ACS Publications. Most Trusted. Most Cited. Most Read
Validation of Exchange−Correlation Functionals for Spin States of Iron Complexes
My Activity

Figure 1Loading Img
    Article

    Validation of Exchange−Correlation Functionals for Spin States of Iron Complexes
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2004, 108, 25, 5479–5483
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp049043i
    Published May 28, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Spin state energies of iron complexes are important for biochemical applications such as the catalytic cycle of cytochrome P450. Due to the size of these systems and the presence of iron, accurate computational results can be obtained only with density functional theory (DFT). Validation of exchange−correlation (xc) DFT functionals for predicting the correct spin ground state of iron complexes is a rather unexplored area. In this contribution we report a systematic study on the performance of several xc functionals for seven iron complexes that are experimentally found to have either a low, intermediate, or high spin ground state. Standard xc functionals like LDA, BLYP, and PBE are found to disfavor high spin states, whereas hybrid and some meta-GGA functionals do provide the correct spin ground state for all molecules. Recently improved pure DFT functionals such as Handy's optimized exchange (OPTX) also perform well. The origin for the apparent performance of the DFT functionals has been addressed and seems to be related to the inclusion of fourth-order terms (s4) of the dimensionless (or reduced) density gradient s in the exchange functional.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author. E-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    Tables with spin state energies using a frozen-core and all-electron TZP basis set, and using SCF and post-SCF formalisms. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 378 publications.

    1. Sangeeta Rajpurohit, Vyshnavi Vennelakanti, Heather J. Kulik. Improving Predictions of Spin-Crossover Complex Properties through DFT Calculations with a Local Hybrid Functional. The Journal of Physical Chemistry A 2024, 128 (41) , 9082-9089. https://doi.org/10.1021/acs.jpca.4c05046
    2. Hugo Esteves, Tania Xavier, Sonia Lajnef, Fabienne Peyrot, Guillaume Lefèvre, Guillaume Prestat, Farouk Berhal. Iron-Catalyzed Intramolecular C(sp3)-H Lactonization of Hydroxamate Derivatives Promoted by a 1,5-HAT. ACS Catalysis 2024, 14 (6) , 4329-4339. https://doi.org/10.1021/acscatal.3c04900
    3. Kieran G. Lawford, Michael A. Land, Eden Goodwin, Katherine N. Robertson, Seán T. Barry. Synthesis, Characterization, and Single-Crystal X-ray Structures of Refractory Metal Compounds as Precursors for the Single-Source Chemical Vapor Deposition of Metal Nitrides. Inorganic Chemistry 2023, 62 (51) , 21061-21073. https://doi.org/10.1021/acs.inorgchem.3c02841
    4. João Paulo Almeida de Mendonça, Lorenzo Antonio Mariano, Emilie Devijver, Noel Jakse, Roberta Poloni. Artificial Neural Network-Based Density Functional Approach for Adiabatic Energy Differences in Transition Metal Complexes. Journal of Chemical Theory and Computation 2023, 19 (21) , 7555-7566. https://doi.org/10.1021/acs.jctc.3c00600
    5. Jett T. Janetzki, Maxim G. Chegerev, Gemma K. Gransbury, Robert W. Gable, Jack K. Clegg, Roger J. Mulder, Guy N. L. Jameson, Alyona A. Starikova, Colette Boskovic. Controlling Spin Crossover in a Family of Dinuclear Fe(III) Complexes via the Bis(catecholate) Bridging Ligand. Inorganic Chemistry 2023, 62 (38) , 15719-15735. https://doi.org/10.1021/acs.inorgchem.3c02598
    6. Juan Felipe Huan Lew-Yee, Jorge M. del Campo, Mario Piris. Electron Correlation in the Iron(II) Porphyrin by Natural Orbital Functional Approximations. Journal of Chemical Theory and Computation 2023, 19 (1) , 211-220. https://doi.org/10.1021/acs.jctc.2c01093
    7. Eugenio Vitale, Giovanni Li Manni, Ali Alavi, Daniel Kats. FCIQMC-Tailored Distinguishable Cluster Approach: Open-Shell Systems. Journal of Chemical Theory and Computation 2022, 18 (6) , 3427-3437. https://doi.org/10.1021/acs.jctc.2c00059
    8. Samuel J. H. Gaughan, Jonathan D. Hirst, Anna K. Croft, Christof M. Jäger. Effect of Oriented Electric Fields on Biologically Relevant Iron–Sulfur Clusters: Tuning Redox Reactivity for Catalysis. Journal of Chemical Information and Modeling 2022, 62 (3) , 591-601. https://doi.org/10.1021/acs.jcim.1c00791
    9. Faustine Spillebout, Stanislav R. Stoyanov, Oleksandr Zelyak, Jeffrey M. Stryker, Andriy Kovalenko. Computational Investigation of the Metal and Ligand Substitution Effects on the Structure and Electronic States of the Phosphoranimide Tetramer Complexes of Cu(I), Ni(I), Co(I), and Fe(I). Inorganic Chemistry 2022, 61 (3) , 1471-1485. https://doi.org/10.1021/acs.inorgchem.1c03172
    10. Vincent Wowk, Lidie Rousseau, Guillaume Lefèvre. Importance of Two-Electron Processes in Fe-Catalyzed Aryl-(hetero)aryl Cross-Couplings: Evidence of Fe0/FeII Couple Implication. Organometallics 2021, 40 (19) , 3253-3266. https://doi.org/10.1021/acs.organomet.1c00338
    11. Aditya Nandy, Chenru Duan, Michael G. Taylor, Fang Liu, Adam H. Steeves, Heather J. Kulik. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chemical Reviews 2021, 121 (16) , 9927-10000. https://doi.org/10.1021/acs.chemrev.1c00347
    12. Chenru Duan, Fang Liu, Aditya Nandy, Heather J. Kulik. Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery. The Journal of Physical Chemistry Letters 2021, 12 (19) , 4628-4637. https://doi.org/10.1021/acs.jpclett.1c00631
    13. Lorenzo A. Mariano, Bess Vlaisavljevich, Roberta Poloni. Improved Spin-State Energy Differences of Fe(II) Molecular and Crystalline Complexes via the Hubbard U-Corrected Density. Journal of Chemical Theory and Computation 2021, 17 (5) , 2807-2816. https://doi.org/10.1021/acs.jctc.1c00034
    14. Alexsandro R. da Silva, Jailton Souza de Almeida, Roberto Rivelino. A Theoretical Assessment of Spin and Charge States in Binuclear Cobalt–Ruthenium Complexes: Implications for a Creutz–Taube Model Ion Separated by a C60-Derivative Bridging Ligand. The Journal of Physical Chemistry A 2020, 124 (51) , 10826-10837. https://doi.org/10.1021/acs.jpca.0c09194
    15. Lorenzo A. Mariano, Bess Vlaisavljevich, Roberta Poloni. Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction. Journal of Chemical Theory and Computation 2020, 16 (11) , 6755-6762. https://doi.org/10.1021/acs.jctc.0c00628
    16. Afshan Mohajeri, Azadeh Yeganeh Jabri. Spin Crossover as an Efficient Strategy for Controllable Gas Molecule Capturing on Open Metal Sites in Ni-BTC and Cu-BTC. The Journal of Physical Chemistry C 2020, 124 (29) , 15902-15912. https://doi.org/10.1021/acs.jpcc.0c03294
    17. Dayou Zhang, Donald G. Truhlar. Spin Splitting Energy of Transition Metals: A New, More Affordable Wave Function Benchmark Method and Its Use to Test Density Functional Theory. Journal of Chemical Theory and Computation 2020, 16 (7) , 4416-4428. https://doi.org/10.1021/acs.jctc.0c00518
    18. Michael G. Taylor, Tzuhsiung Yang, Sean Lin, Aditya Nandy, Jon Paul Janet, Chenru Duan, Heather J. Kulik. Seeing Is Believing: Experimental Spin States from Machine Learning Model Structure Predictions. The Journal of Physical Chemistry A 2020, 124 (16) , 3286-3299. https://doi.org/10.1021/acs.jpca.0c01458
    19. Samuel J. Stoneburner, Donald G. Truhlar, Laura Gagliardi. Transition Metal Spin-State Energetics by MC-PDFT with High Local Exchange. The Journal of Physical Chemistry A 2020, 124 (6) , 1187-1195. https://doi.org/10.1021/acs.jpca.9b10772
    20. Quan Manh Phung, Carlos Martín-Fernández, Jeremy N. Harvey, Milica Feldt. Ab Initio Calculations for Spin-Gaps of Non-Heme Iron Complexes. Journal of Chemical Theory and Computation 2019, 15 (8) , 4297-4304. https://doi.org/10.1021/acs.jctc.9b00370
    21. James R. Gardinier, Kristin J. Meise, Fathiya Jahan, Denan Wang, Sergey V. Lindeman. Selective Isomer Formation and Crystallization-Directed Magnetic Behavior in Nitrogen-Confused C-Scorpionate Complexes of Fe(O3SCF3)2. Inorganic Chemistry 2019, 58 (14) , 8953-8968. https://doi.org/10.1021/acs.inorgchem.8b03454
    22. Arshak A. Tsaturyan, Andriy P. Budnyk, Chennan Ramalingan. DFT Study of the CNS Ligand Effect on the Geometry, Spin-State, and Absorption Spectrum in Ruthenium, Iron, and Cobalt Quaterpyridine Complexes. ACS Omega 2019, 4 (6) , 10991-11003. https://doi.org/10.1021/acsomega.9b00921
    23. Abhik Ghosh, Jeanet Conradie. Stereochemistry of Transition-Metal Dinitrosyl Complexes. A Molecular Orbital Rationale for the Attracto and Repulso Conformations. Inorganic Chemistry 2019, 58 (9) , 5943-5948. https://doi.org/10.1021/acs.inorgchem.9b00266
    24. Andrew S. Rosen, Justin M. Notestein, Randall Q. Snurr. Structure–Activity Relationships That Identify Metal–Organic Framework Catalysts for Methane Activation. ACS Catalysis 2019, 9 (4) , 3576-3587. https://doi.org/10.1021/acscatal.8b05178
    25. Doo-Hyun Kwon, Brooke L. Small, Orson L. Sydora, Steven M. Bischof, Daniel H. Ess. Challenge of Using Practical DFT to Model Fe Pendant Donor Diimine Catalyzed Ethylene Oligomerization. The Journal of Physical Chemistry C 2019, 123 (6) , 3727-3739. https://doi.org/10.1021/acs.jpcc.9b00129
    26. Milica Feldt, Quan Manh Phung, Kristine Pierloot, Ricardo A. Mata, Jeremy N. Harvey. Limits of Coupled-Cluster Calculations for Non-Heme Iron Complexes. Journal of Chemical Theory and Computation 2019, 15 (2) , 922-937. https://doi.org/10.1021/acs.jctc.8b00963
    27. Bo Yang, Donald G. Truhlar. Computational Design of an Iron Catalyst for Olefin Metathesis. Organometallics 2018, 37 (21) , 3917-3927. https://doi.org/10.1021/acs.organomet.8b00583
    28. Bao Li, Xiao-Ning Wang, Angelo Kirchon, Jun-Sheng Qin, Jian-Dong Pang, Gui-Lin Zhuang, Hong-Cai Zhou. Sophisticated Construction of Electronically Labile Materials: A Neutral, Radical-Rich, Cobalt Valence Tautomeric Triangle. Journal of the American Chemical Society 2018, 140 (44) , 14581-14585. https://doi.org/10.1021/jacs.8b09062
    29. Casper M. Macaulay, Samantha J. Gustafson, Jack T. Fuller, III, Doo-Hyun Kwon, Takahiko Ogawa, Michael J. Ferguson, Robert McDonald, Michael D. Lumsden, Steven M. Bischof, Orson L. Sydora, Daniel H. Ess, Mark Stradiotto, Laura Turculet. Alkene Isomerization–Hydroboration Catalyzed by First-Row Transition-Metal (Mn, Fe, Co, and Ni) N-Phosphinoamidinate Complexes: Origin of Reactivity and Selectivity. ACS Catalysis 2018, 8 (11) , 9907-9925. https://doi.org/10.1021/acscatal.8b01972
    30. Giovanni Li Manni, Ali Alavi. Understanding the Mechanism Stabilizing Intermediate Spin States in Fe(II)-Porphyrin. The Journal of Physical Chemistry A 2018, 122 (22) , 4935-4947. https://doi.org/10.1021/acs.jpca.7b12710
    31. Verònica Postils, Mònica Rodríguez, Gerard Sabenya, Ana Conde, M. Mar Díaz-Requejo, Pedro J. Pérez, Miquel Costas, Miquel Solà, Josep M. Luis. Mechanism of the Selective Fe-Catalyzed Arene Carbon–Hydrogen Bond Functionalization. ACS Catalysis 2018, 8 (5) , 4313-4322. https://doi.org/10.1021/acscatal.7b03935
    32. Oliver S. Siig, Kasper P. Kepp. Iron(II) and Iron(III) Spin Crossover: Toward an Optimal Density Functional. The Journal of Physical Chemistry A 2018, 122 (16) , 4208-4217. https://doi.org/10.1021/acs.jpca.8b02027
    33. Égil de Brito Sá, Luis Rodríguez-Santiago, Mariona Sodupe, Xavier Solans-Monfort. Influence of Ligands and Oxidation State on the Reactivity of Pentacoordinated Iron Carbenes with Olefins: Metathesis versus Cyclopropanation. Organometallics 2018, 37 (8) , 1229-1241. https://doi.org/10.1021/acs.organomet.7b00786
    34. E. de Brito Sá, A. Rimola, L. Rodríguez-Santiago, M. Sodupe, and X. Solans-Monfort . Reactivity of Metal Carbenes with Olefins: Theoretical Insights on the Carbene Electronic Structure and Cyclopropanation Reaction Mechanism. The Journal of Physical Chemistry A 2018, 122 (6) , 1702-1712. https://doi.org/10.1021/acs.jpca.7b11656
    35. Grégoire David, Nathalie Guihéry, and Nicolas Ferré . What Are the Physical Contents of Hubbard and Heisenberg Hamiltonian Interactions Extracted from Broken Symmetry DFT Calculations in Magnetic Compounds?. Journal of Chemical Theory and Computation 2017, 13 (12) , 6253-6265. https://doi.org/10.1021/acs.jctc.7b00976
    36. Renato Batista dos Santos, Fernando de Brito Mota, Roberto Rivelino, and Gueorgui K. Gueorguiev . Electric-Field Control of Spin-Polarization and Semiconductor-to-Metal Transition in Carbon-Atom-Chain Devices. The Journal of Physical Chemistry C 2017, 121 (46) , 26125-26132. https://doi.org/10.1021/acs.jpcc.7b09447
    37. Manuel A. Ortuño and Christopher J. Cramer . Multireference Electronic Structures of Fe–Pyridine(diimine) Complexes over Multiple Oxidation States. The Journal of Physical Chemistry A 2017, 121 (31) , 5932-5939. https://doi.org/10.1021/acs.jpca.7b06032
    38. Liam Wilbraham, Pragya Verma, Donald G. Truhlar, Laura Gagliardi, and Ilaria Ciofini . Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the Same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost. The Journal of Physical Chemistry Letters 2017, 8 (9) , 2026-2030. https://doi.org/10.1021/acs.jpclett.7b00570
    39. Efthymios I. Ioannidis and Heather J. Kulik . Ligand-Field-Dependent Behavior of Meta-GGA Exchange in Transition-Metal Complex Spin-State Ordering. The Journal of Physical Chemistry A 2017, 121 (4) , 874-884. https://doi.org/10.1021/acs.jpca.6b11930
    40. Marcel Swart and Maja Gruden . Spinning around in Transition-Metal Chemistry. Accounts of Chemical Research 2016, 49 (12) , 2690-2697. https://doi.org/10.1021/acs.accounts.6b00271
    41. Égil de Brito Sá, Luis Rodríguez-Santiago, Mariona Sodupe, and Xavier Solans-Monfort . Toward Olefin Metathesis with Iron Carbene Complexes: Benefits of Tridentate σ-Donating Ligands. Organometallics 2016, 35 (23) , 3914-3923. https://doi.org/10.1021/acs.organomet.6b00641
    42. Maria Fumanal, Lucas K. Wagner, Stefano Sanvito, and Andrea Droghetti . Diffusion Monte Carlo Perspective on the Spin-State Energetics of [Fe(NCH)6]2+. Journal of Chemical Theory and Computation 2016, 12 (9) , 4233-4241. https://doi.org/10.1021/acs.jctc.6b00332
    43. Denis M. Kiawi, Valeriy Chernyy, Jos Oomens, Wybren Jan Buma, Zahra Jamshidi, Lucas Visscher, L. B. F. M. Waters, and Joost M. Bakker . Water Dissociation upon Adsorption onto Free Iron Clusters Is Size Dependent. The Journal of Physical Chemistry Letters 2016, 7 (13) , 2381-2387. https://doi.org/10.1021/acs.jpclett.6b00891
    44. Gerard Alcover-Fortuny, Rosa Caballol, Kristine Pierloot, and Coen de Graaf . Role of the Imide Axial Ligand in the Spin and Oxidation State of Manganese Corrole and Corrolazine Complexes. Inorganic Chemistry 2016, 55 (11) , 5274-5280. https://doi.org/10.1021/acs.inorgchem.6b00194
    45. Fernando N. N. Pansini and Fábio A. L. de Souza . Trends in the Spin States and Mean Static Dipole Polarizability of the Group VIIIA Metallocenes. The Journal of Physical Chemistry A 2016, 120 (17) , 2771-2778. https://doi.org/10.1021/acs.jpca.6b02755
    46. James A. Bellow, Sebastian A. Stoian, Johan van Tol, Andrew Ozarowski, Richard L. Lord, and Stanislav Groysman . Synthesis and Characterization of a Stable High-Valent Cobalt Carbene Complex. Journal of the American Chemical Society 2016, 138 (17) , 5531-5534. https://doi.org/10.1021/jacs.6b02747
    47. Alvaro Muñoz-Castro, Tatiana Gomez, Desmond MacLeod Carey, Sebastian Miranda-Rojas, Fernando Mendizabal, Jose H. Zagal, and Ramiro Arratia-Perez . Surface on Surface. Survey of the Monolayer Gold–Graphene Interaction from Au12 and PAH via Relativistic DFT Calculations. The Journal of Physical Chemistry C 2016, 120 (13) , 7358-7364. https://doi.org/10.1021/acs.jpcc.5b12580
    48. Yihua Sun, Hao Tang, Kejuan Chen, Lianrui Hu, Jiannian Yao, Sason Shaik, and Hui Chen . Two-State Reactivity in Low-Valent Iron-Mediated C–H Activation and the Implications for Other First-Row Transition Metals. Journal of the American Chemical Society 2016, 138 (11) , 3715-3730. https://doi.org/10.1021/jacs.5b12150
    49. Denis M. Kiawi, Joost M. Bakker, Jos Oomens, Wybren Jan Buma, Zahra Jamshidi, Lucas Visscher, and L. B. F. M. Waters . Water Adsorption on Free Cobalt Cluster Cations. The Journal of Physical Chemistry A 2015, 119 (44) , 10828-10837. https://doi.org/10.1021/acs.jpca.5b07119
    50. Guilherme Menegon Arantes and Martin J. Field . Ferric–Thiolate Bond Dissociation Studied with Electronic Structure Calculations. The Journal of Physical Chemistry A 2015, 119 (39) , 10084-10090. https://doi.org/10.1021/acs.jpca.5b05658
    51. Verònica Postils, Anna Company, Miquel Solà, Miquel Costas, and Josep M. Luis . Computational Insight into the Mechanism of Alkane Hydroxylation by Non-heme Fe(PyTACN) Iron Complexes. Effects of the Substrate and Solvent. Inorganic Chemistry 2015, 54 (17) , 8223-8236. https://doi.org/10.1021/acs.inorgchem.5b00583
    52. James A. Bellow, Maryam Yousif, Alyssa C. Cabelof, Richard L. Lord, and Stanislav Groysman . Reactivity Modes of an Iron Bis(alkoxide) Complex with Aryl Azides: Catalytic Nitrene Coupling vs Formation of Iron(III) Imido Dimers. Organometallics 2015, 34 (12) , 2917-2923. https://doi.org/10.1021/acs.organomet.5b00231
    53. Victor Muñoz Robles, Elisabeth Ortega-Carrasco, Lur Alonso-Cotchico, Jaime Rodriguez-Guerra, Agustí Lledós, and Jean-Didier Maréchal . Toward the Computational Design of Artificial Metalloenzymes: From Protein–Ligand Docking to Multiscale Approaches. ACS Catalysis 2015, 5 (4) , 2469-2480. https://doi.org/10.1021/acscatal.5b00010
    54. Sujitha Kolakkandy, Subha Pratihar, Adelia J. A. Aquino, Hai Wang, and William L. Hase . Properties of Complexes Formed by Na+, Mg2+, and Fe2+ Binding with Benzene Molecules. The Journal of Physical Chemistry A 2014, 118 (40) , 9500-9511. https://doi.org/10.1021/jp5029257
    55. A. Muñoz-Castro and R. Guajardo Maturana . Understanding Planar Ligand-Supported MAu5 and MAu6 Cores. Theoretical Survey of [MAu5(Mes)5] and [MAu6(Mes)6] (M = Cu, Ag, Au; Mes = 2,4,6-Me3C6H2) Under the Planar Superatom Model. The Journal of Physical Chemistry C 2014, 118 (36) , 21185-21191. https://doi.org/10.1021/jp5057557
    56. David Schweinfurth, Serhiy Demeshko, Stephan Hohloch, Marc Steinmetz, Jan Gerit Brandenburg, Sebastian Dechert, Franc Meyer, Stefan Grimme, and Biprajit Sarkar . Spin Crossover in Fe(II) and Co(II) Complexes with the Same Click-Derived Tripodal Ligand. Inorganic Chemistry 2014, 53 (16) , 8203-8212. https://doi.org/10.1021/ic500264k
    57. Mariusz Radoń . Spin-State Energetics of Heme-Related Models from DFT and Coupled Cluster Calculations. Journal of Chemical Theory and Computation 2014, 10 (6) , 2306-2321. https://doi.org/10.1021/ct500103h
    58. Alexandra T. P. Carvalho and Marcel Swart . Electronic Structure Investigation and Parametrization of Biologically Relevant Iron–Sulfur Clusters. Journal of Chemical Information and Modeling 2014, 54 (2) , 613-620. https://doi.org/10.1021/ci400718m
    59. Stepan Stepanović, Ljubica Andjelković, Matija Zlatar, Katarina Andjelković, Maja Gruden-Pavlović, and Marcel Swart . Role of Spin State and Ligand Charge in Coordination Patterns in Complexes of 2,6-Diacetylpyridinebis(semioxamazide) with 3d-Block Metal Ions: A Density Functional Theory Study. Inorganic Chemistry 2013, 52 (23) , 13415-13423. https://doi.org/10.1021/ic401752n
    60. Yuanyuan Sun and Hui Chen . Performance of Density Functionals for Activation Energies of Zr-Mediated Reactions. Journal of Chemical Theory and Computation 2013, 9 (11) , 4735-4743. https://doi.org/10.1021/ct400432x
    61. James A. Bellow, Philip D. Martin, Richard L. Lord, and Stanislav Groysman . Reductive Coupling of Azides Mediated by an Iron(II) Bis(alkoxide) Complex. Inorganic Chemistry 2013, 52 (21) , 12335-12337. https://doi.org/10.1021/ic402517m
    62. Helena W. Qi, Hannah R. Leverentz, and Donald G. Truhlar . Water 16-mers and Hexamers: Assessment of the Three-Body and Electrostatically Embedded Many-Body Approximations of the Correlation Energy or the Nonlocal Energy As Ways to Include Cooperative Effects. The Journal of Physical Chemistry A 2013, 117 (21) , 4486-4499. https://doi.org/10.1021/jp401463f
    63. Mátyás Pápai, György Vankó, Coen de Graaf, and Tamás Rozgonyi . Theoretical Investigation of the Electronic Structure of Fe(II) Complexes at Spin-State Transitions. Journal of Chemical Theory and Computation 2013, 9 (1) , 509-519. https://doi.org/10.1021/ct300932n
    64. Latévi Max Lawson Daku, Francesco Aquilante, Timothy W. Robinson, and Andreas Hauser . Accurate Spin-State Energetics of Transition Metal Complexes. 1. CCSD(T), CASPT2, and DFT Study of [M(NCH)6]2+ (M = Fe, Co). Journal of Chemical Theory and Computation 2012, 8 (11) , 4216-4231. https://doi.org/10.1021/ct300592w
    65. David Kuter, Gerhard A. Venter, Kevin J. Naidoo, and Timothy J. Egan . Experimental and Time-Dependent Density Functional Theory Characterization of the UV–Visible Spectra of Monomeric and μ-Oxo Dimeric Ferriprotoporphyrin IX. Inorganic Chemistry 2012, 51 (19) , 10233-10250. https://doi.org/10.1021/ic301154e
    66. Vincent Corcé, Emmanuelle Morin, Solène Guihéneuf, Eric Renault, Stéphanie Renaud, Isabelle Cannie, Raphaël Tripier, Luís M. P. Lima, Karine Julienne, Sébastien G. Gouin, Olivier Loréal, David Deniaud, and François Gaboriau . Polyaminoquinoline Iron Chelators for Vectorization of Antiproliferative Agents: Design, Synthesis, and Validation. Bioconjugate Chemistry 2012, 23 (9) , 1952-1968. https://doi.org/10.1021/bc300324c
    67. Dibyajyoti Ghosh, Prakash Parida, and Swapan K Pati . Electronic, Magnetic, and Transport Properties of Fen-bis(n-acene) and Fen-bis(n-BNacene) [n = 1,2,∝]: A Theoretical Study. The Journal of Physical Chemistry C 2012, 116 (34) , 18487-18494. https://doi.org/10.1021/jp304592h
    68. Raul Guajardo Maturana, Miguel Ponce Vargas, and Alvaro Muñoz-Castro . Survey Of Long d10–d10 Metallophilic Contacts in Four-Membered Rings of Ag(I) and Au(I) Supported by Carbene–Pyrazole Mixed Ligands. The Journal of Physical Chemistry A 2012, 116 (34) , 8737-8743. https://doi.org/10.1021/jp304928k
    69. Alvaro Muñoz-Castro . Magnetic Response Properties of Coinage Metal Macrocyles. Insights into the Induced Magnetic Field through the Analysis of [Cu5(Mes)5], [Ag4(Mes)4], and [Au5(Mes)5] (Mes = 2,4,6-Me3C6H2). The Journal of Physical Chemistry C 2012, 116 (32) , 17197-17203. https://doi.org/10.1021/jp3012443
    70. Jordi Cirera and Francesco Paesani . Theoretical Prediction of Spin-Crossover Temperatures in Ligand-Driven Light-Induced Spin Change Systems. Inorganic Chemistry 2012, 51 (15) , 8194-8201. https://doi.org/10.1021/ic300750c
    71. Nuno A. G. Bandeira, Chantal Daniel, Alexander Trifonov, and Maria José Calhorda . Electronic Structure of Ytterbium Bis-indenyl and -cyclopentadienyl α-Diimine Complexes: A DFT and MS-CASPT2 Investigation. Organometallics 2012, 31 (13) , 4693-4700. https://doi.org/10.1021/om300081j
    72. Aurélien Moncomble, Pascal Le Floch, Agusti Lledos, and Corinne Gosmini . Cobalt-Catalyzed Vinylation of Aromatic Halides Using β-Halostyrene: Experimental and DFT Studies. The Journal of Organic Chemistry 2012, 77 (11) , 5056-5062. https://doi.org/10.1021/jo3005149
    73. Quan Manh Phung, Steven Vancoillie, and Kristine Pierloot . A Multiconfigurational Perturbation Theory and Density Functional Theory Study on the Heterolytic Dissociation Enthalpy of First-Row Metallocenes. Journal of Chemical Theory and Computation 2012, 8 (3) , 883-892. https://doi.org/10.1021/ct200875m
    74. Wanyi Jiang, Nathan J. DeYonker, John J. Determan, and Angela K. Wilson . Toward Accurate Theoretical Thermochemistry of First Row Transition Metal Complexes. The Journal of Physical Chemistry A 2012, 116 (2) , 870-885. https://doi.org/10.1021/jp205710e
    75. Alvaro Muñoz-Castro . Nature of the Excited State of Triangulo Silver N-Heterocyclic Carbenes. Insights from Relativistic DFT Calculations. The Journal of Physical Chemistry A 2012, 116 (1) , 520-525. https://doi.org/10.1021/jp2071277
    76. Paola Belanzoni, Carine Michel, and Evert Jan Baerends . Cu(bipy)2+/TEMPO-Catalyzed Oxidation of Alcohols: Radical or Nonradical Mechanism?. Inorganic Chemistry 2011, 50 (23) , 11896-11904. https://doi.org/10.1021/ic200725k
    77. Rosendo Valero, Francesc Illas, and Donald G. Truhlar . Magnetic Coupling in Transition-Metal Binuclear Complexes by Spin-Flip Time-Dependent Density Functional Theory. Journal of Chemical Theory and Computation 2011, 7 (11) , 3523-3531. https://doi.org/10.1021/ct200393s
    78. Mikael Kepenekian, Adrian Calborean, Valentina Vetere, Boris Le Guennic, Vincent Robert, and Pascale Maldivi . Toward Reliable DFT Investigations of Mn-Porphyrins through CASPT2/DFT Comparison. Journal of Chemical Theory and Computation 2011, 7 (11) , 3532-3539. https://doi.org/10.1021/ct2004066
    79. Alvaro Muñoz-Castro . Bonding and Magnetic Response Properties of Several Toroid Structures. Insights of the Role of Ni2S2 as a Building Block from Relativistic Density Functional Theory Calculations. The Journal of Physical Chemistry A 2011, 115 (39) , 10789-10794. https://doi.org/10.1021/jp2028438
    80. Thomas F. Hughes and Richard A. Friesner . Systematic Investigation of the Catalytic Cycle of a Single Site Ruthenium Oxygen Evolving Complex Using Density Functional Theory. The Journal of Physical Chemistry B 2011, 115 (29) , 9280-9289. https://doi.org/10.1021/jp2026576
    81. Wen-Ge Han and Louis Noodleman . DFT Calculations for Intermediate and Active States of the Diiron Center with a Tryptophan or Tyrosine Radical in Escherichia coli Ribonucleotide Reductase. Inorganic Chemistry 2011, 50 (6) , 2302-2320. https://doi.org/10.1021/ic1020127
    82. Lluís Armangué, Miquel Solà, and Marcel Swart . Nuclear Shieldings with the SSB-D Functional. The Journal of Physical Chemistry A 2011, 115 (7) , 1250-1256. https://doi.org/10.1021/jp108327c
    83. Thomas F. Hughes and Richard A. Friesner. Correcting Systematic Errors in DFT Spin-Splitting Energetics for Transition Metal Complexes. Journal of Chemical Theory and Computation 2011, 7 (1) , 19-32. https://doi.org/10.1021/ct100359x
    84. Daisuke Sato, Yoshihito Shiota, Gergely Juhász, and Kazunari Yoshizawa. Theoretical Study of the Mechanism of Valence Tautomerism in Cobalt Complexes. The Journal of Physical Chemistry A 2010, 114 (49) , 12928-12935. https://doi.org/10.1021/jp107391x
    85. Marcel Swart, Miquel Solà, and F. Matthias Bickelhaupt . Density Functional Calculations of E2 and SN2 Reactions: Effects of the Choice of Method, Algorithm, and Numerical Accuracy. Journal of Chemical Theory and Computation 2010, 6 (10) , 3145-3152. https://doi.org/10.1021/ct100454c
    86. Ida M. B. Nielsen and Kevin Leung . Cobalt−Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water. 1. A Density Functional Study of Intermediates. The Journal of Physical Chemistry A 2010, 114 (37) , 10166-10173. https://doi.org/10.1021/jp101180m
    87. Wen-Ge Han, Debra Ann Giammona, Donald Bashford and Louis Noodleman . Density Functional Theory Analysis of Structure, Energetics, and Spectroscopy for the Mn−Fe Active Site of Chlamydia trachomatis Ribonucleotide Reductase in Four Oxidation States. Inorganic Chemistry 2010, 49 (16) , 7266-7281. https://doi.org/10.1021/ic902051t
    88. Marcel Swart, Mireia Güell, Josep M. Luis and Miquel Solà . Spin-State-Corrected Gaussian-Type Orbital Basis Sets. The Journal of Physical Chemistry A 2010, 114 (26) , 7191-7197. https://doi.org/10.1021/jp102712z
    89. Angela Rosa, Giampaolo Ricciardi and Evert Jan Baerends . Is [FeO]2+ the Active Center Also in Iron Containing Zeolites? A Density Functional Theory Study of Methane Hydroxylation Catalysis by Fe-ZSM-5 Zeolite. Inorganic Chemistry 2010, 49 (8) , 3866-3880. https://doi.org/10.1021/ic1000073
    90. Yan Zhao and Donald G. Truhlar . Density Functional Calculations of E2 and SN2 Reactions: Effects of the Choice of Density Functional, Basis Set, and Self-Consistent Iterations. Journal of Chemical Theory and Computation 2010, 6 (4) , 1104-1108. https://doi.org/10.1021/ct100082z
    91. Steven Vancoillie, Hailiang Zhao, Mariusz Radoń and Kristine Pierloot . Performance of CASPT2 and DFT for Relative Spin-State Energetics of Heme Models. Journal of Chemical Theory and Computation 2010, 6 (2) , 576-582. https://doi.org/10.1021/ct900567c
    92. Shengfa Ye and Frank Neese. Accurate Modeling of Spin-State Energetics in Spin-Crossover Systems with Modern Density Functional Theory. Inorganic Chemistry 2010, 49 (3) , 772-774. https://doi.org/10.1021/ic902365a
    93. Panida Surawatanawong, Jesse W. Tye and Michael B. Hall. Density Functional Theory Applied to a Difference in Pathways Taken by the Enzymes Cytochrome P450 and Superoxide Reductase: Spin States of Ferric Hydroperoxo Intermediates and Hydrogen Bonds from Water. Inorganic Chemistry 2010, 49 (1) , 188-198. https://doi.org/10.1021/ic9017272
    94. Carine Michel, Paola Belanzoni, Patrick Gamez, Jan Reedijk and Evert Jan Baerends . Activation of the C−H Bond by Electrophilic Attack: Theoretical Study of the Reaction Mechanism of the Aerobic Oxidation of Alcohols to Aldehydes by the Cu(bipy)2+/2,2,6,6-Tetramethylpiperidinyl-1-oxy Cocatalyst System. Inorganic Chemistry 2009, 48 (24) , 11909-11920. https://doi.org/10.1021/ic902155m
    95. Paola Belanzoni, Leonardo Bernasconi and Evert Jan Baerends . O2 Activation in a Dinuclear Fe(II)/EDTA Complex: Spin Surface Crossing As a Route to Highly Reactive Fe(IV)oxo Species. The Journal of Physical Chemistry A 2009, 113 (43) , 11926-11937. https://doi.org/10.1021/jp9033672
    96. Kasper P. Jensen and Jordi Cirera . Accurate Computed Enthalpies of Spin Crossover in Iron and Cobalt Complexes. The Journal of Physical Chemistry A 2009, 113 (37) , 10033-10039. https://doi.org/10.1021/jp900654j
    97. Ayjamal Abdurahman and Thomas Renger . Density Functional Studies of Iron-Porphyrin Cation with Small Ligands X (X: O, CO, NO, O2, N2, H2O, N2O, CO2). The Journal of Physical Chemistry A 2009, 113 (32) , 9202-9206. https://doi.org/10.1021/jp9032657
    98. Latévi Max Lawson Daku, Anna Castaings and Jean-Claude Marchon . Density-Functional Theory Study of the Stereochemistry of Chloroiron(III) and Chloromanganese(III) Complexes of a Bridled Chiroporphyrin. Inorganic Chemistry 2009, 48 (12) , 5164-5176. https://doi.org/10.1021/ic900031c
    99. V. L. Mazalova and A. V. Soldatov, S. Adam, A. Yakovlev, T. Möller, R. L. Johnston. Small Copper Clusters in Ar Shells: A Study of Local Structure. The Journal of Physical Chemistry C 2009, 113 (21) , 9086-9091. https://doi.org/10.1021/jp809401r
    100. Richard L. Lord, Franklin A. Schultz and Mu-Hyun Baik . Spin Crossover-Coupled Electron Transfer of [M(tacn)2]3+/2+ Complexes (tacn = 1,4,7-Triazacyclononane; M = Cr, Mn, Fe, Co, Ni). Journal of the American Chemical Society 2009, 131 (17) , 6189-6197. https://doi.org/10.1021/ja809552p
    Load more citations

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2004, 108, 25, 5479–5483
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp049043i
    Published May 28, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    1793

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.