Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications
- Catherine J. Murphy
- ,
- Tapan K. Sau
- ,
- Anand M. Gole
- ,
- Christopher J. Orendorff
- ,
- Jinxin Gao
- ,
- Linfeng Gou
- ,
- Simona E. Hunyadi
- , and
- Tan Li
Abstract
This feature article highlights work from the authors' laboratories on the synthesis, assembly, reactivity, and optical applications of metallic nanoparticles of nonspherical shape, especially nanorods. The synthesis is a seed-mediated growth procedure, in which metal salts are reduced initially with a strong reducing agent, in water, to produce ∼4 nm seed particles. Subsequent reduction of more metal salt with a weak reducing agent, in the presence of structure-directing additives, leads to the controlled formation of nanorods of specified aspect ratio and can also yield other shapes of nanoparticles (stars, tetrapods, blocks, cubes, etc.). Variations in reaction conditions and crystallographic analysis of gold nanorods have led to insight into the growth mechanism of these materials. Assembly of nanorods can be driven by simple evaporation from solution or by rational design with molecular-scale connectors. Short nanorods appear to be more chemically reactive than long nanorods. Finally, optical applications in sensing and imaging, which take advantage of the visible light absorption and scattering properties of the nanorods, are discussed.
This publication is licensed for personal use by The American Chemical Society.
*
To whom correspondence should be addressed: [email protected].
Introduction

Figure 1 Transmission electron micrographs (top), optical spectra (left), and photographs of (right) aqueous solutions of gold nanorods of various aspect ratios. Seed sample: aspect ratio 1; sample a, aspect ratio 1.35 ± 0.32; sample b, aspect ratio 1.95 ± 0.34; sample c, aspect ratio 3.06 ±0.28; sample d, aspect ratio 3.50 ± 0.29; sample e, aspect ratio 4.42 ± 0.23. Scale bars: 500 nm for a and b, 100 nm for c, d, e.
“Green” Synthesis of Metallic Nanorods with Tunable Aspect Ratio

Figure 2 Seed-mediated growth approach to making gold and silver nanorods of controlled aspect ratio. The specific conditions shown here, for 20 mL volume of seed solution, lead to high-aspect ratio gold nanorods. (bottom right) Transmission electron micrograph of gold nanorods that are an average of 500 nm long.

Figure 3 Experimental dependence of nanorod aspect ratio (vertical axis) on seed size. Gold nanorods were made using the seed-mediated protocols to obtain the highest aspect ratio nanorods for each seed size. Seeds were all anionic. The original data are from ref 99.

Figure 4 TEMs of gold nanoparticles of many shapes, all prepared with CTAB and in the presence of silver ion.98 Scale bars are 100 nm for A, B, C, D; and 500 nm for E, F. G.
Crystallography of Metal Nanorods: Insight into the Growth Mechanism

Figure 5 Cartoon of the crystallography of gold nanorods. The direction of elongation is [110]. The cross-sectional view is a pentagon; each end of the rod is capped with five triangular faces that are Au{111}. The sides of the rods are not as well-defined; either Au{100} or Au{110} faces, or both.

Figure 6 Dependence of gold nanorod aspect ratio on the tail length of the cationic surfactant CnTAB (all alkyltrimethylammonium bromides).






Figure 7 Cartoon illustrating “zipping”: the formation of the bilayer of CnTAB (squiggles) on the nanorod (black rectangle) surface may assist nanorod formation as more gold ion (black dots) is introduced. Reproduced from ref 104 with permission.

Figure 8 Proposed mechanism of surfactant-directed metal nanorod growth. The single crystalline seed particles have facets that are differentially blocked by surfactant (or an initial halide layer that then electrostatically attracts the cationic surfactant). Subsequent addition of metal ions and weak reducing agent lead to metallic growth at the exposed particle faces. In this example, the pentatetrahedral twin formation leads to Au {111} faces that are on the ends of the nanorods, leaving less stable faces of gold as the side faces, which are bound by the surfactant bilayer.
Assembling Nanorods in One, Two and Three Dimensions: Surface Chemistry Is Key

Figure 9 Cartoon of biotin-streptavidin assembly of gold nanorods; a biotin disulfide is added to biotinylate the rods, and subsequent addition of streptavidin causes noncovalent assembly. Inset: transmission electron micrograph of gold nanorod-streptavidin assemblies. The original data are from ref 86.

Figure 10 Dark field microscopic image of individual silver nanoparticles of various shapes. The field of view is ∼1 mm; the spot size of the scattered light is far larger than the true size of individual nanoparticles. The different colors are due to the different nanoparticle shapes and orientations.

Figure 11 Cartoon of layer-by-layer deposition of polymers via electrostatic interactions onto gold nanorods, followed by fixing to a complementary surface. Taken from ref 126 with permission.

Figure 12 Cartoon showing the preparation of a self-assembled monolayer of mercaptohexanoic acid (MHA) on a flat gold substrate, subsequent immersion into an aqueous solution of CTAB-capped gold nanorods at a pH greater than 6 (so that the acid group is deprotonated), and final immobilization of the nanorods on the surface, governed by electrostatic interactions. Also shown is an atomic force microscopy image of nanorods immobilized in this fashion; field of view, 5 μm.

Figure 13 CTAB-capped gold nanorods are assembled side-by-side as a function of pH in the presence of adipic acid.127 Monofunctional acids and long-chain diacids are not effective in analogous assembly reactions.127
Reactivity of Metallic Nanorods: Core−Shell Materials


Figure 14 Excess CTAB surfactant is removed from nanorods by centrifugation and washing. MPTMS is added, followed by sodium silicate, to make SiO2-coated nanorods.
Optical Properties of Metallic Nanorods and Nanowires: Chemical Sensing and Imaging

Figure 15 Dark field microscopy image of gold nanocubes (left) and gold “nanohexagons” (right), taken on solutions dried down on a microscope slide. The field of view is ∼1 mm. Insets: transmission electron micrographs of the nanoparticles, scale bars = 100 nm.
Summary and Future Directions
Biographies
Catherine J. Murphy is the Guy F. Lipscomb Professor of Chemistry at the University of South Carolina. She received BS degrees in chemistry and in biochemistry from the University of Illinois at Urbana-Champaign in 1986, where she performed undergraduate research in organometallic chemistry with T. B. Rauchfuss. She obtained a Ph.D. in inorganic chemistry from the University of Wisconsin in 1990, under the direction of Arthur B. Ellis. She was an NSF and NIH postdoctoral fellow at the California Institute of Technology from 1990 to 1993 in the laboratory of Jacqueline K. Barton. Since 1993 she has been on the faculty at South Carolina. Her research interests include the synthesis, characterization, and optical applications of inorganic nanomaterials; coordination compounds for optical sensing; and optical probes of local DNA structure and dynamics. She has won numerous research and teaching awards and sits on the editorial advisory board for seven journals.
Tapan K. Sau is an assistant professor in the Department of Chemistry at Panjab University, Chandigarh, India, and was on leave 2003−2004 to work in Catherine J. Murphy's laboratory as a postdoctoral research fellow. He obtained his Ph.D. from the Indian Institute of Technology in Kharagpur, under the direction of Tarasankar Pal. His research interests center on the synthesis and assembly of inorganic nanoparticles.
Anand M. Gole has been a postdoctoral research fellow in Catherine J. Murphy's group at the University of South Carolina since November, 2003. He obtained his Ph.D. degree from the National Chemical Laboratory, Pune, India, under the direction of Murali Sastry, and thereafter held a one-year postdoctoral fellowship at the Laboratoire de Physique des Solides, Orsay, France, before joining the University of South Carolina. His past and current research interests include synthesis, surface modification, organization and bioconjugation of inorganic nanoparticles and nanorods, studies on protein-lipid biocomposites, 2-D assembly of nano and biocomposites using various self-assembly techniques, polymer-surfactant and nanoparticle-lipid interactions on surfaces and interfaces.
Christopher J. Orendorff is a postdoctoral research fellow at the University of South Carolina. He earned his Ph.D. degree in analytical chemistry from the University of Arizona in 2003, under the direction of Jeanne Pemberton. His research interests include the optical properties of metallic nanorods/nanowires, the development of these materials as chemical and biological sensors, and the manipulation of nanorods/nanowires on substrates and in solutions.
Jinxin Gao is a recent (May 2005) Ph.D. graduate from Catherine Murphy's group at the University of South Carolina. His research interests are in surfactant-directed and dendrimer-directed synthesis of inorganic nanoparticles for catalytic applications.
Linfeng Gou is a senior graduate student in Catherine Murphy's group at the University of South Carolina. He graduated from Xi’an University of Architecture & Technology in China and joined the Murphy group in 2001, with a research focus on the synthesis of, and catalyts with, inorganic nanoparticles.
Simona E. Hunyadi is a second-year graduate student in Catherine Murphy's group at the University of South Carolina. She received a Bachelor of Science degree in 1995 from Babes-Bolyai University, Romania, in Chemistry with a minor in Physics. In 1996 she completed a Master of Science degree from Babes-Bolyai University in Chemistry with an emphasis in modified electrodes. From 1996 to 2000 she conducted research in the field of Applied Electrochemistry with Prof. I.C. Popescu. Her research interests include synthesis and functionalization of nanostructured materials that include core-shell nanoparticles, hollow materials, photonic materials, bimetallic colloids, and bioluminescent materials.
Tan Li is a first-year graduate student in Catherine Murphy's group at the University of South Carolina. He received his BS degree in chemistry in 2003 from Shandong University, China, and has been at South Carolina since 2004.
Acknowledgment
We thank the University of South Carolina, the National Science Foundation, the National Institutes of Health, and the USC NanoCenter for financial support of our metal nanoparticle work. We also thank our many colleagues and collaborators who gave generously of their time, expertise, and facilities to assist us with our experiments.
This article references 170 other publications.
- 1El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257−264.Google ScholarThere is no corresponding record for this reference.
- 2Metal Nanoparticles: Synthesis, Characterization and Applications; Feldheim, D. L., Foss, C. A., Jr., Eds.; Marcel Dekker: New York, 2002.Google ScholarThere is no corresponding record for this reference.
- 3Daniel, M.-C.; Astruc, D. Chem. Rev.2004, 104, 293−346.Google ScholarThere is no corresponding record for this reference.
- 4Valden, M.; Lai, X.; Goodman, D. W. Science1998, 281, 1647−1650.Google ScholarThere is no corresponding record for this reference.
- 5Chen, M. S.; Goodman, D. W. Science2004, 306, 252−255.Google ScholarThere is no corresponding record for this reference.
- 6Huang, Y.; Duan, X.; Lieber, C. M. Science2001, 291, 630−633.Google ScholarThere is no corresponding record for this reference.
- 7Mallouk, T. E.; Kovtyukhova, N. I. Chem. Eur. J.2002, 8, 4354−4363.Google ScholarThere is no corresponding record for this reference.
- 8Law, M.; Sibuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. Science2004, 305, 1269−1273.Google ScholarThere is no corresponding record for this reference.
- 9Maier, S. A.; Brongersma, M. L.; Kik, P, G.; Meltzer, S.; Requichia, A. A. G.; Atwater, H. Adv. Mater. 2001, 13, 1501−1505.Google ScholarThere is no corresponding record for this reference.
- 10Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requichia, A. A. Nature Mater.2003, 2, 229−232.Google ScholarThere is no corresponding record for this reference.
- 11Fan, H.; Lu, Y.; Stump, A.; Reed, S. T.; Baer, T.; Schunk, R.; Perez-Luna, V.; Lopez, G. P.; Brinker, C. J. Nature2000, 405, 56−60.Google ScholarThere is no corresponding record for this reference.
- 12Gao, H. J.; Ji, B. H.; Jager, I. L.; Arzt, E.; Fratzl, P. Proc. Natl. Acad. Sci. U.S.A.2003, 100, 5597−5600.Google ScholarThere is no corresponding record for this reference.
- 13Ji, B. H.; Gao, H. J. J. Mech. Phys. Solids2004, 52, 1963−1990.Google ScholarThere is no corresponding record for this reference.
- 14Katz, E.; Willner, I. Angew. Chem., Int. Ed. Engl. 2004, 43, 6042−6108 [Epub ahead of print].Google ScholarThere is no corresponding record for this reference.
- 15Schultz, D. A. Curr. Opin. Biotechnol.2003, 14, 13−22.Google ScholarThere is no corresponding record for this reference.
- 16Salem, A. K.; Searson, P. C.; Leong, K. W. Nature Mater.2003, 2, 668−671.Google ScholarThere is no corresponding record for this reference.
- 17Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S.; Feldheim, D. L. J. Am. Chem. Soc. 2003, 125, 4700−4701.Google ScholarThere is no corresponding record for this reference.
- 18Hornyak, G. L.; Patrissi, C. J.; Martin, C. R. J. Phys. Chem. B1997, 101, 1548−1555, and references therein.Google ScholarThere is no corresponding record for this reference.
- 19Link, S.; El-Sayed, M. A. J. Phys. Chem. B1999, 103, 8410−8426.Google ScholarThere is no corresponding record for this reference.
- 20Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science1997, 277, 1078−1080.Google ScholarThere is no corresponding record for this reference.
- 21Schultz, S.; Smith, D. R.; Mock, J. J.; Schultz, D. A. Proc. Natl. Acad. Sci. U.S.A.2000, 97, 996−1001.Google ScholarThere is no corresponding record for this reference.
- 22Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. J. Chem. Phys. 2003, 116, 6755−6759.Google ScholarThere is no corresponding record for this reference.
- 23Kottman, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Chem. Phys. Lett. 2001, 341, 1−6.Google ScholarThere is no corresponding record for this reference.
- 24Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B2003, 107, 668−677.Google ScholarThere is no corresponding record for this reference.
- 25Sosa, I. O.; Noguez, C.; Barrera, R. G. J. Phys. Chem. B2003, 107, 6269−6275.Google ScholarThere is no corresponding record for this reference.
- 26Garrell, R. Anal. Chem. 1989, 61, 401A−411A.Google ScholarThere is no corresponding record for this reference.
- 27Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1998, 27, 241−250.Google ScholarThere is no corresponding record for this reference.
- 28Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev.1999, 99, 2957−2975.Google ScholarThere is no corresponding record for this reference.
- 29Nie, S.; Emory, S. R. Science1997, 275, 1102−1106.Google ScholarThere is no corresponding record for this reference.
- 30Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. J. Phys. Chem. B2003, 107, 9964−9972.Google ScholarThere is no corresponding record for this reference.
- 31Imura, K.; Nagahara, T.; Okamoto, H. J. Am. Chem. Soc.2004, 126, 12730−12731.Google ScholarThere is no corresponding record for this reference.
- 32Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Nano Lett. 2003, 3, 1229−1233.Google ScholarThere is no corresponding record for this reference.
- 33Hanarp, P.; Kall, M.; Sutherland, D. S. J. Phys. Chem. B2003, 107, 5768−5772.Google ScholarThere is no corresponding record for this reference.
- 34Gluodenis, M.; Foss, C. A., Jr. J. Phys. Chem. B2002, 106, 9484−9489.Google ScholarThere is no corresponding record for this reference.
- 35Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. A2003, 107, 3372−3378.Google ScholarThere is no corresponding record for this reference.
- 36Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science2000, 289, 1757−1760.Google ScholarThere is no corresponding record for this reference.
- 37Kim, Y.; Johnson, R. C.; Hupp, J. T. Nano Lett. 2001, 1, 165−167.Google ScholarThere is no corresponding record for this reference.
- 38Thanh, N. T. K.; Rosenzweig, Z. Anal. Chem. 2002, 74, 1624−1628.Google ScholarThere is no corresponding record for this reference.
- 39Nicewarmer-Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Science2001, 294, 137−141.Google ScholarThere is no corresponding record for this reference.
- 40Kneipp, K.; Haka, A. S.; Kneipp, H.; Badizadegan, K.; Yoshizawa, N.; Boone, C.; Shafer-Peltier, K. E.; Motz, J. T.; Dasari, R. R.; Feld, M. S. Appl. Spectrosc.2002, 56, 150−154.Google ScholarThere is no corresponding record for this reference.
- 41McFarland, A. D.; Van Duyne, R. P. Nano Lett. 2003, 3, 1057−1062.Google ScholarThere is no corresponding record for this reference.
- 42Grubisha, D. S.; Lipert, R. J.; Park, H. Y.; Driskell, J.; Porter, M. D. Anal. Chem. 2003, 75, 5936−5943.Google ScholarThere is no corresponding record for this reference.
- 43Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. J. Am. Chem. Soc. 2003, 125, 588−593.Google ScholarThere is no corresponding record for this reference.
- 44Obare, S. O.; Hollowell, R. E.; Murphy, C. J. Langmuir2002, 18, 10407−10410.Google ScholarThere is no corresponding record for this reference.
- 45Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L. Anal. Chem. 2003, 75, 2377−2381.Google ScholarThere is no corresponding record for this reference.
- 46Roll, D.; Malicka, J.; Gryczynski, I.; Gryczynski, Z.; Lakowicz, J. R. Anal. Chem. 2003, 75, 3106−3113.Google ScholarThere is no corresponding record for this reference.
- 47Keating, C. D.; Kovaleski, K. M.; Natan, M. J. J. Phys. Chem. B1998, 102, 9404−9413.Google ScholarThere is no corresponding record for this reference.
- 48Maxwell, D. J.; Emory, S. R.; Nie, S. Chem. Mater. 2001, 13, 1082−1088.Google ScholarThere is no corresponding record for this reference.
- 49Gearheart, L.; Ploehn, H. J.; Murphy, C. J. J. Phys. Chem. B2001, 105, 12609−12615.Google ScholarThere is no corresponding record for this reference.
- 50Cao, Y.; Jin, R.; Mirkin, C. A. Science2002, 297, 1536−1540.Google ScholarThere is no corresponding record for this reference.
- 51Culha, M.; Stokes, D.; Allain, L. R.; Vo-Dinh, T. Anal. Chem. 2003, 75, 6196−6201.Google ScholarThere is no corresponding record for this reference.
- 52Templeton, A. C.; Pietron, J. J.; Murray, R. W.; Mulvaney, P. J. Phys. Chem. B2000, 104, 564−570.Google ScholarThere is no corresponding record for this reference.
- 53Xu, X.-H. N.; Brownlow, W. J.; Kyriacou, S. V.; Wan, Q.; Viola, J. J. Biochemistry2004, 43, 10400−10413.Google ScholarThere is no corresponding record for this reference.
- 54Cognet, L.; Tardin, C.; Boyer, D.; Choquet, D.; Tamarat, P.; Lounis, B. Proc. Natl. Acad. Sci. U.S.A.2003, 100, 11350−11355.Google ScholarThere is no corresponding record for this reference.
- 55Bailey, R. C.; Nam, J.-M.; Mirkin, C. A.; Hupp, J. T. J. Am. Chem. Soc. 2003, 125, 13541−13547.Google ScholarThere is no corresponding record for this reference.
- 56Nam, J.-M.; Thaxton, C. J.; Mirkin, C. A. Science2003, 301, 1884−1886.Google ScholarThere is no corresponding record for this reference.
- 57Xu, X.-H. N.; Chen, J.; Jeffers, R. B.; Kyriacou, S. Nano Lett. 2002, 2, 175−182.Google ScholarThere is no corresponding record for this reference.
- 58Nath, N.; Chilkoti, A. Anal. Chem. 2002, 74, 504−509.Google ScholarThere is no corresponding record for this reference.
- 59Sokolov, K.; Chumanov, G.; Cotton, T. M. Anal. Chem. 1998, 70, 3898−3905.Google ScholarThere is no corresponding record for this reference.
- 60Malicka, J.; Gryzczynski, I.; Lakowicz, J. R. Anal. Chem. 2003, 75, 4408−4414.Google ScholarThere is no corresponding record for this reference.
- 61Parfenov, A.; Gryzczynski, I.; Malicka, J.; Geddes, C. D.; Lakowicz, J. R. J. Phys. Chem. B2003, 107, 8829−8833.Google ScholarThere is no corresponding record for this reference.
- 62Lakowicz, J. R.; Geddes, C. D.; Gryzczynski, I.; Malicka, J.; Gryzczynski, Z.; Aslan, K.; Lukomski, J.; Matveera, E.; Zhang, J.; Badugn, R.; Huang, J. J. Fluorescence2004, 14, 425−441.Google ScholarThere is no corresponding record for this reference.
- 63Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Rivera, B.; Hazle, J. D.; Halas, N. J.; West, J. L. Proc. Natl. Acad. Sci. U.S.A.2003, 100, 13549−13554.Google ScholarThere is no corresponding record for this reference.
- 64Yu, Y.-Y.; Chang, E.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661−6664.Google ScholarThere is no corresponding record for this reference.
- 65Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435−445.Google ScholarThere is no corresponding record for this reference.
- 66Jana, N. R.; Gearheart, L. A.: Murphy, C. J. Chem. Commun. 2001, 617−618.Google ScholarThere is no corresponding record for this reference.
- 67Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B2001, 105, 4065−4067.Google ScholarThere is no corresponding record for this reference.
- 68Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80−82.Google ScholarThere is no corresponding record for this reference.
- 69Sun, Y.; Mayers, D.; Herricks, T.; Xia, Y. Nano Lett.2003, 3, 955−960.Google ScholarThere is no corresponding record for this reference.
- 70Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957−1962.Google ScholarThere is no corresponding record for this reference.
- 71Liu, M.; Guyot-Sionnest, P. J.Phys. Chem. B2004, 108, 5882−5888.Google ScholarThere is no corresponding record for this reference.
- 72Sau, T. K.; Murphy, C. J. Langmuir 2004, 20, 6416−6420.Google ScholarThere is no corresponding record for this reference.
- 73Walter, E. C.; Murray, B. J.; Favier, F.; Kaltenpoth, G.; Grunze, M.; Penner, R. M. J. Phys. Chem. B2002, 106, 11407−11411.Google ScholarThere is no corresponding record for this reference.
- 74Filankembo, A.; Giorgio, S.; Lisiecki, I.; Pileni, M.-P. J. Phys. Chem. B 2003, 107, 7492−7500.Google ScholarThere is no corresponding record for this reference.
- 75Sun, Y.; Xia, Y. Science2002, 298, 2176−2179.Google ScholarThere is no corresponding record for this reference.
- 76Sun, Y.; Xia, Y. Adv. Mater. 2002, 12, 1875−1881.Google ScholarThere is no corresponding record for this reference.
- 77Jin, R.; Cao, Y. C.; Han, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature2003, 425, 487−490.Google ScholarThere is no corresponding record for this reference.
- 78Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. Science2001, 294, 1901−1904.Google ScholarThere is no corresponding record for this reference.
- 79Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Science2001, 291, 2115−2117.Google ScholarThere is no corresponding record for this reference.
- 80Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L.-W.; Alivisatos, A. P. Nature2004, 430, 190−195.Google ScholarThere is no corresponding record for this reference.
- 81Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264−1265.Google ScholarThere is no corresponding record for this reference.
- 82Mbindyo, J. K. N.; Reiss, B. D.; Martin, B. R.; Keating, C. D.; Natan, M. J.; Mallouk, T. E. Adv. Mater. 2001, 13, 249−254.Google ScholarThere is no corresponding record for this reference.
- 83Van Bruggen, M. P. B.; Lekkerkerker, H. N. W. Langmuir2002, 18, 7141−7145.Google ScholarThere is no corresponding record for this reference.
- 84Li, L. S.; Alivisatos, A. P. Adv. Mater. 2003, 15, 408−411.Google ScholarThere is no corresponding record for this reference.
- 85Jana, N. R.; Gearheart, L. A.; Obare, S. O.; Johnson, C. J.; Edler, K. J.; Mann, S.; Murphy, C. J. J. Mater. Chem.2002, 12, 2909−2912.Google ScholarThere is no corresponding record for this reference.
- 86Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914−13915.Google ScholarThere is no corresponding record for this reference.
- 87Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Science2004, 304, 1787−1790.Google ScholarThere is no corresponding record for this reference.
- 88Yu, J.-S.; Kim, J. Y.; Lee, S.; Mbindyo, J. K. N.; Martin, B. R.; Mallouk, T. E. Chem Commun. 2000, 2445−2446.Google ScholarThere is no corresponding record for this reference.
- 89Glotzer, S. C. Science2004, 306, 419−420.Google ScholarThere is no corresponding record for this reference.
- 90Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem., Int. Ed. Engl. 2004, 43, 4774−4777.Google ScholarThere is no corresponding record for this reference.
- 91Shah, P. S.; Hanrath, T.; Johnston, K. P.; Korgel, B. A. J. Phys. Chem. B2004, 108, 9574−9587.Google ScholarThere is no corresponding record for this reference.
- 92Ding, Y.; Wang, Z. L. J. Phys. Chem. B2004, 108, 12280−12291.Google ScholarThere is no corresponding record for this reference.
- 93Scott, R. W. J.; Wilson, O. M.; Crooks, R. M. J. Phys. Chem. B2005, 109, 692−704.Google ScholarThere is no corresponding record for this reference.
- 94Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater.2001, 13, 1389−1393.Google ScholarThere is no corresponding record for this reference.
- 95Jana, N.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782−6786.Google ScholarThere is no corresponding record for this reference.
- 96Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. Mater. Chem. 2002, 12, 1765−1770.Google ScholarThere is no corresponding record for this reference.
- 97Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414−416.Google ScholarThere is no corresponding record for this reference.
- 98Sau, T. K.; Murphy, C. J J. Am. Chem. Soc. 2004, 126, 8648−8649.Google ScholarThere is no corresponding record for this reference.
- 99Gole, A.; Murphy, C. J. Chem. Mater. 2004, 16, 3633−3640.Google ScholarThere is no corresponding record for this reference.
- 100Nikoobakht, B.; El-Sayed, M. A. Langmuir2001, 17, 6368−6374.Google ScholarThere is no corresponding record for this reference.
- 101Filankembo, A.; Pileni, M. P. J. Phys. Chem. B2000, 104, 5865−5868.Google ScholarThere is no corresponding record for this reference.
- 102Caswell, K. K.; Bender, C. M.; Murphy, C. J. Nano Lett.2003, 3, 667−669.Google ScholarThere is no corresponding record for this reference.
- 103Gai, P. L.; Harmer, M. A. Nano Lett.2002, 2, 771−774.Google ScholarThere is no corresponding record for this reference.
- 104Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir2003, 19, 9065−9070.Google ScholarThere is no corresponding record for this reference.
- 105Sau, T. K.; Murphy, C. J. Langmuir2005, 21, 2923−2929.Google ScholarThere is no corresponding record for this reference.
- 106Anacker, E. W. In Cationic Surfactants; Jungermann, E., Ed.; Marcel Dekker: New York, 1970.Google ScholarThere is no corresponding record for this reference.
- 107Magnussen, O. M.; Ocko, B. M.; Wang, J. X.; Adzic, R. R. J. Phys. Chem. 1996, 100, 5500−5508.Google ScholarThere is no corresponding record for this reference.
- 108Ocko, B. M.; Magnussen, O. M.; Wang, J. X.; Wandlowski, T. Phys. Rev. B1996, 53, R7654−R7657.Google ScholarThere is no corresponding record for this reference.
- 109Wang, J. X.; Marinkovic, N. S.; Adzic, R. R. Colloids Surf. A1998, 134, 165−171.Google ScholarThere is no corresponding record for this reference.
- 110Shi, Z. C.; Lipkowski, J.; Mirwald, S.; Pettinger, B. J. Chem. Soc.,Faraday Trans. 1996, 92, 3737−3746.Google ScholarThere is no corresponding record for this reference.
- 111Zou, S. Z.; Gao, X. P.; Weaver, M. J. Surf. Sci. 2000, 452, 44−57.Google ScholarThere is no corresponding record for this reference.
- 112Perez-Juste, J.; Liz-Marzan, L. M.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Adv. Funct. Mater. 2004, 14, 571−579.Google ScholarThere is no corresponding record for this reference.
- 113Diao, J.; Gall, K.; Dunn, M. L. Nature Mater.2003, 2, 656−660.Google ScholarThere is no corresponding record for this reference.
- 114van der Zande, B. M. I.; Pages, L.; Hikmet, R. A. M.; van Blaaderen, A. J. Phys. Chem. B1999, 103, 5761−5767.Google ScholarThere is no corresponding record for this reference.
- 115Artemyer, M.; Muller, B.; Woggon, U. Nano Lett.2003, 3, 509−512.Google ScholarThere is no corresponding record for this reference.
- 116Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V J. Phys. Chem. B2004, 108, 13066−13068.Google ScholarThere is no corresponding record for this reference.
- 117van der Zande, B. M. I.; Koper, G. J. M.; Lekkerkerker, H. N. W. J. Phys. Chem. B1999, 103, 5754−5760.Google ScholarThere is no corresponding record for this reference.
- 118Varghese, S.; Narayanankutty, S.; Bastiaansen, C. W. M.; Crawford, G. P.; Broer, D. J. Adv. Mater. 2004, 16, 1600−1605.Google ScholarThere is no corresponding record for this reference.
- 119Raschke, G.; Kowarik, S.; Franzl, T.; Sonnichsen, C.; Klar, T. A.; Feldmann, J.; Nichtl, A.; Kurzinger, K. Nano Lett. 2003, 3, 935−938.Google ScholarThere is no corresponding record for this reference.
- 120Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3, 485−491.Google ScholarThere is no corresponding record for this reference.
- 121Prikulis, J.; Svedberg, F.; Kall, M.; Enger, J.; Ramser, K.; Goksor, M.; Hanstorp, D. Nano Lett. 2004, 4, 115−118.Google ScholarThere is no corresponding record for this reference.
- 122Sonnichsen, C.; Alivisatos, A. P. Nano Lett. 2005, 5, 301−304.Google ScholarThere is no corresponding record for this reference.
- 123Maier, S. A.; Kik, P. G.; Atwater, H. A. Appl. Phys. Lett.2002, 81, 1714−1716.Google ScholarThere is no corresponding record for this reference.
- 124Gabriel, J.-C. P.; Davidson, P. Top. Curr. Chem. 2003, 226, 119−172.Google ScholarThere is no corresponding record for this reference.
- 125Caruso, F. Top. Curr. Chem. 2003, 227, 145−168.Google ScholarThere is no corresponding record for this reference.
- 126Gole, A.; Murphy, C. J. Chem. Mater. 2005, 17, 1325−1330.Google ScholarThere is no corresponding record for this reference.
- 127Orendorff, C. J.; Hankins, P.; Murphy, C. J. Langmuir 2005, 21, 2022−2026.Google ScholarThere is no corresponding record for this reference.
- 128Stoeva, S. I.; Prasad, B. L. V.; Uma, S.; Stoimenov, P. K.; Zaikovski, V.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B2003, 107, 7441−7448.Google ScholarThere is no corresponding record for this reference.
- 129Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun.2001, 1264−1265.Google ScholarThere is no corresponding record for this reference.
- 130Love, C. J.; Urbach, A. R.; Prentiss, M. G.; Whitesides, G. M. J. Am. Chem. Soc.2003, 125, 12696−12697.Google ScholarThere is no corresponding record for this reference.
- 131Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1997.Google ScholarThere is no corresponding record for this reference.
- 132Rodriguez-Gonsalez, B.; Sanchez-Iglesias, A.; Giersig, M.; Liz-Marzan, L. M. Faraday Discuss. 2004, 125, 133−144.Google ScholarThere is no corresponding record for this reference.
- 133Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Langmuir2002, 18, 922−927.Google ScholarThere is no corresponding record for this reference.
- 134Hardikar, V. V.; Matijevic, E. J. Colloid Interface Sci.2000, 221, 133−136.Google ScholarThere is no corresponding record for this reference.
- 135Mulvaney, P.; Liz-Marzan, L. M.; Giersig, M.; Ung, T. J. Mater. Chem. 2000, 10, 1259−1270.Google ScholarThere is no corresponding record for this reference.
- 136Lu, Y.; Yin, Y. D.; Li, X. Z.; Xia, Y. Nano Lett.2002, 2, 785−788.Google ScholarThere is no corresponding record for this reference.
- 137Mine, E.; Yamada, A.; Kobayashi, Y.; Konno, M.; Liz-Marzan, L. M. J. Colloid Interface Sci. 2003, 264, 385−390.Google ScholarThere is no corresponding record for this reference.
- 138Obare, S. O.; Jana, N. R.; Murphy, C. J. Nano Lett.2001, 1, 601−603.Google ScholarThere is no corresponding record for this reference.
- 139Andrew, P.; Barnes, W. L. Science2004, 306, 1002−1005.Google ScholarThere is no corresponding record for this reference.
- 140Creighton, J. A.; Eadon, D. G. J. Chem. Soc., Faraday Trans. 1991, 87, 3881−3891.Google ScholarThere is no corresponding record for this reference.
- 141Prodan, E.; Radloff, C.; Halas, N. J.; Norlander, P. Science2003, 302, 419−422.Google ScholarThere is no corresponding record for this reference.
- 142Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kall, M.; Bryant, G. W.; Garcia de Abajo, F. J. Phys. Rev. Lett.2003, 90, 57401.Google ScholarThere is no corresponding record for this reference.
- 143Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc.1998, 120, 1959−1964.Google ScholarThere is no corresponding record for this reference.
- 144Lin, S. Y.; Liu, S. W.; Lin, C. W.; Chen, C. H. Anal. Chem. 2002, 74, 330−335.Google ScholarThere is no corresponding record for this reference.
- 145Liu, J. W.; Lu, Y. Anal. Chem. 2004, 76, 1627−1632.Google ScholarThere is no corresponding record for this reference.
- 146Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer: Berlin, 1995.Google ScholarThere is no corresponding record for this reference.
- 147Lazarides, A. A.; Schatz, G. C. J. Phys. Chem. B2000, 104, 460−467.Google ScholarThere is no corresponding record for this reference.
- 148Su, K.-H.; Wei, Q.-H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3, 1087−1090.Google ScholarThere is no corresponding record for this reference.
- 149Haes, A. J.; Chang, L.; Klein, W. L.; Van Duyne, R. P. J. Am. Chem. Soc. 2005, 127, 2264−2271.Google ScholarThere is no corresponding record for this reference.
- 150Vidal, F. J. G.; Pendry, J. B. Phys. Rev. Lett. 1996, 77, 1163−1166.Google ScholarThere is no corresponding record for this reference.
- 151Wang, D. S.; Kerker, M. Phys. Rev. B1981, 24, 1777−1790.Google ScholarThere is no corresponding record for this reference.
- 152Markel, V. A.; Shalaev, V. M.; Zhang, P.; Huynh, W.; Tay, L.; Haslett, T. L.; Moskovits, M. Phys. Rev. B 1999, 59, 10903−10909.Google ScholarThere is no corresponding record for this reference.
- 153Su, K.-H.; Wei, Q.-H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3, 1087−1090.Google ScholarThere is no corresponding record for this reference.
- 154Atay, T.; Song, J-. H.; Murmikko, A. V. Nano Lett.2004, 4, 1627−1731.Google ScholarThere is no corresponding record for this reference.
- 155Fromm, D. P.; Sundaramurthy, A.; Schuck, P. J.; Kino, G.; Moerner, W. E. Nano Lett.2004, 4, 957−961.Google ScholarThere is no corresponding record for this reference.
- 156Schatz, G. C. Acc. Chem. Res.1984, 17, 370−376.Google ScholarThere is no corresponding record for this reference.
- 157Gersten, J. I. J. Chem. Phys.1980, 72, 5779−5780.Google ScholarThere is no corresponding record for this reference.
- 158Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Nano Lett.2003, 3, 1229−1323.Google ScholarThere is no corresponding record for this reference.
- 159Jeong, D. H.; Zhang, Y. X.; Moskovits, M. J. Phys. Chem. B2004, 108, 12724−12728.Google ScholarThere is no corresponding record for this reference.
- 160Yao, J. L.; Pan, G. P.; Xue, K. H.; Wu, D. Y.; Ren, B.; Sun, D. M.; Tang, J.; Xu, X.; Tian, Z. Q. Pure Appl. Chem. 2000, 72, 221−228.Google ScholarThere is no corresponding record for this reference.
- 161Nikoobakht, B.; Wang, J.; El-Sayed, M. A. Chem. Phys. Lett.2002, 366, 17−23.Google ScholarThere is no corresponding record for this reference.
- 162Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. A2003, 107, 3372−3378.Google ScholarThere is no corresponding record for this reference.
- 163Orendorff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J. Chem. Phys. Chem., submitted.Google ScholarThere is no corresponding record for this reference.
- 164Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Anal. Chem. 2005, 77, 3261−3266.Google ScholarThere is no corresponding record for this reference.
- 165Shchegrov, A. V.; Novikov, I. V.; Maradudin, A. A. Phys. Rev. Lett. 1997, 78, 4269−4272.Google ScholarThere is no corresponding record for this reference.
- 166Holland, W. R.; Hall, D. G. Phys. Rev. B1983, 27, 7765−7768.Google ScholarThere is no corresponding record for this reference.
- 167Kume, T.; Nakagawa, N.; Yamamoto, K. Solid State Commun.1995, 93, 171−175.Google ScholarThere is no corresponding record for this reference.
- 168Lyon, L. A.; Musick, M. D.; Natan, M. J. Anal. Chem.1998, 70, 5177−5183.Google ScholarThere is no corresponding record for this reference.
- 169Lyon, L. A.; Pena, D. J.; Natan, M. J. J. Phys. Chem. B1999, 103, 5826−5831.Google ScholarThere is no corresponding record for this reference.
- 170Hutter, E.; Cha, S.; Liu, J.-F.; Park, J.; Yi, J.; Fendler, J. H.; Roy, D. J. Phys. Chem. B2001, 105, 8−12.Google ScholarThere is no corresponding record for this reference.
Cited By
This article is cited by 2659 publications.
- Jin Jia, Nadia Metzkow, Sang-Min Park, Yuhao Leo Wu, Alexander D. Sample, Bundit Diloknawarit, Insub Jung, Teri W. Odom. Spike Growth on Patterned Gold Nanoparticle Scaffolds. Nano Letters 2023, Article ASAP.
- Dheeraj Pratap, Rizul Gautam, Amit Kumar Shaw, Vikas, Sanjeev Soni. Broadband Near-Infrared Photothermal Response of Tissue-Mimicking Phantoms Embedded with Plasmonic Gold Nanorod Aggregates: Implications for the Non-invasive Eradication of Malignant Tumors. ACS Applied Nano Materials 2023, 6
(22)
, 21350-21358. https://doi.org/10.1021/acsanm.3c04750
- Seokhyun Yun, Sangwoon Yoon. Mode-Selective Plasmon Coupling between Au Nanorods and Au Nanospheres. The Journal of Physical Chemistry Letters 2023, 14
(45)
, 10225-10232. https://doi.org/10.1021/acs.jpclett.3c02555
- Zhongqian Xi, Rui Zhang, Sven Thoröe-Boveleth, Fabian Kiessling, Twan Lammers, Roger M. Pallares. Improving Lyophilization and Long-Term Stability of Gold Nanostars for Photothermal Applications. ACS Applied Nano Materials 2023, 6
(18)
, 17336-17346. https://doi.org/10.1021/acsanm.3c03953
- Ruiyang You, Yang Ou, Rui Qi, Jian Yu, Fei Wang, Ying Jiang, Shihui Zou, Zhong-kang Han, Wentao Yuan, Hangsheng Yang, Ze Zhang, Yong Wang. Revealing Temperature-Dependent Oxidation Dynamics of Ni Nanoparticles via Ambient Pressure Transmission Electron Microscopy. Nano Letters 2023, 23
(16)
, 7260-7266. https://doi.org/10.1021/acs.nanolett.3c00923
- Aleksey A. Nikitin, Victor A. Arkhipov, Nelly S. Chmelyuk, Anna V. Ivanova, Stepan S. Vodopyanov, Anastasiia S. Garanina, Mikhail A. Soldatov, Maksim A. Gritsai, Valeriy M. Cherepanov, Natalia N. Barbotina, Natalia V. Sviridenkova, Alexander G. Savchenko, Maxim A. Abakumov. Multifunctional Anisotropic Rod-Shaped CoFe2O4 Nanoparticles for Magnetic Resonance Imaging and Magnetomechanical Therapy. ACS Applied Nano Materials 2023, 6
(15)
, 14540-14551. https://doi.org/10.1021/acsanm.3c02690
- Jaeran Lee, Ji Won Ha. Effect of Light Irradiation on Hot Electron-Mediated Photoreduction of Silver Ions on Single Gold Nanorods without a Reducing Agent. The Journal of Physical Chemistry C 2023, 127
(28)
, 13609-13615. https://doi.org/10.1021/acs.jpcc.3c02137
- Hanyi Duan, Zhenyang Jia, Maham Liaqat, Matthew D. Mellor, Haiyan Tan, Mu-Ping Nieh, Yao Lin, Stephan Link, Christy F. Landes, Jie He. Site-Specific Chemistry on Gold Nanorods: Curvature-Guided Surface Dewetting and Supracolloidal Polymerization. ACS Nano 2023, 17
(13)
, 12788-12797. https://doi.org/10.1021/acsnano.3c03929
- Yun Chang Choi, Jaeyoung Lee, Jonah J. Ng, Cherie R. Kagan. Surface Engineering of Metal and Semiconductor Nanocrystal Assemblies and Their Optical and Electronic Devices. Accounts of Chemical Research 2023, 56
(13)
, 1791-1802. https://doi.org/10.1021/acs.accounts.3c00147
- Katherine M. Greskovich, Kelly M. Powderly, Maegen M. Kincanon, Nathan B. Forney, Catherine A. Jalomo, Anita Wo, Catherine J. Murphy. The Landscape of Gold Nanocrystal Surface Chemistry. Accounts of Chemical Research 2023, 56
(12)
, 1553-1564. https://doi.org/10.1021/acs.accounts.3c00109
- Jacob Pettine, Paolo Maioli, Fabrice Vallée, Natalia Del Fatti, David J. Nesbitt. Energy-Resolved Femtosecond Hot Electron Dynamics in Single Plasmonic Nanoparticles. ACS Nano 2023, 17
(11)
, 10721-10732. https://doi.org/10.1021/acsnano.3c02062
- Quynh N. Nguyen, Chenxiao Wang, Yuxin Shang, Annemieke Janssen, Younan Xia. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chemical Reviews 2023, 123
(7)
, 3693-3760. https://doi.org/10.1021/acs.chemrev.2c00468
- Josefina Ventre, Agustina L. Renna, Francisco J. Ibañez. How to Characterize 4–90 nm Size Gold Nanospheres with Experimental and Simulated UV–Vis and a Single SEM Image. Journal of Chemical Education 2023, 100
(4)
, 1589-1596. https://doi.org/10.1021/acs.jchemed.2c00927
- Jiahao Pan, Wei Wang, Min Ji, Xing Xing, Zhenda Lu. Robust Synthesis of Silver Nanocubes in Oil Phase. Crystal Growth & Design 2023, 23
(4)
, 2203-2208. https://doi.org/10.1021/acs.cgd.2c01204
- Seong Youl Lee, Eun Hae Kim, Tae-Woon Kim, Young-Bae Chung, Ji-Hee Yang, Sung Hee Park, Mi-Ai Lee, Sung Gi Min. Fabrication of Gold Nanoparticles and Cinnamaldehyde-Functionalized Paper-Based Films and Their Antimicrobial Activities against White Film-Forming Yeasts. ACS Omega 2023, 8
(9)
, 8256-8262. https://doi.org/10.1021/acsomega.2c06323
- José M. Gisbert-González, Valentín Briega-Martos, Francisco J. Vidal-Iglesias, Ángel Cuesta, Juan M. Feliu, E. Herrero. Spectroelectrochemical Studies of CTAB Adsorbed on Gold Surfaces in Perchloric Acid. Langmuir 2023, 39
(7)
, 2761-2770. https://doi.org/10.1021/acs.langmuir.2c03226
- Amy Chen, Asher C. Leff, Gregory T. Forcherio, Jonathan Boltersdorf, Taylor J. Woehl. Examining Silver Deposition Pathways onto Gold Nanorods with Liquid-Phase Transmission Electron Microscopy. The Journal of Physical Chemistry Letters 2023, 14
(6)
, 1379-1388. https://doi.org/10.1021/acs.jpclett.2c03666
- Yong Zhou, Jiahui Zhu, Jin Xi, Kuanguo Li, Wanxia Huang. Quantitative Insights into a Plasmonic Ruler Equation from the Perspective of Enhanced Near Field. The Journal of Physical Chemistry A 2023, 127
(1)
, 390-399. https://doi.org/10.1021/acs.jpca.2c07702
- Ajmeeta Sangtani, Kwahun Lee, Okhil K. Nag, Kimihiro Susumu, R. Joseph Weiblen, Mijin Kim, Igor Vurgaftman, Sz-Chian Liou, James B. Delehanty, Eunkeu Oh. Seedless Synthesis of Disulfide-Grafted Gold Nanoflowers with Size and Shape Control and Their Photothermally Mediated Cell Perforation. Chemistry of Materials 2023, 35
(1)
, 163-176. https://doi.org/10.1021/acs.chemmater.2c02979
- Abolfazl Faeli Qadikolae, Sumit Sharma. Facet Selectivity of Cetyltrimethyl Ammonium Bromide Surfactants on Gold Nanoparticles Studied Using Molecular Simulations. The Journal of Physical Chemistry B 2022, 126
(48)
, 10249-10255. https://doi.org/10.1021/acs.jpcb.2c06236
- Himanshu Singh, Sumit Sharma. Understanding the Hydration Thermodynamics of Cationic Quaternary Ammonium and Charge-Neutral Amine Surfactants. The Journal of Physical Chemistry B 2022, 126
(47)
, 9810-9820. https://doi.org/10.1021/acs.jpcb.2c03562
- Rui Zhang, Fabian Kiessling, Twan Lammers, Roger M. Pallares. Unraveling the Seedless Growth of Gold Nanostars through Fractional Factorial Design. The Journal of Physical Chemistry C 2022, 126
(43)
, 18580-18585. https://doi.org/10.1021/acs.jpcc.2c06396
- Keenan E. Dungey, Eric J. Voss, Susan D. Wiediger. Counting Gold: Using Atomic Force Microscopy to Characterize Gold Nanoparticles. Journal of Chemical Education 2022, 99
(7)
, 2684-2688. https://doi.org/10.1021/acs.jchemed.2c00232
- Bhavvya M. B., Ramya Prabhu B., Anjana Tripathi, Sudesh Yadav, Neena S. John, Ranjit Thapa, Ali Altaee, Manav Saxena, Akshaya K. Samal. A Unique Bridging Facet Assembly of Gold Nanorods for the Detection of Thiram through Surface-Enhanced Raman Scattering. ACS Sustainable Chemistry & Engineering 2022, 10
(22)
, 7330-7340. https://doi.org/10.1021/acssuschemeng.2c01089
- Fengqi Qin, Huan Zhang, Taixing Tan, Jie Wang, Huiling Liu, Cheng Wang. Three-Step, Seed-Mediated Synthesis of Ultrathin AgNWs in Aqueous Solution. Chemistry of Materials 2022, 34
(10)
, 4613-4620. https://doi.org/10.1021/acs.chemmater.2c00468
- Tanweepriya Das, James D. Smith, Md Hemayet Uddin, Raymond R. Dagastine. Anisotropic Particle Fabrication Using Thermal Scanning Probe Lithography. ACS Applied Materials & Interfaces 2022, 14
(17)
, 19878-19888. https://doi.org/10.1021/acsami.2c02885
- Can Huo, Zhineng Hao, Chungang Yuan, Yongsheng Chen, Jingfu Liu. Probing the Phytosynthesis Mechanism of Gold and Silver Nanoparticles by Sequential Separation of Plant Extract and Molecular Characterization with Ultra-High-Resolution Mass Spectrometry. ACS Sustainable Chemistry & Engineering 2022, 10
(12)
, 3829-3838. https://doi.org/10.1021/acssuschemeng.1c07021
- Mengqi Sun, Zixin Wang, Hui Wang. Chemically Driven Phase Segregation of Alloy Nanoparticles: A Versatile Route to Dual-Plasmonic Gold@Copper Chalcogenide Heteronanostructures. Chemistry of Materials 2022, 34
(4)
, 1965-1975. https://doi.org/10.1021/acs.chemmater.1c04451
- Elizabeth R. Hopper, Thomas M. R. Wayman, Jérémie Asselin, Bruno Pinho, Christina Boukouvala, Laura Torrente-Murciano, Emilie Ringe. Size Control in the Colloidal Synthesis of Plasmonic Magnesium Nanoparticles. The Journal of Physical Chemistry C 2022, 126
(1)
, 563-577. https://doi.org/10.1021/acs.jpcc.1c07544
- Marie-Paule Pileni. Self-Assemblies of Gold Nanocrystals: Unexpected Properties. The Journal of Physical Chemistry C 2021, 125
(47)
, 25936-25950. https://doi.org/10.1021/acs.jpcc.1c07560
- Alberto Escudero, Lola González-García, Robert Strahl, Dong Jin Kang, Juraj Drzic, Tobias Kraus. Large-Scale Synthesis of Hybrid Conductive Polymer–Gold Nanoparticles Using “Sacrificial” Weakly Binding Ligands for Printing Electronics. Inorganic Chemistry 2021, 60
(22)
, 17103-17113. https://doi.org/10.1021/acs.inorgchem.1c02350
- Menglin Song, Yongxin Lyu, Feng Guo, Sin-Yi Pang, Man-Chung Wong, Jianhua Hao. One-Step, DNA-Programmed, and Flash Synthesis of Anisotropic Noble Metal Nanostructures on MXene. ACS Applied Materials & Interfaces 2021, 13
(44)
, 52978-52986. https://doi.org/10.1021/acsami.1c16377
- Mengqi Sun, Nicholas Kreis, Kexun Chen, Xiaoqi Fu, Song Guo, Hui Wang. Covellite Nanodisks and Digenite Nanorings: Colloidal Synthesis, Phase Transitions, and Optical Properties. Chemistry of Materials 2021, 33
(21)
, 8546-8558. https://doi.org/10.1021/acs.chemmater.1c03259
- Amine Khitous, Ching-Fu Lin, Farid Kameche, Hsiao-Wen Zan, Jean-Pierre Malval, Dominique Berling, Olivier Soppera. Plasmonic Au Nanoparticle Arrays for Monitoring Photopolymerization at the Nanoscale. ACS Applied Nano Materials 2021, 4
(9)
, 8770-8780. https://doi.org/10.1021/acsanm.1c01377
- Hirak Chatterjee, Dorothy Bardhan, Sudip Kumar Pal, Sujit Kumar Ghosh. Correlated Rod-like Nanostructures: One Rule to Rule Them All. The Journal of Physical Chemistry C 2021, 125
(37)
, 20522-20530. https://doi.org/10.1021/acs.jpcc.1c04839
- Aline M. Vieira, Nathália Talita C. Oliveira, Kerolly T. P. B. Silva, Albert S. Reyna. Improving the Performance of Direct Solar Collectors and Stills by Controlling the Morphology and Size of Plasmonic Core–Shell Nanoheaters. The Journal of Physical Chemistry C 2021, 125
(36)
, 19653-19665. https://doi.org/10.1021/acs.jpcc.1c05952
- Akari Waragai, Taichi Nakagawa, Willie L. Hinze, Yoshitaka Takagai. Shape- and Size-Controlled Fabrication of Gold Nano-Urchins via Use of a Mixed Sodium Borohydride and Ascorbic Acid Reductant System. Langmuir 2021, 37
(36)
, 10702-10707. https://doi.org/10.1021/acs.langmuir.1c01303
- Katsuya Shiratori, Logan D. C. Bishop, Behnaz Ostovar, Rashad Baiyasi, Yi-Yu Cai, Peter J. Rossky, Christy F. Landes, Stephan Link. Machine-Learned Decision Trees for Predicting Gold Nanorod Sizes from Spectra. The Journal of Physical Chemistry C 2021, 125
(35)
, 19353-19361. https://doi.org/10.1021/acs.jpcc.1c03937
- Kathryn N. Guye, Hao Shen, Muammer Y. Yaman, Gerald Y. Liao, David Baker, David S. Ginger. Importance of Substrate–Particle Repulsion for Protein-Templated Assembly of Metal Nanoparticles. Langmuir 2021, 37
(30)
, 9111-9119. https://doi.org/10.1021/acs.langmuir.1c01194
- Pablo A. Mercadal, Luis A. Perez, Eduardo A. Coronado. Optical Properties of Silica-Coated Au Nanorods: Correlating Theory and Experiments for Determining the Shell Porosity. The Journal of Physical Chemistry C 2021, 125
(28)
, 15516-15526. https://doi.org/10.1021/acs.jpcc.1c02647
- Li Zhou, Xiaoyu Qiu, Zhiheng Lyu, Ming Zhao, Younan Xia. Pd–Au Asymmetric Nanopyramids: Lateral vs Vertical Growth of Au on Pd Decahedral Seeds. Chemistry of Materials 2021, 33
(13)
, 5391-5400. https://doi.org/10.1021/acs.chemmater.1c01489
- Mark Z. Griffiths, Wataru Shinoda. Analyzing the Role of Surfactants in the Colloidal Stability of Nanoparticles in Oil through Coarse-Grained Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2021, 125
(23)
, 6315-6321. https://doi.org/10.1021/acs.jpcb.1c01148
- Yinan Zhang, Zhi-bei Qu, Chu Jiang, Yingying Liu, Raghu Pradeep Narayanan, Dewight Williams, Xiaolei Zuo, Lihua Wang, Hao Yan, Huajie Liu, Chunhai Fan. Prescribing Silver Chirality with DNA Origami. Journal of the American Chemical Society 2021, 143
(23)
, 8639-8646. https://doi.org/10.1021/jacs.1c00363
- Annika Sickinger, Stefan Mecking. Origin of the Anisotropy and Structure of Ellipsoidal Poly(fluorene) Nanoparticles. Macromolecules 2021, 54
(11)
, 5267-5277. https://doi.org/10.1021/acs.macromol.1c00597
- Arunima Rajan, Niroj Kumar Sahu. Hydrophobic-to-Hydrophilic Transition of Fe3O4 Nanorods for Magnetically Induced Hyperthermia. ACS Applied Nano Materials 2021, 4
(5)
, 4642-4653. https://doi.org/10.1021/acsanm.1c00274
- Jun Zhu, R. Bruce Lennox. Insight into the Role of Ag in the Seed-Mediated Growth of Gold Nanorods: Implications for Biomedical Applications. ACS Applied Nano Materials 2021, 4
(4)
, 3790-3798. https://doi.org/10.1021/acsanm.1c00230
- Ryan J. Gasvoda, Wanxing Xu, Zhonghao Zhang, Scott Wang, Eric A. Hudson, Sumit Agarwal. Selective Gas-Phase Functionalization of SiO2 and SiNx Surfaces with Hydrocarbons. Langmuir 2021, 37
(13)
, 3960-3969. https://doi.org/10.1021/acs.langmuir.1c00212
- Wangmeng Hou, Wen Zhong, Hanying Zhao. Asymmetric Colloidal Particles Fabricated by Polymerization-Induced Surface Self-Assembly Approach. Macromolecules 2021, 54
(6)
, 2617-2626. https://doi.org/10.1021/acs.macromol.0c02772
- Shizhao Lu, Zijie Wu, Arthi Jayaraman. Molecular Modeling and Simulation of Polymer Nanocomposites with Nanorod Fillers. The Journal of Physical Chemistry B 2021, 125
(9)
, 2435-2449. https://doi.org/10.1021/acs.jpcb.1c00097
- Joshua D. Smith, Md Alimoor Reza, Nathanael L. Smith, Jianxin Gu, Maha Ibrar, David J. Crandall, Sara E. Skrabalak. Plasmonic Anticounterfeit Tags with High Encoding Capacity Rapidly Authenticated with Deep Machine Learning. ACS Nano 2021, 15
(2)
, 2901-2910. https://doi.org/10.1021/acsnano.0c08974
- John Tyler Wagner, Analeece K. Long, Michael B. Sumner, III, Ivan Cockman, Marvin Smith, Beverly Briggs Penland. Peptide Controlled Assembly of Palladium Nanoparticles on High-Aspect-Ratio Gold Nanorods. The Journal of Physical Chemistry C 2020, 124
(50)
, 27743-27753. https://doi.org/10.1021/acs.jpcc.0c07653
- Nora C. Buggy, Yifeng Du, Mei-Chen Kuo, Ryan J. Gasvoda, Soenke Seifert, Sumit Agarwal, E. Bryan Coughlin, Andrew M. Herring. Investigating Silver Nanoparticle Interactions with Quaternary Ammonium Functionalized Triblock Copolymers and Their Effect on Midblock Crystallinity. ACS Applied Polymer Materials 2020, 2
(11)
, 4914-4923. https://doi.org/10.1021/acsapm.0c00819
- Hao Lin, Jin-Xun Liu, Hong-Jun Fan, Wei-Xue Li. Morphology Evolution of FCC and HCP Cobalt Induced by a CO Atmosphere from Ab Initio Thermodynamics. The Journal of Physical Chemistry C 2020, 124
(42)
, 23200-23209. https://doi.org/10.1021/acs.jpcc.0c07386
- Rasool Nasseri, Yebin Lee, Kam C. Tam. Interfacial Control of the Synthesis of Cellulose Nanocrystal Gold Nanoshells. Langmuir 2020, 36
(38)
, 11215-11224. https://doi.org/10.1021/acs.langmuir.0c01283
- Auston G. Butterfield, Benjamin C. Steimle, Raymond E. Schaak. Retrosynthetic Design of Morphologically Complex Metal Sulfide Nanoparticles Using Sequential Partial Cation Exchange and Chemical Etching. ACS Materials Letters 2020, 2
(9)
, 1106-1114. https://doi.org/10.1021/acsmaterialslett.0c00287
- Stefen Stangherlin, Nicole Cathcart, Frederick Sato, Vladimir Kitaev. Gold Nanoprisms: Synthetic Approaches for Mastering Plasmonic Properties and Implications for Biomedical Applications. ACS Applied Nano Materials 2020, 3
(8)
, 8304-8318. https://doi.org/10.1021/acsanm.0c01741
- Yash Mantri, Jesse V. Jokerst. Engineering Plasmonic Nanoparticles for Enhanced Photoacoustic Imaging. ACS Nano 2020, 14
(8)
, 9408-9422. https://doi.org/10.1021/acsnano.0c05215
- KoczkurKallum M.Assistant Research Professor at the Institute for Micromanufacturingkkoczkur@indiana.
eduSkrabalakSara E.James H. Rudy Professor in the Department of Chemistrysskrabal@indiana. eduMichelle L. Personick, Professor, Wesleyan University. Metal Nanocrystals. 2020https://doi.org/10.1021/acs.infocus.7e4003 - Yang Liu, Yuda Li, Soojin Jeong, Yi Wang, Jun Chen, Xingchen Ye. Colloidal Synthesis of Nanohelices via Bilayer Lattice Misfit. Journal of the American Chemical Society 2020, 142
(29)
, 12777-12783. https://doi.org/10.1021/jacs.0c05175
- Xueying Ko, Sumit Sharma. A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Asymmetric Surfactant Molecules on Polar Surfaces. The Journal of Physical Chemistry B 2020, 124
(26)
, 5517-5524. https://doi.org/10.1021/acs.jpcb.0c02681
- Fan Nan, Zijie Yan. Optical Sorting at the Single-Particle Level with Single-Nanometer Precision Using Coordinated Intensity and Phase Gradient Forces. ACS Nano 2020, 14
(6)
, 7602-7609. https://doi.org/10.1021/acsnano.0c03478
- Kasimanat Vibulyaseak, Akihiko Kudo, Makoto Ogawa. Template Synthesis of Well-Defined Rutile Nanoparticles by Solid-State Reaction at Room Temperature. Inorganic Chemistry 2020, 59
(12)
, 7934-7938. https://doi.org/10.1021/acs.inorgchem.0c01214
- Lumin Zhang, Xiaojia Si, Frank Rominger, A. Stephen K. Hashmi. Visible-Light-Induced Radical Carbo-Cyclization/gem-Diborylation through Triplet Energy Transfer between a Gold Catalyst and Aryl Iodides. Journal of the American Chemical Society 2020, 142
(23)
, 10485-10493. https://doi.org/10.1021/jacs.0c03197
- Xiaoliang Chen, Feng He, Weina Fang, Jianlei Shen, Xiaoguo Liu, Yurui Xue, Huibiao Liu, Jiang Li, Lihua Wang, Yuliang Li, Chunhai Fan. DNA-Guided Room-Temperature Synthesis of Single-Crystalline Gold Nanostructures on Graphdiyne Substrates. ACS Central Science 2020, 6
(5)
, 779-786. https://doi.org/10.1021/acscentsci.0c00223
- Natalia K. Gushiken, Giordano T. Paganoto, Marcia L. A. Temperini, Fernanda S. Teixeira, Maria Cecilia Salvadori. Substrate for Surface-Enhanced Raman Spectroscopy Formed by Gold Nanoparticles Buried in Poly(methyl methacrylate). ACS Omega 2020, 5
(18)
, 10366-10373. https://doi.org/10.1021/acsomega.0c00133
- Hervé Portalès, Nicolas Goubet, Sandra Casale, Xiang Zhen Xu, Mostapha Ariane, Alain Mermet, Jérémie Margueritat, Lucien Saviot. Inelastic Light Scattering by Long Narrow Gold Nanocrystals: When Size, Shape, Crystallinity, and Assembly Matter. ACS Nano 2020, 14
(4)
, 4395-4404. https://doi.org/10.1021/acsnano.9b09993
- Xianghua Meng, Jacqueline Dyer, Yifeng Huo, Chaoyang Jiang. Greater SERS Activity of Ligand-Stabilized Gold Nanostars with Sharp Branches. Langmuir 2020, 36
(13)
, 3558-3564. https://doi.org/10.1021/acs.langmuir.0c00079
- Henrik Andersen Sveinsson, Anders Hafreager, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta, Anders Malthe-Sørenssen. Direct Atomic Simulations of Facet Formation and Equilibrium Shapes of SiC Nanoparticles. Crystal Growth & Design 2020, 20
(4)
, 2147-2152. https://doi.org/10.1021/acs.cgd.9b00612
- Brian S. Sheetz, Y.M. Nuwan D.Y. Bandara, Benjamin Rickson, Michael Auten, Jason R. Dwyer. Rapid, General-Purpose Patterning of Silicon Nitride Thin Films Under Ambient Conditions for Applications Including Fluid Channel and SERS Substrate Formation. ACS Applied Nano Materials 2020, 3
(3)
, 2969-2977. https://doi.org/10.1021/acsanm.0c00248
- Deshani Fernando, Shoukath Sulthana, Yolanda Vasquez. Cellular Uptake and Cytotoxicity of Varying Aspect Ratios of Gold Nanorods in HeLa Cells. ACS Applied Bio Materials 2020, 3
(3)
, 1374-1384. https://doi.org/10.1021/acsabm.9b00986
- Xin Wen, Sarah Lerch, Zhihang Wang, Bassem Aboudiab, Ali Reza Tehrani-Bagha, Eva Olsson, Kasper Moth-Poulsen. Synthesis of Palladium Nanodendrites Using a Mixture of Cationic and Anionic Surfactants. Langmuir 2020, 36
(7)
, 1745-1753. https://doi.org/10.1021/acs.langmuir.9b03804
- Jing Wang, Duanwei Liang, Qingqing Jin, Jie Feng, Xinjing Tang. Bioorthogonal SERS Nanotags as a Precision Theranostic Platform for in Vivo SERS Imaging and Cancer Photothermal Therapy. Bioconjugate Chemistry 2020, 31
(2)
, 182-193. https://doi.org/10.1021/acs.bioconjchem.0c00022
- Alexandra Gellé, Tony Jin, Luis de la Garza, Gareth D. Price, Lucas V. Besteiro, Audrey Moores. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chemical Reviews 2020, 120
(2)
, 986-1041. https://doi.org/10.1021/acs.chemrev.9b00187
- Jamie A. Trindell, Zhiyao Duan, Graeme Henkelman, Richard M. Crooks. Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chemical Reviews 2020, 120
(2)
, 814-850. https://doi.org/10.1021/acs.chemrev.9b00246
- Shuaiyuan Han, Gaëlle Mellot, Sandrine Pensec, Jutta Rieger, François Stoffelbach, Erwan Nicol, Olivier Colombani, Jacques Jestin, Laurent Bouteiller. Crucial Role of the Spacer in Tuning the Length of Self-Assembled Nanorods. Macromolecules 2020, 53
(1)
, 427-433. https://doi.org/10.1021/acs.macromol.9b01928
- Lourdes Bazán-Díaz, Rubén Mendoza-Cruz, Chih-Kai Liao, Mahmoud A. Mahmoud. Asymmetric Deposition of Platinum Atoms on Gold Nanorods Reduced the Plasmon Field Distortion Induced by the Substrate. The Journal of Physical Chemistry C 2019, 123
(50)
, 30509-30518. https://doi.org/10.1021/acs.jpcc.9b07935
- Nabeel Ahmad, Marta Bon, Daniele Passerone, Rolf Erni. Template-Assisted in Situ Synthesis of Ag@Au Bimetallic Nanostructures Employing Liquid-Phase Transmission Electron Microscopy. ACS Nano 2019, 13
(11)
, 13333-13342. https://doi.org/10.1021/acsnano.9b06614
- Ane Larrea, Adela Eguizabal, Víctor Sebastián. Gas-Directed Production of Noble Metal-Magnetic Heteronanostructures in Continuous Fashion: Application in Catalysis. ACS Applied Materials & Interfaces 2019, 11
(46)
, 43520-43532. https://doi.org/10.1021/acsami.9b15982
- Takeshi Morita, Takuya Suzuki, Yoshimi Itoh, Takehisa Konishi, Chikara Haneishi, Natsumi Sonoda, Tsutomu Itoh, Hyuma Masu, Toshihiro Okajima, Hiroyuki Setoyama, Nobuo Uehara. Impact of Temperature on the Fusion Growth of Bimetallic Au–Pt Nanoparticles from Each Nanocluster Conjugated with a Thermoresponsive Polymer. Crystal Growth & Design 2019, 19
(11)
, 6199-6206. https://doi.org/10.1021/acs.cgd.9b00647
- Z. Cansu Canbek Ozdil, Olivier Spalla, Nicolas Menguy, Fabienne Testard. Competitive Seeded Growth: An Original Tool to Investigate Anisotropic Gold Nanoparticle Growth Mechanism. The Journal of Physical Chemistry C 2019, 123
(41)
, 25320-25330. https://doi.org/10.1021/acs.jpcc.9b05690
- J. Jesús Velázquez-Salazar, Lourdes Bazán-Díaz, Qingfeng Zhang, Rubén Mendoza-Cruz, Luis Montaño-Priede, Grégory Guisbiers, Nicolas Large, Stephan Link, Miguel José-Yacamán. Controlled Overgrowth of Five-Fold Concave Nanoparticles into Plasmonic Nanostars and Their Single-Particle Scattering Properties. ACS Nano 2019, 13
(9)
, 10113-10128. https://doi.org/10.1021/acsnano.9b03084
- Zhiwei Li, Mingsheng Wang, Xiaoliang Zhang, Dawei Wang, Wenjing Xu, Yadong Yin. Magnetic Assembly of Nanocubes for Orientation-Dependent Photonic Responses. Nano Letters 2019, 19
(9)
, 6673-6680. https://doi.org/10.1021/acs.nanolett.9b02984
- Sumit Sharma, Himanshu Singh, Xueying Ko. A Quantitatively Accurate Theory To Predict Adsorbed Configurations of Linear Surfactants on Polar Surfaces. The Journal of Physical Chemistry B 2019, 123
(34)
, 7464-7470. https://doi.org/10.1021/acs.jpcb.9b05861
- Manickam Sundarapandi, Sivakumar Shanmugam, Ramasamy Ramaraj. Synthesis and Catalytic Activities of Metal Shells (Monolayer, Bilayer, and Alloy Layer)-Coated Gold Octahedra toward Catalytic Reduction of Nitroaromatics. The Journal of Physical Chemistry C 2019, 123
(34)
, 21066-21075. https://doi.org/10.1021/acs.jpcc.9b06298
- Roger M. Pallares, Terrence Stilson, Priscilla Choo, Jingtian Hu, Teri W. Odom. Using Good’s Buffers To Control the Anisotropic Structure and Optical Properties of Spiky Gold Nanoparticles for Refractive Index Sensing. ACS Applied Nano Materials 2019, 2
(8)
, 5266-5271. https://doi.org/10.1021/acsanm.9b01117
- Ye Yu, Charlene Ng, Tobias A. F. König, Andreas Fery. Tackling the Scalability Challenge in Plasmonics by Wrinkle-Assisted Colloidal Self-Assembly. Langmuir 2019, 35
(26)
, 8629-8645. https://doi.org/10.1021/acs.langmuir.8b04279
- Charlotte Flatebo, Sean S. E. Collins, Benjamin S. Hoener, Yi-yu Cai, Stephan Link, Christy F. Landes. Electrodissolution Inhibition of Gold Nanorods with Oxoanions. The Journal of Physical Chemistry C 2019, 123
(22)
, 13983-13992. https://doi.org/10.1021/acs.jpcc.9b01575
- Qianqian Shi, Wenli Di, Dashen Dong, Lim Wei Yap, Lin Li, Duyang Zang, Wenlong Cheng. A General Approach to Free-Standing Nanoassemblies via Acoustic Levitation Self-Assembly. ACS Nano 2019, 13
(5)
, 5243-5250. https://doi.org/10.1021/acsnano.8b09628
- Tilo Schmutzler, Torben Schindler, Tobias Zech, Sebastian Lages, Martin Thoma, Marie-Sousai Appavou, Wolfgang Peukert, Erdmann Spiecker, Tobias Unruh. n-Hexanol Enhances the Cetyltrimethylammonium Bromide Stabilization of Small Gold Nanoparticles and Promotes the Growth of Gold Nanorods. ACS Applied Nano Materials 2019, 2
(5)
, 3206-3219. https://doi.org/10.1021/acsanm.9b00510
- Nathália
Talita C. Oliveira, Albert S. Reyna, Eduardo H. L. Falcão, Cid B. de Araújo. Light Scattering, Absorption, and Refraction due to High-Order Optical Nonlinearities in Colloidal Gold Nanorods. The Journal of Physical Chemistry C 2019, 123
(20)
, 12997-13008. https://doi.org/10.1021/acs.jpcc.9b01369
- Suyue Chen, Hong Bok Lee, R. Lee Penn. Using Polyvinylpyrrolidone and Citrate Ions To Modify the Stability of Ag NPs in Ethylene Glycol. The Journal of Physical Chemistry C 2019, 123
(19)
, 12444-12450. https://doi.org/10.1021/acs.jpcc.9b00339
- Da Huo, Zhenming Cao, Jun Li, Minghao Xie, Jing Tao, Younan Xia. Seed-Mediated Growth of Au Nanospheres into Hexagonal Stars and the Emergence of a Hexagonal Close-Packed Phase. Nano Letters 2019, 19
(5)
, 3115-3121. https://doi.org/10.1021/acs.nanolett.9b00534
- Amelie Heuer-Jungemann, Neus Feliu, Ioanna Bakaimi, Majd Hamaly, Alaaldin Alkilany, Indranath Chakraborty, Atif Masood, Maria F. Casula, Athanasia Kostopoulou, Eunkeu Oh, Kimihiro Susumu, Michael H. Stewart, Igor L. Medintz, Emmanuel Stratakis, Wolfgang J. Parak, Antonios G. Kanaras. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews 2019, 119
(8)
, 4819-4880. https://doi.org/10.1021/acs.chemrev.8b00733
- Nitya
Sai Reddy Satyavolu, Ana Sol Peinetti, Yiming Wang, Arzeena Sultana Ali, Jeffrey Wayjer Lin, Yi Lu. Silver-Assisted Synthesis of High-Indexed Palladium Tetrahexahedral Nanoparticles and Their Morphological Variants. Chemistry of Materials 2019, 31
(8)
, 2923-2929. https://doi.org/10.1021/acs.chemmater.9b00275
- Aman Kumar Agrawal, Prabhat Kumar Sahu, Sudipta Seth, Moloy Sarkar. Electrostatically Driven Förster Resonance Energy Transfer between a Fluorescent Metal Nanoparticle and J-Aggregate in an Inorganic–Organic Nanohybrid Material. The Journal of Physical Chemistry C 2019, 123
(6)
, 3836-3847. https://doi.org/10.1021/acs.jpcc.8b10274
- Dongdong Xu, Hao Lv, Haibao Jin, Ying Liu, Yanhang Ma, Min Han, Jianchun Bao, Ben Liu. Crystalline Facet-Directed Generation Engineering of Ultrathin Platinum Nanodendrites. The Journal of Physical Chemistry Letters 2019, 10
(3)
, 663-671. https://doi.org/10.1021/acs.jpclett.8b03861
- Tzu-Yi Hung, Jessica An-Chieh Liu, Wen-Hsiu Lee, Jie-Ren Li. Hierarchical Nanoparticle Assemblies Formed via One-Step Catalytic Stamp Pattern Transfer. ACS Applied Materials & Interfaces 2019, 11
(4)
, 4667-4677. https://doi.org/10.1021/acsami.8b19807
- Krzysztof Sztandera, Michał Gorzkiewicz, Barbara Klajnert-Maculewicz. Gold Nanoparticles in Cancer Treatment. Molecular Pharmaceutics 2019, 16
(1)
, 1-23. https://doi.org/10.1021/acs.molpharmaceut.8b00810
- Xi Zhang, Arun Kumar Pandiakumar, Robert J. Hamers, Catherine J. Murphy. Quantification of Lipid Corona Formation on Colloidal Nanoparticles from Lipid Vesicles. Analytical Chemistry 2018, 90
(24)
, 14387-14394. https://doi.org/10.1021/acs.analchem.8b03911
- Yu Tian, Huixi Violet Zhang, Kristi L. Kiick, Jeffery G. Saven, Darrin J. Pochan. Fabrication of One- and Two-Dimensional Gold Nanoparticle Arrays on Computationally Designed Self-Assembled Peptide Templates. Chemistry of Materials 2018, 30
(23)
, 8510-8520. https://doi.org/10.1021/acs.chemmater.8b03206
Figure 1 Transmission electron micrographs (top), optical spectra (left), and photographs of (right) aqueous solutions of gold nanorods of various aspect ratios. Seed sample: aspect ratio 1; sample a, aspect ratio 1.35 ± 0.32; sample b, aspect ratio 1.95 ± 0.34; sample c, aspect ratio 3.06 ±0.28; sample d, aspect ratio 3.50 ± 0.29; sample e, aspect ratio 4.42 ± 0.23. Scale bars: 500 nm for a and b, 100 nm for c, d, e.
Figure 2 Seed-mediated growth approach to making gold and silver nanorods of controlled aspect ratio. The specific conditions shown here, for 20 mL volume of seed solution, lead to high-aspect ratio gold nanorods. (bottom right) Transmission electron micrograph of gold nanorods that are an average of 500 nm long.
Figure 3 Experimental dependence of nanorod aspect ratio (vertical axis) on seed size. Gold nanorods were made using the seed-mediated protocols to obtain the highest aspect ratio nanorods for each seed size. Seeds were all anionic. The original data are from ref 99.
Figure 4 TEMs of gold nanoparticles of many shapes, all prepared with CTAB and in the presence of silver ion.98 Scale bars are 100 nm for A, B, C, D; and 500 nm for E, F. G.
Figure 5 Cartoon of the crystallography of gold nanorods. The direction of elongation is [110]. The cross-sectional view is a pentagon; each end of the rod is capped with five triangular faces that are Au{111}. The sides of the rods are not as well-defined; either Au{100} or Au{110} faces, or both.
Figure 6 Dependence of gold nanorod aspect ratio on the tail length of the cationic surfactant CnTAB (all alkyltrimethylammonium bromides).
Figure 7 Cartoon illustrating “zipping”: the formation of the bilayer of CnTAB (squiggles) on the nanorod (black rectangle) surface may assist nanorod formation as more gold ion (black dots) is introduced. Reproduced from ref 104 with permission.
Figure 8 Proposed mechanism of surfactant-directed metal nanorod growth. The single crystalline seed particles have facets that are differentially blocked by surfactant (or an initial halide layer that then electrostatically attracts the cationic surfactant). Subsequent addition of metal ions and weak reducing agent lead to metallic growth at the exposed particle faces. In this example, the pentatetrahedral twin formation leads to Au {111} faces that are on the ends of the nanorods, leaving less stable faces of gold as the side faces, which are bound by the surfactant bilayer.
Figure 9 Cartoon of biotin-streptavidin assembly of gold nanorods; a biotin disulfide is added to biotinylate the rods, and subsequent addition of streptavidin causes noncovalent assembly. Inset: transmission electron micrograph of gold nanorod-streptavidin assemblies. The original data are from ref 86.
Figure 10 Dark field microscopic image of individual silver nanoparticles of various shapes. The field of view is ∼1 mm; the spot size of the scattered light is far larger than the true size of individual nanoparticles. The different colors are due to the different nanoparticle shapes and orientations.
Figure 11 Cartoon of layer-by-layer deposition of polymers via electrostatic interactions onto gold nanorods, followed by fixing to a complementary surface. Taken from ref 126 with permission.
Figure 12 Cartoon showing the preparation of a self-assembled monolayer of mercaptohexanoic acid (MHA) on a flat gold substrate, subsequent immersion into an aqueous solution of CTAB-capped gold nanorods at a pH greater than 6 (so that the acid group is deprotonated), and final immobilization of the nanorods on the surface, governed by electrostatic interactions. Also shown is an atomic force microscopy image of nanorods immobilized in this fashion; field of view, 5 μm.
Figure 13 CTAB-capped gold nanorods are assembled side-by-side as a function of pH in the presence of adipic acid.127 Monofunctional acids and long-chain diacids are not effective in analogous assembly reactions.127
Figure 14 Excess CTAB surfactant is removed from nanorods by centrifugation and washing. MPTMS is added, followed by sodium silicate, to make SiO2-coated nanorods.
Figure 15 Dark field microscopy image of gold nanocubes (left) and gold “nanohexagons” (right), taken on solutions dried down on a microscope slide. The field of view is ∼1 mm. Insets: transmission electron micrographs of the nanoparticles, scale bars = 100 nm.
This article references 170 other publications.
- 1El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257−264.Google ScholarThere is no corresponding record for this reference.
- 2Metal Nanoparticles: Synthesis, Characterization and Applications; Feldheim, D. L., Foss, C. A., Jr., Eds.; Marcel Dekker: New York, 2002.Google ScholarThere is no corresponding record for this reference.
- 3Daniel, M.-C.; Astruc, D. Chem. Rev.2004, 104, 293−346.Google ScholarThere is no corresponding record for this reference.
- 4Valden, M.; Lai, X.; Goodman, D. W. Science1998, 281, 1647−1650.Google ScholarThere is no corresponding record for this reference.
- 5Chen, M. S.; Goodman, D. W. Science2004, 306, 252−255.Google ScholarThere is no corresponding record for this reference.
- 6Huang, Y.; Duan, X.; Lieber, C. M. Science2001, 291, 630−633.Google ScholarThere is no corresponding record for this reference.
- 7Mallouk, T. E.; Kovtyukhova, N. I. Chem. Eur. J.2002, 8, 4354−4363.Google ScholarThere is no corresponding record for this reference.
- 8Law, M.; Sibuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. Science2004, 305, 1269−1273.Google ScholarThere is no corresponding record for this reference.
- 9Maier, S. A.; Brongersma, M. L.; Kik, P, G.; Meltzer, S.; Requichia, A. A. G.; Atwater, H. Adv. Mater. 2001, 13, 1501−1505.Google ScholarThere is no corresponding record for this reference.
- 10Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requichia, A. A. Nature Mater.2003, 2, 229−232.Google ScholarThere is no corresponding record for this reference.
- 11Fan, H.; Lu, Y.; Stump, A.; Reed, S. T.; Baer, T.; Schunk, R.; Perez-Luna, V.; Lopez, G. P.; Brinker, C. J. Nature2000, 405, 56−60.Google ScholarThere is no corresponding record for this reference.
- 12Gao, H. J.; Ji, B. H.; Jager, I. L.; Arzt, E.; Fratzl, P. Proc. Natl. Acad. Sci. U.S.A.2003, 100, 5597−5600.Google ScholarThere is no corresponding record for this reference.
- 13Ji, B. H.; Gao, H. J. J. Mech. Phys. Solids2004, 52, 1963−1990.Google ScholarThere is no corresponding record for this reference.
- 14Katz, E.; Willner, I. Angew. Chem., Int. Ed. Engl. 2004, 43, 6042−6108 [Epub ahead of print].Google ScholarThere is no corresponding record for this reference.
- 15Schultz, D. A. Curr. Opin. Biotechnol.2003, 14, 13−22.Google ScholarThere is no corresponding record for this reference.
- 16Salem, A. K.; Searson, P. C.; Leong, K. W. Nature Mater.2003, 2, 668−671.Google ScholarThere is no corresponding record for this reference.
- 17Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.; Franzen, S.; Feldheim, D. L. J. Am. Chem. Soc. 2003, 125, 4700−4701.Google ScholarThere is no corresponding record for this reference.
- 18Hornyak, G. L.; Patrissi, C. J.; Martin, C. R. J. Phys. Chem. B1997, 101, 1548−1555, and references therein.Google ScholarThere is no corresponding record for this reference.
- 19Link, S.; El-Sayed, M. A. J. Phys. Chem. B1999, 103, 8410−8426.Google ScholarThere is no corresponding record for this reference.
- 20Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science1997, 277, 1078−1080.Google ScholarThere is no corresponding record for this reference.
- 21Schultz, S.; Smith, D. R.; Mock, J. J.; Schultz, D. A. Proc. Natl. Acad. Sci. U.S.A.2000, 97, 996−1001.Google ScholarThere is no corresponding record for this reference.
- 22Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. J. Chem. Phys. 2003, 116, 6755−6759.Google ScholarThere is no corresponding record for this reference.
- 23Kottman, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Chem. Phys. Lett. 2001, 341, 1−6.Google ScholarThere is no corresponding record for this reference.
- 24Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B2003, 107, 668−677.Google ScholarThere is no corresponding record for this reference.
- 25Sosa, I. O.; Noguez, C.; Barrera, R. G. J. Phys. Chem. B2003, 107, 6269−6275.Google ScholarThere is no corresponding record for this reference.
- 26Garrell, R. Anal. Chem. 1989, 61, 401A−411A.Google ScholarThere is no corresponding record for this reference.
- 27Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1998, 27, 241−250.Google ScholarThere is no corresponding record for this reference.
- 28Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev.1999, 99, 2957−2975.Google ScholarThere is no corresponding record for this reference.
- 29Nie, S.; Emory, S. R. Science1997, 275, 1102−1106.Google ScholarThere is no corresponding record for this reference.
- 30Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. J. Phys. Chem. B2003, 107, 9964−9972.Google ScholarThere is no corresponding record for this reference.
- 31Imura, K.; Nagahara, T.; Okamoto, H. J. Am. Chem. Soc.2004, 126, 12730−12731.Google ScholarThere is no corresponding record for this reference.
- 32Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Nano Lett. 2003, 3, 1229−1233.Google ScholarThere is no corresponding record for this reference.
- 33Hanarp, P.; Kall, M.; Sutherland, D. S. J. Phys. Chem. B2003, 107, 5768−5772.Google ScholarThere is no corresponding record for this reference.
- 34Gluodenis, M.; Foss, C. A., Jr. J. Phys. Chem. B2002, 106, 9484−9489.Google ScholarThere is no corresponding record for this reference.
- 35Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. A2003, 107, 3372−3378.Google ScholarThere is no corresponding record for this reference.
- 36Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science2000, 289, 1757−1760.Google ScholarThere is no corresponding record for this reference.
- 37Kim, Y.; Johnson, R. C.; Hupp, J. T. Nano Lett. 2001, 1, 165−167.Google ScholarThere is no corresponding record for this reference.
- 38Thanh, N. T. K.; Rosenzweig, Z. Anal. Chem. 2002, 74, 1624−1628.Google ScholarThere is no corresponding record for this reference.
- 39Nicewarmer-Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Science2001, 294, 137−141.Google ScholarThere is no corresponding record for this reference.
- 40Kneipp, K.; Haka, A. S.; Kneipp, H.; Badizadegan, K.; Yoshizawa, N.; Boone, C.; Shafer-Peltier, K. E.; Motz, J. T.; Dasari, R. R.; Feld, M. S. Appl. Spectrosc.2002, 56, 150−154.Google ScholarThere is no corresponding record for this reference.
- 41McFarland, A. D.; Van Duyne, R. P. Nano Lett. 2003, 3, 1057−1062.Google ScholarThere is no corresponding record for this reference.
- 42Grubisha, D. S.; Lipert, R. J.; Park, H. Y.; Driskell, J.; Porter, M. D. Anal. Chem. 2003, 75, 5936−5943.Google ScholarThere is no corresponding record for this reference.
- 43Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. J. Am. Chem. Soc. 2003, 125, 588−593.Google ScholarThere is no corresponding record for this reference.
- 44Obare, S. O.; Hollowell, R. E.; Murphy, C. J. Langmuir2002, 18, 10407−10410.Google ScholarThere is no corresponding record for this reference.
- 45Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L. Anal. Chem. 2003, 75, 2377−2381.Google ScholarThere is no corresponding record for this reference.
- 46Roll, D.; Malicka, J.; Gryczynski, I.; Gryczynski, Z.; Lakowicz, J. R. Anal. Chem. 2003, 75, 3106−3113.Google ScholarThere is no corresponding record for this reference.
- 47Keating, C. D.; Kovaleski, K. M.; Natan, M. J. J. Phys. Chem. B1998, 102, 9404−9413.Google ScholarThere is no corresponding record for this reference.
- 48Maxwell, D. J.; Emory, S. R.; Nie, S. Chem. Mater. 2001, 13, 1082−1088.Google ScholarThere is no corresponding record for this reference.
- 49Gearheart, L.; Ploehn, H. J.; Murphy, C. J. J. Phys. Chem. B2001, 105, 12609−12615.Google ScholarThere is no corresponding record for this reference.
- 50Cao, Y.; Jin, R.; Mirkin, C. A. Science2002, 297, 1536−1540.Google ScholarThere is no corresponding record for this reference.
- 51Culha, M.; Stokes, D.; Allain, L. R.; Vo-Dinh, T. Anal. Chem. 2003, 75, 6196−6201.Google ScholarThere is no corresponding record for this reference.
- 52Templeton, A. C.; Pietron, J. J.; Murray, R. W.; Mulvaney, P. J. Phys. Chem. B2000, 104, 564−570.Google ScholarThere is no corresponding record for this reference.
- 53Xu, X.-H. N.; Brownlow, W. J.; Kyriacou, S. V.; Wan, Q.; Viola, J. J. Biochemistry2004, 43, 10400−10413.Google ScholarThere is no corresponding record for this reference.
- 54Cognet, L.; Tardin, C.; Boyer, D.; Choquet, D.; Tamarat, P.; Lounis, B. Proc. Natl. Acad. Sci. U.S.A.2003, 100, 11350−11355.Google ScholarThere is no corresponding record for this reference.
- 55Bailey, R. C.; Nam, J.-M.; Mirkin, C. A.; Hupp, J. T. J. Am. Chem. Soc. 2003, 125, 13541−13547.Google ScholarThere is no corresponding record for this reference.
- 56Nam, J.-M.; Thaxton, C. J.; Mirkin, C. A. Science2003, 301, 1884−1886.Google ScholarThere is no corresponding record for this reference.
- 57Xu, X.-H. N.; Chen, J.; Jeffers, R. B.; Kyriacou, S. Nano Lett. 2002, 2, 175−182.Google ScholarThere is no corresponding record for this reference.
- 58Nath, N.; Chilkoti, A. Anal. Chem. 2002, 74, 504−509.Google ScholarThere is no corresponding record for this reference.
- 59Sokolov, K.; Chumanov, G.; Cotton, T. M. Anal. Chem. 1998, 70, 3898−3905.Google ScholarThere is no corresponding record for this reference.
- 60Malicka, J.; Gryzczynski, I.; Lakowicz, J. R. Anal. Chem. 2003, 75, 4408−4414.Google ScholarThere is no corresponding record for this reference.
- 61Parfenov, A.; Gryzczynski, I.; Malicka, J.; Geddes, C. D.; Lakowicz, J. R. J. Phys. Chem. B2003, 107, 8829−8833.Google ScholarThere is no corresponding record for this reference.
- 62Lakowicz, J. R.; Geddes, C. D.; Gryzczynski, I.; Malicka, J.; Gryzczynski, Z.; Aslan, K.; Lukomski, J.; Matveera, E.; Zhang, J.; Badugn, R.; Huang, J. J. Fluorescence2004, 14, 425−441.Google ScholarThere is no corresponding record for this reference.
- 63Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Rivera, B.; Hazle, J. D.; Halas, N. J.; West, J. L. Proc. Natl. Acad. Sci. U.S.A.2003, 100, 13549−13554.Google ScholarThere is no corresponding record for this reference.
- 64Yu, Y.-Y.; Chang, E.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661−6664.Google ScholarThere is no corresponding record for this reference.
- 65Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435−445.Google ScholarThere is no corresponding record for this reference.
- 66Jana, N. R.; Gearheart, L. A.: Murphy, C. J. Chem. Commun. 2001, 617−618.Google ScholarThere is no corresponding record for this reference.
- 67Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B2001, 105, 4065−4067.Google ScholarThere is no corresponding record for this reference.
- 68Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80−82.Google ScholarThere is no corresponding record for this reference.
- 69Sun, Y.; Mayers, D.; Herricks, T.; Xia, Y. Nano Lett.2003, 3, 955−960.Google ScholarThere is no corresponding record for this reference.
- 70Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957−1962.Google ScholarThere is no corresponding record for this reference.
- 71Liu, M.; Guyot-Sionnest, P. J.Phys. Chem. B2004, 108, 5882−5888.Google ScholarThere is no corresponding record for this reference.
- 72Sau, T. K.; Murphy, C. J. Langmuir 2004, 20, 6416−6420.Google ScholarThere is no corresponding record for this reference.
- 73Walter, E. C.; Murray, B. J.; Favier, F.; Kaltenpoth, G.; Grunze, M.; Penner, R. M. J. Phys. Chem. B2002, 106, 11407−11411.Google ScholarThere is no corresponding record for this reference.
- 74Filankembo, A.; Giorgio, S.; Lisiecki, I.; Pileni, M.-P. J. Phys. Chem. B 2003, 107, 7492−7500.Google ScholarThere is no corresponding record for this reference.
- 75Sun, Y.; Xia, Y. Science2002, 298, 2176−2179.Google ScholarThere is no corresponding record for this reference.
- 76Sun, Y.; Xia, Y. Adv. Mater. 2002, 12, 1875−1881.Google ScholarThere is no corresponding record for this reference.
- 77Jin, R.; Cao, Y. C.; Han, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature2003, 425, 487−490.Google ScholarThere is no corresponding record for this reference.
- 78Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. Science2001, 294, 1901−1904.Google ScholarThere is no corresponding record for this reference.
- 79Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Science2001, 291, 2115−2117.Google ScholarThere is no corresponding record for this reference.
- 80Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L.-W.; Alivisatos, A. P. Nature2004, 430, 190−195.Google ScholarThere is no corresponding record for this reference.
- 81Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264−1265.Google ScholarThere is no corresponding record for this reference.
- 82Mbindyo, J. K. N.; Reiss, B. D.; Martin, B. R.; Keating, C. D.; Natan, M. J.; Mallouk, T. E. Adv. Mater. 2001, 13, 249−254.Google ScholarThere is no corresponding record for this reference.
- 83Van Bruggen, M. P. B.; Lekkerkerker, H. N. W. Langmuir2002, 18, 7141−7145.Google ScholarThere is no corresponding record for this reference.
- 84Li, L. S.; Alivisatos, A. P. Adv. Mater. 2003, 15, 408−411.Google ScholarThere is no corresponding record for this reference.
- 85Jana, N. R.; Gearheart, L. A.; Obare, S. O.; Johnson, C. J.; Edler, K. J.; Mann, S.; Murphy, C. J. J. Mater. Chem.2002, 12, 2909−2912.Google ScholarThere is no corresponding record for this reference.
- 86Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914−13915.Google ScholarThere is no corresponding record for this reference.
- 87Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Science2004, 304, 1787−1790.Google ScholarThere is no corresponding record for this reference.
- 88Yu, J.-S.; Kim, J. Y.; Lee, S.; Mbindyo, J. K. N.; Martin, B. R.; Mallouk, T. E. Chem Commun. 2000, 2445−2446.Google ScholarThere is no corresponding record for this reference.
- 89Glotzer, S. C. Science2004, 306, 419−420.Google ScholarThere is no corresponding record for this reference.
- 90Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem., Int. Ed. Engl. 2004, 43, 4774−4777.Google ScholarThere is no corresponding record for this reference.
- 91Shah, P. S.; Hanrath, T.; Johnston, K. P.; Korgel, B. A. J. Phys. Chem. B2004, 108, 9574−9587.Google ScholarThere is no corresponding record for this reference.
- 92Ding, Y.; Wang, Z. L. J. Phys. Chem. B2004, 108, 12280−12291.Google ScholarThere is no corresponding record for this reference.
- 93Scott, R. W. J.; Wilson, O. M.; Crooks, R. M. J. Phys. Chem. B2005, 109, 692−704.Google ScholarThere is no corresponding record for this reference.
- 94Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater.2001, 13, 1389−1393.Google ScholarThere is no corresponding record for this reference.
- 95Jana, N.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782−6786.Google ScholarThere is no corresponding record for this reference.
- 96Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. Mater. Chem. 2002, 12, 1765−1770.Google ScholarThere is no corresponding record for this reference.
- 97Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414−416.Google ScholarThere is no corresponding record for this reference.
- 98Sau, T. K.; Murphy, C. J J. Am. Chem. Soc. 2004, 126, 8648−8649.Google ScholarThere is no corresponding record for this reference.
- 99Gole, A.; Murphy, C. J. Chem. Mater. 2004, 16, 3633−3640.Google ScholarThere is no corresponding record for this reference.
- 100Nikoobakht, B.; El-Sayed, M. A. Langmuir2001, 17, 6368−6374.Google ScholarThere is no corresponding record for this reference.
- 101Filankembo, A.; Pileni, M. P. J. Phys. Chem. B2000, 104, 5865−5868.Google ScholarThere is no corresponding record for this reference.
- 102Caswell, K. K.; Bender, C. M.; Murphy, C. J. Nano Lett.2003, 3, 667−669.Google ScholarThere is no corresponding record for this reference.
- 103Gai, P. L.; Harmer, M. A. Nano Lett.2002, 2, 771−774.Google ScholarThere is no corresponding record for this reference.
- 104Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir2003, 19, 9065−9070.Google ScholarThere is no corresponding record for this reference.
- 105Sau, T. K.; Murphy, C. J. Langmuir2005, 21, 2923−2929.Google ScholarThere is no corresponding record for this reference.
- 106Anacker, E. W. In Cationic Surfactants; Jungermann, E., Ed.; Marcel Dekker: New York, 1970.Google ScholarThere is no corresponding record for this reference.
- 107Magnussen, O. M.; Ocko, B. M.; Wang, J. X.; Adzic, R. R. J. Phys. Chem. 1996, 100, 5500−5508.Google ScholarThere is no corresponding record for this reference.
- 108Ocko, B. M.; Magnussen, O. M.; Wang, J. X.; Wandlowski, T. Phys. Rev. B1996, 53, R7654−R7657.Google ScholarThere is no corresponding record for this reference.
- 109Wang, J. X.; Marinkovic, N. S.; Adzic, R. R. Colloids Surf. A1998, 134, 165−171.Google ScholarThere is no corresponding record for this reference.
- 110Shi, Z. C.; Lipkowski, J.; Mirwald, S.; Pettinger, B. J. Chem. Soc.,Faraday Trans. 1996, 92, 3737−3746.Google ScholarThere is no corresponding record for this reference.
- 111Zou, S. Z.; Gao, X. P.; Weaver, M. J. Surf. Sci. 2000, 452, 44−57.Google ScholarThere is no corresponding record for this reference.
- 112Perez-Juste, J.; Liz-Marzan, L. M.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Adv. Funct. Mater. 2004, 14, 571−579.Google ScholarThere is no corresponding record for this reference.
- 113Diao, J.; Gall, K.; Dunn, M. L. Nature Mater.2003, 2, 656−660.Google ScholarThere is no corresponding record for this reference.
- 114van der Zande, B. M. I.; Pages, L.; Hikmet, R. A. M.; van Blaaderen, A. J. Phys. Chem. B1999, 103, 5761−5767.Google ScholarThere is no corresponding record for this reference.
- 115Artemyer, M.; Muller, B.; Woggon, U. Nano Lett.2003, 3, 509−512.Google ScholarThere is no corresponding record for this reference.
- 116Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V J. Phys. Chem. B2004, 108, 13066−13068.Google ScholarThere is no corresponding record for this reference.
- 117van der Zande, B. M. I.; Koper, G. J. M.; Lekkerkerker, H. N. W. J. Phys. Chem. B1999, 103, 5754−5760.Google ScholarThere is no corresponding record for this reference.
- 118Varghese, S.; Narayanankutty, S.; Bastiaansen, C. W. M.; Crawford, G. P.; Broer, D. J. Adv. Mater. 2004, 16, 1600−1605.Google ScholarThere is no corresponding record for this reference.
- 119Raschke, G.; Kowarik, S.; Franzl, T.; Sonnichsen, C.; Klar, T. A.; Feldmann, J.; Nichtl, A.; Kurzinger, K. Nano Lett. 2003, 3, 935−938.Google ScholarThere is no corresponding record for this reference.
- 120Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3, 485−491.Google ScholarThere is no corresponding record for this reference.
- 121Prikulis, J.; Svedberg, F.; Kall, M.; Enger, J.; Ramser, K.; Goksor, M.; Hanstorp, D. Nano Lett. 2004, 4, 115−118.Google ScholarThere is no corresponding record for this reference.
- 122Sonnichsen, C.; Alivisatos, A. P. Nano Lett. 2005, 5, 301−304.Google ScholarThere is no corresponding record for this reference.
- 123Maier, S. A.; Kik, P. G.; Atwater, H. A. Appl. Phys. Lett.2002, 81, 1714−1716.Google ScholarThere is no corresponding record for this reference.
- 124Gabriel, J.-C. P.; Davidson, P. Top. Curr. Chem. 2003, 226, 119−172.Google ScholarThere is no corresponding record for this reference.
- 125Caruso, F. Top. Curr. Chem. 2003, 227, 145−168.Google ScholarThere is no corresponding record for this reference.
- 126Gole, A.; Murphy, C. J. Chem. Mater. 2005, 17, 1325−1330.Google ScholarThere is no corresponding record for this reference.
- 127Orendorff, C. J.; Hankins, P.; Murphy, C. J. Langmuir 2005, 21, 2022−2026.Google ScholarThere is no corresponding record for this reference.
- 128Stoeva, S. I.; Prasad, B. L. V.; Uma, S.; Stoimenov, P. K.; Zaikovski, V.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B2003, 107, 7441−7448.Google ScholarThere is no corresponding record for this reference.
- 129Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun.2001, 1264−1265.Google ScholarThere is no corresponding record for this reference.
- 130Love, C. J.; Urbach, A. R.; Prentiss, M. G.; Whitesides, G. M. J. Am. Chem. Soc.2003, 125, 12696−12697.Google ScholarThere is no corresponding record for this reference.
- 131Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1997.Google ScholarThere is no corresponding record for this reference.
- 132Rodriguez-Gonsalez, B.; Sanchez-Iglesias, A.; Giersig, M.; Liz-Marzan, L. M. Faraday Discuss. 2004, 125, 133−144.Google ScholarThere is no corresponding record for this reference.
- 133Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Langmuir2002, 18, 922−927.Google ScholarThere is no corresponding record for this reference.
- 134Hardikar, V. V.; Matijevic, E. J. Colloid Interface Sci.2000, 221, 133−136.Google ScholarThere is no corresponding record for this reference.
- 135Mulvaney, P.; Liz-Marzan, L. M.; Giersig, M.; Ung, T. J. Mater. Chem. 2000, 10, 1259−1270.Google ScholarThere is no corresponding record for this reference.
- 136Lu, Y.; Yin, Y. D.; Li, X. Z.; Xia, Y. Nano Lett.2002, 2, 785−788.Google ScholarThere is no corresponding record for this reference.
- 137Mine, E.; Yamada, A.; Kobayashi, Y.; Konno, M.; Liz-Marzan, L. M. J. Colloid Interface Sci. 2003, 264, 385−390.Google ScholarThere is no corresponding record for this reference.
- 138Obare, S. O.; Jana, N. R.; Murphy, C. J. Nano Lett.2001, 1, 601−603.Google ScholarThere is no corresponding record for this reference.
- 139Andrew, P.; Barnes, W. L. Science2004, 306, 1002−1005.Google ScholarThere is no corresponding record for this reference.
- 140Creighton, J. A.; Eadon, D. G. J. Chem. Soc., Faraday Trans. 1991, 87, 3881−3891.Google ScholarThere is no corresponding record for this reference.
- 141Prodan, E.; Radloff, C.; Halas, N. J.; Norlander, P. Science2003, 302, 419−422.Google ScholarThere is no corresponding record for this reference.
- 142Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kall, M.; Bryant, G. W.; Garcia de Abajo, F. J. Phys. Rev. Lett.2003, 90, 57401.Google ScholarThere is no corresponding record for this reference.
- 143Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc.1998, 120, 1959−1964.Google ScholarThere is no corresponding record for this reference.
- 144Lin, S. Y.; Liu, S. W.; Lin, C. W.; Chen, C. H. Anal. Chem. 2002, 74, 330−335.Google ScholarThere is no corresponding record for this reference.
- 145Liu, J. W.; Lu, Y. Anal. Chem. 2004, 76, 1627−1632.Google ScholarThere is no corresponding record for this reference.
- 146Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer: Berlin, 1995.Google ScholarThere is no corresponding record for this reference.
- 147Lazarides, A. A.; Schatz, G. C. J. Phys. Chem. B2000, 104, 460−467.Google ScholarThere is no corresponding record for this reference.
- 148Su, K.-H.; Wei, Q.-H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3, 1087−1090.Google ScholarThere is no corresponding record for this reference.
- 149Haes, A. J.; Chang, L.; Klein, W. L.; Van Duyne, R. P. J. Am. Chem. Soc. 2005, 127, 2264−2271.Google ScholarThere is no corresponding record for this reference.
- 150Vidal, F. J. G.; Pendry, J. B. Phys. Rev. Lett. 1996, 77, 1163−1166.Google ScholarThere is no corresponding record for this reference.
- 151Wang, D. S.; Kerker, M. Phys. Rev. B1981, 24, 1777−1790.Google ScholarThere is no corresponding record for this reference.
- 152Markel, V. A.; Shalaev, V. M.; Zhang, P.; Huynh, W.; Tay, L.; Haslett, T. L.; Moskovits, M. Phys. Rev. B 1999, 59, 10903−10909.Google ScholarThere is no corresponding record for this reference.
- 153Su, K.-H.; Wei, Q.-H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3, 1087−1090.Google ScholarThere is no corresponding record for this reference.
- 154Atay, T.; Song, J-. H.; Murmikko, A. V. Nano Lett.2004, 4, 1627−1731.Google ScholarThere is no corresponding record for this reference.
- 155Fromm, D. P.; Sundaramurthy, A.; Schuck, P. J.; Kino, G.; Moerner, W. E. Nano Lett.2004, 4, 957−961.Google ScholarThere is no corresponding record for this reference.
- 156Schatz, G. C. Acc. Chem. Res.1984, 17, 370−376.Google ScholarThere is no corresponding record for this reference.
- 157Gersten, J. I. J. Chem. Phys.1980, 72, 5779−5780.Google ScholarThere is no corresponding record for this reference.
- 158Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Nano Lett.2003, 3, 1229−1323.Google ScholarThere is no corresponding record for this reference.
- 159Jeong, D. H.; Zhang, Y. X.; Moskovits, M. J. Phys. Chem. B2004, 108, 12724−12728.Google ScholarThere is no corresponding record for this reference.
- 160Yao, J. L.; Pan, G. P.; Xue, K. H.; Wu, D. Y.; Ren, B.; Sun, D. M.; Tang, J.; Xu, X.; Tian, Z. Q. Pure Appl. Chem. 2000, 72, 221−228.Google ScholarThere is no corresponding record for this reference.
- 161Nikoobakht, B.; Wang, J.; El-Sayed, M. A. Chem. Phys. Lett.2002, 366, 17−23.Google ScholarThere is no corresponding record for this reference.
- 162Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. A2003, 107, 3372−3378.Google ScholarThere is no corresponding record for this reference.
- 163Orendorff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J. Chem. Phys. Chem., submitted.Google ScholarThere is no corresponding record for this reference.
- 164Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Anal. Chem. 2005, 77, 3261−3266.Google ScholarThere is no corresponding record for this reference.
- 165Shchegrov, A. V.; Novikov, I. V.; Maradudin, A. A. Phys. Rev. Lett. 1997, 78, 4269−4272.Google ScholarThere is no corresponding record for this reference.
- 166Holland, W. R.; Hall, D. G. Phys. Rev. B1983, 27, 7765−7768.Google ScholarThere is no corresponding record for this reference.
- 167Kume, T.; Nakagawa, N.; Yamamoto, K. Solid State Commun.1995, 93, 171−175.Google ScholarThere is no corresponding record for this reference.
- 168Lyon, L. A.; Musick, M. D.; Natan, M. J. Anal. Chem.1998, 70, 5177−5183.Google ScholarThere is no corresponding record for this reference.
- 169Lyon, L. A.; Pena, D. J.; Natan, M. J. J. Phys. Chem. B1999, 103, 5826−5831.Google ScholarThere is no corresponding record for this reference.
- 170Hutter, E.; Cha, S.; Liu, J.-F.; Park, J.; Yi, J.; Fendler, J. H.; Roy, D. J. Phys. Chem. B2001, 105, 8−12.Google ScholarThere is no corresponding record for this reference.