org/10.1016/j.combustflame.2017.10.018
    86. Pawan Kumar Ojha, Raktim Maji, Srinibas Karmakar. Effect of crystallinity on droplet regression and disruptive burning characteristics of nanofuel droplets containing amorphous and crystalline boron nanoparticles. Combustion and Flame 2018, 188 , 412-427. https://doi.org/10.1016/j.combustflame.2017.10.005
    87. Seyyed Ali Davari, Dibyendu Mukherjee. Kinetic Monte Carlo simulation for homogeneous nucleation of metal nanoparticles during vapor phase synthesis. AIChE Journal 2018, 64 (1) , 18-28. https://doi.org/10.1002/aic.15887
    88. Hui Zhu, Mei Liu, Teng Guo, Li Xu, Junguo Dong, Jialiang Feng, Ping Cheng, Zhen Zhou. Laser ablation single particle aerosol mass spectrometry for the direct analysis of raw coal samples. Journal of Analytical Atomic Spectrometry 2018, 33 (7) , 1158-1167. https://doi.org/10.1039/C8JA00026C
    89. Ali Sheikhpour, Seyed Ghorban Hosseini, Saeed Tavangar, Mohammad Hossein Keshavarz. The influence of magnesium powder on the thermal behavior of Al–CuO thermite mixture. Journal of Thermal Analysis and Calorimetry 2017, 129 (3) , 1847-1854. https://doi.org/10.1007/s10973-017-6343-z
    90. Huanfeng Tang, Zaiyin Huang, Ming Xiao, Min Liang, Liying Chen, XueCai Tan. Theoretical and experimental study on the effects of particle size and temperature on the reaction kinetics of cubic nano-Cu2O. Journal of Nanoparticle Research 2017, 19 (9) https://doi.org/10.1007/s11051-017-4001-9
    91. R.K. Sahu, Somashekhar S Hiremath. Synthesis of Aluminium Nanoparticles in A Water/Polyethylene Glycol Mixed Solvent using μ-EDM. IOP Conference Series: Materials Science and Engineering 2017, 225 , 012257. https://doi.org/10.1088/1757-899X/225/1/012257
    92. Dilip Sundaram, Vigor Yang, Richard A. Yetter. Metal-based nanoenergetic materials: Synthesis, properties, and applications. Progress in Energy and Combustion Science 2017, 61 , 293-365. https://doi.org/10.1016/j.pecs.2017.02.002
    93. D. Erb, K. Schlage, L. Bocklage, R. Hübner, D. G. Merkel, R. Rüffer, H.-C. Wille, R. Röhlsberger. Disentangling magnetic order on nanostructured surfaces. Physical Review Materials 2017, 1 (2) https://doi.org/10.1103/PhysRevMaterials.1.023001
    94. Hua-Dong Zeng, Zhi-Yang Zhu, Ji-Dong Zhang, Xin-Lu Cheng. Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field. Chinese Physics B 2017, 26 (5) , 056101. https://doi.org/10.1088/1674-1056/26/5/056101
    95. Bo Ma, Feng Zhao, Xinlu Cheng, Feng Miao, Jidong Zhang. The mechanical and thermal responses of colliding oxide-coated aluminum nanoparticles. Journal of Applied Physics 2017, 121 (14) https://doi.org/10.1063/1.4980118
    96. Vishal Saxena, Niraj Kumar, Vinod.Kumar Saxena. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine. Renewable and Sustainable Energy Reviews 2017, 70 , 563-588. https://doi.org/10.1016/j.rser.2016.11.067
    97. S. Abdalla, Reem AL-Wafi, A. Pizzi. Stability and combustion of metal nano-particles and their additive impact with diesel and biodiesel on engine efficiency: A comprehensive study. Journal of Renewable and Sustainable Energy 2017, 9 (2) https://doi.org/10.1063/1.4979962
    98. Dibyendu Mukherjee, Seyyed Ali Davari. Computational Modeling for Fate, Transport and Evolution of Energetic Metal Nanoparticles Grown via Aerosol Route. 2017, 271-341. https://doi.org/10.1007/978-3-319-59208-4_9
    99. Fatemeh Naseri, Davoud Dorranian. Effect of aluminum nanoparticles on the linear and nonlinear optical properties of PVA. Optical and Quantum Electronics 2017, 49 (1) https://doi.org/10.1007/s11082-016-0839-9
    100. Harish Venu, Venkataramanan Madhavan. Effect of diethyl ether and Al2O3 nano additives in diesel-biodiesel-ethanol blends: Performance, combustion and emission characteristics. Journal of Mechanical Science and Technology 2017, 31 (1) , 409-420. https://doi.org/10.1007/s12206-016-1243-x
    Load more citations

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2005, 109, 15, 7290–7299
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp048041v
    Published March 22, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    2551

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.