Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Activation Energies of Pericyclic Reactions:  Performance of DFT, MP2, and CBS-QB3 Methods for the Prediction of Activation Barriers and Reaction Energetics of 1,3-Dipolar Cycloadditions, and Revised Activation Enthalpies for a Standard Set of Hydrocarbon Pericyclic Reactions

View Author Information
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
Cite this: J. Phys. Chem. A 2005, 109, 42, 9542–9553
Publication Date (Web):October 5, 2005
https://doi.org/10.1021/jp052504v
Copyright © 2005 American Chemical Society

    Article Views

    2704

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Activation barriers and reaction energetics for the three main classes of 1,3-dipolar cycloadditions, including nine different reactions, were evaluated with the MPW1K and B3LYP density functional methods, MP2, and the multicomponent CBS-QB3 method. The CBS-QB3 values were used as standards for 1,3-dipolar cycloaddition activation barriers and reaction energetics, and the density functional theory (DFT) and MP2 methods were benchmarked against these values. The MPW1K/6-31G* method and basis set performs best for activation barriers, with a mean absolute deviation (MAD) value of 1.1 kcal/mol. The B3LYP/6-31G* method and basis set performs best for reaction enthalpies, with a MAD value of 2.4 kcal/mol, while the MPW1K method shows large errors for reaction energetics. The MP2 method gives the expected systematic underestimation of barriers. Concerted and nearly synchronous transition structures are predicted by all DFT and MP2 methods. Also reported are revised estimated 0 K experimental activation enthalpies for a standard set of hydrocarbon pericyclic reactions and updated comparisons to experiment for DFT, ab initio, and multicomponent methods. B3LYP and MPW1K methods with MAD values of 1.5 and 2.1 kcal/mol, respectively, fortuitously outperform the multicomponent CBS-QB3 method, which has a MAD value of 2.3. The MAD value of the O3LYP functional improves to 2.4 kcal/mol from the previously reported 3.0 kcal/mol.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Cartesian coordinates and absolute energies for all 1,3-dipolar cycloaddition reactions. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 227 publications.

    1. Yuheng Ding, Bo Qiang, Qixuan Chen, Yiqiao Liu, Liangren Zhang, Zhenming Liu. Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective. Journal of Chemical Information and Modeling 2024, 64 (8) , 2955-2970. https://doi.org/10.1021/acs.jcim.4c00004
    2. Dmitrij Rappoport. Statistics and Bias-Free Sampling of Reaction Mechanisms from Reaction Network Models. The Journal of Physical Chemistry A 2023, 127 (24) , 5252-5263. https://doi.org/10.1021/acs.jpca.3c01430
    3. Dalton J. Hanaway, C. Rose Kennedy. Automated Variable Electric-Field DFT Application for Evaluation of Optimally Oriented Electric Fields on Chemical Reactivity. The Journal of Organic Chemistry 2023, 88 (1) , 106-115. https://doi.org/10.1021/acs.joc.2c01893
    4. Nisha Mehta, Jan M. L. Martin. Explicitly Correlated Double-Hybrid DFT: A Comprehensive Analysis of the Basis Set Convergence on the GMTKN55 Database. Journal of Chemical Theory and Computation 2022, 18 (10) , 5978-5991. https://doi.org/10.1021/acs.jctc.2c00426
    5. Andrew W. Ruttinger, Divya Sharma, Paulette Clancy. Protocol for Directing Nudged Elastic Band Calculations to the Minimum Energy Pathway: Nurturing Errant Calculations Back to Convergence. Journal of Chemical Theory and Computation 2022, 18 (5) , 2993-3005. https://doi.org/10.1021/acs.jctc.1c00926
    6. Vincenzo Barone, Jacopo Lupi, Zoi Salta, Nicola Tasinato. Development and Validation of a Parameter-Free Model Chemistry for the Computation of Reliable Reaction Rates. Journal of Chemical Theory and Computation 2021, 17 (8) , 4913-4928. https://doi.org/10.1021/acs.jctc.1c00406
    7. Yining Lu, Dean J. Tantillo. Comparison of (5 + 2) Cycloadditions Involving Oxidopyrylium and Oxidopyridinium Ions: Relative Reactivities. The Journal of Organic Chemistry 2021, 86 (13) , 8652-8659. https://doi.org/10.1021/acs.joc.1c00396
    8. Isolde Sandler, Junbo Chen, Mackenzie Taylor, Shaleen Sharma, Junming Ho. Accuracy of DLPNO-CCSD(T): Effect of Basis Set and System Size. The Journal of Physical Chemistry A 2021, 125 (7) , 1553-1563. https://doi.org/10.1021/acs.jpca.0c11270
    9. César Barrales-Martínez, Jorge I. Martínez-Araya, Pablo Jaque. 1,3-Dipolar Cycloadditions by a Unified Perspective Based on Conceptual and Thermodynamics Models of Chemical Reactivity. The Journal of Physical Chemistry A 2021, 125 (3) , 801-815. https://doi.org/10.1021/acs.jpca.0c10013
    10. Zack M. Williams, Timothy C. Wiles, Frederick R. Manby. Accurate Hybrid Density Functionals with UW12 Correlation. Journal of Chemical Theory and Computation 2020, 16 (10) , 6176-6194. https://doi.org/10.1021/acs.jctc.0c00442
    11. A. Otero-de-la-Roza, Gino A. DiLabio. Improved Basis-Set Incompleteness Potentials for Accurate Density-Functional Theory Calculations in Large Systems. Journal of Chemical Theory and Computation 2020, 16 (7) , 4176-4191. https://doi.org/10.1021/acs.jctc.0c00102
    12. Krishna Sharma, Alexander V. Strizhak, Elaine Fowler, Wenshu Xu, Ben Chappell, Hannah F. Sore, Warren R. J. D. Galloway, Matthew N. Grayson, Yu Heng Lau, Laura S. Itzhaki, David R. Spring. Functionalized Double Strain-Promoted Stapled Peptides for Inhibiting the p53-MDM2 Interaction. ACS Omega 2020, 5 (2) , 1157-1169. https://doi.org/10.1021/acsomega.9b03459
    13. Divita Gupta, Sidaty Cheikh Sid Ely, Ilsa R. Cooke, Théo Guillaume, Omar Abdelkader Khedaoui, Thomas S. Hearne, Brian M. Hays, Ian R. Sims. Low Temperature Kinetics of the Reaction Between Methanol and the CN Radical. The Journal of Physical Chemistry A 2019, 123 (46) , 9995-10003. https://doi.org/10.1021/acs.jpca.9b08472
    14. Amir Karton. Highly Accurate CCSDT(Q)/CBS Reaction Barrier Heights for a Diverse Set of Transition Structures: Basis Set Convergence and Cost-Effective Approaches for Estimating Post-CCSD(T) Contributions. The Journal of Physical Chemistry A 2019, 123 (31) , 6720-6732. https://doi.org/10.1021/acs.jpca.9b04611
    15. Pavlo O. Dral, Xin Wu, Walter Thiel. Semiempirical Quantum-Chemical Methods with Orthogonalization and Dispersion Corrections. Journal of Chemical Theory and Computation 2019, 15 (3) , 1743-1760. https://doi.org/10.1021/acs.jctc.8b01265
    16. Asim Najibi, Lars Goerigk. The Nonlocal Kernel in van der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ωB97M-V Approaches. Journal of Chemical Theory and Computation 2018, 14 (11) , 5725-5738. https://doi.org/10.1021/acs.jctc.8b00842
    17. Victoria G. Gamez-Garcia and Annia Galano . Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space. The Journal of Physical Chemistry A 2017, 121 (39) , 7393-7400. https://doi.org/10.1021/acs.jpca.7b05797
    18. A. Otero-de-la-Roza and Gino A. DiLabio . Transferable Atom-Centered Potentials for the Correction of Basis Set Incompleteness Errors in Density-Functional Theory. Journal of Chemical Theory and Computation 2017, 13 (8) , 3505-3524. https://doi.org/10.1021/acs.jctc.7b00300
    19. Verónica Selva, Olatz Larrañaga, Luis M. Castelló, Carmen Nájera, José M. Sansano, and Abel de Cózar . Diastereoselective [3 + 2] vs [4 + 2] Cycloadditions of Nitroprolinates with α,β-Unsaturated Aldehydes and Electrophilic Alkenes: An Example of Total Periselectivity. The Journal of Organic Chemistry 2017, 82 (12) , 6298-6312. https://doi.org/10.1021/acs.joc.7b00903
    20. Bun Chan, Amir Karton, Krishnan Raghavachari, and Leo Radom . Restricted-Open-Shell G4(MP2)-Type Procedures. The Journal of Physical Chemistry A 2016, 120 (46) , 9299-9304. https://doi.org/10.1021/acs.jpca.6b09361
    21. Thomas M. Sexton, Marek Freindorf, Elfi Kraka, and Dieter Cremer . A Reaction Valley Investigation of the Cycloaddition of 1,3-Dipoles with the Dipolarophiles Ethene and Acetylene: Solution of a Mechanistic Puzzle. The Journal of Physical Chemistry A 2016, 120 (42) , 8400-8418. https://doi.org/10.1021/acs.jpca.6b07975
    22. Pavlo O. Dral, Xin Wu, Lasse Spörkel, Axel Koslowski, and Walter Thiel . Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties. Journal of Chemical Theory and Computation 2016, 12 (3) , 1097-1120. https://doi.org/10.1021/acs.jctc.5b01047
    23. Alexander R. Goldberg and Brian H. Northrop . Spectroscopic and Computational Investigations of The Thermodynamics of Boronate Ester and Diazaborole Self-Assembly. The Journal of Organic Chemistry 2016, 81 (3) , 969-980. https://doi.org/10.1021/acs.joc.5b02548
    24. Jeffrey A. van Santen and Gino A. DiLabio . Dispersion Corrections Improve the Accuracy of Both Noncovalent and Covalent Interactions Energies Predicted by a Density-Functional Theory Approximation. The Journal of Physical Chemistry A 2015, 119 (25) , 6703-6713. https://doi.org/10.1021/acs.jpca.5b02809
    25. Hung V. Pham, Alexander S. Karns, Christopher D. Vanderwal, and K. N. Houk . Computational and Experimental Investigations of the Formal Dyotropic Rearrangements of Himbert Arene/Allene Cycloadducts. Journal of the American Chemical Society 2015, 137 (21) , 6956-6964. https://doi.org/10.1021/jacs.5b03718
    26. Andrej Lajovic, Leslie D. Nagy, F. Peter Guengerich, and Urban Bren . Carcinogenesis of Urethane: Simulation versus Experiment. Chemical Research in Toxicology 2015, 28 (4) , 691-701. https://doi.org/10.1021/tx500459t
    27. Kolja Theilacker, David Buhrke, and Martin Kaupp . Validation of the Direct-COSMO-RS Solvent Model for Diels–Alder Reactions in Aqueous Solution. Journal of Chemical Theory and Computation 2015, 11 (1) , 111-121. https://doi.org/10.1021/ct5008857
    28. Shi Liu, Sriraj Srinivasan, Jianmin Tao, Michael C. Grady, Masoud Soroush, and Andrew M. Rappe . Modeling Spin-Forbidden Monomer Self-Initiation Reactions in Spontaneous Free-Radical Polymerization of Acrylates and Methacrylates. The Journal of Physical Chemistry A 2014, 118 (40) , 9310-9318. https://doi.org/10.1021/jp503794j
    29. Xianhui Sun, Xiaoli Sun, Caiyun Geng, Haitao Zhao, and Jilai Li . Benchmark Study on Methanol C–H and O–H Bond Activation by Bare [FeIVO]2+. The Journal of Physical Chemistry A 2014, 118 (34) , 7146-7158. https://doi.org/10.1021/jp505662x
    30. Brian Gold, Paratchata Batsomboon, Gregory B. Dudley, and Igor V. Alabugin . Alkynyl Crown Ethers as a Scaffold for Hyperconjugative Assistance in Noncatalyzed Azide–Alkyne Click Reactions: Ion Sensing through Enhanced Transition-State Stabilization. The Journal of Organic Chemistry 2014, 79 (13) , 6221-6232. https://doi.org/10.1021/jo500958n
    31. Song Liu, Yu Lei, Xiaotian Qi, and Yu Lan . Reactivity for the Diels–Alder Reaction of Cumulenes: A Distortion-Interaction Analysis along the Reaction Pathway. The Journal of Physical Chemistry A 2014, 118 (14) , 2638-2645. https://doi.org/10.1021/jp411914u
    32. Dmitrij Rappoport, Cooper J. Galvin, Dmitry Yu. Zubarev, and Alán Aspuru-Guzik . Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry. Journal of Chemical Theory and Computation 2014, 10 (3) , 897-907. https://doi.org/10.1021/ct401004r
    33. Lars Goerigk . How Do DFT-DCP, DFT-NL, and DFT-D3 Compare for the Description of London-Dispersion Effects in Conformers and General Thermochemistry?. Journal of Chemical Theory and Computation 2014, 10 (3) , 968-980. https://doi.org/10.1021/ct500026v
    34. Yvonne Schmidt, Jonathan K. Lam, Hung V. Pham, K. N. Houk, and Christopher D. Vanderwal . Studies on the Himbert Intramolecular Arene/Allene Diels–Alder Cycloaddition. Mechanistic Studies and Expansion of Scope to All-Carbon Tethers. Journal of the American Chemical Society 2013, 135 (19) , 7339-7348. https://doi.org/10.1021/ja4025963
    35. Brian Gold, Gregory B. Dudley, and Igor V. Alabugin . Moderating Strain without Sacrificing Reactivity: Design of Fast and Tunable Noncatalyzed Alkyne–Azide Cycloadditions via Stereoelectronically Controlled Transition State Stabilization. Journal of the American Chemical Society 2013, 135 (4) , 1558-1569. https://doi.org/10.1021/ja3114196
    36. Maria I. L. Soares, Cláudio M. Nunes, Clara S. B. Gomes, and Teresa M. V. D. Pinho e Melo . Thiazolo[3,4-b]indazole-2,2-dioxides as Masked Extended Dipoles: Pericyclic Reactions of Benzodiazafulvenium Methides. The Journal of Organic Chemistry 2013, 78 (2) , 628-637. https://doi.org/10.1021/jo302463q
    37. Bun Chan, Peter M. W. Gill, and Leo Radom . Performance of Gradient-Corrected and Hybrid Density Functional Theory: Role of the Underlying Local Density Approximation and the Gradient Correction. Journal of Chemical Theory and Computation 2012, 8 (12) , 4899-4906. https://doi.org/10.1021/ct300603d
    38. Arne Dieckmann and K. N. Houk . Elucidation of Strong Cooperative Effects Caused by Dispersion Interactions in a Recognition-Mediated Diels–Alder Reaction. Journal of Chemical Theory and Computation 2012, 8 (12) , 5064-5071. https://doi.org/10.1021/ct300655b
    39. Holger Kruse, Lars Goerigk, and Stefan Grimme . Why the Standard B3LYP/6-31G* Model Chemistry Should Not Be Used in DFT Calculations of Molecular Thermochemistry: Understanding and Correcting the Problem. The Journal of Organic Chemistry 2012, 77 (23) , 10824-10834. https://doi.org/10.1021/jo302156p
    40. Bun Chan and Leo Radom . W1X-1 and W1X-2: W1-Quality Accuracy with an Order of Magnitude Reduction in Computational Cost. Journal of Chemical Theory and Computation 2012, 8 (11) , 4259-4269. https://doi.org/10.1021/ct300632p
    41. Elizabeth H. Krenske, Sesil Agopcan, Viktorya Aviyente, K. N. Houk, Brian A. Johnson, and Andrew B. Holmes . Causation in a Cascade: The Origins of Selectivities in Intramolecular Nitrone Cycloadditions. Journal of the American Chemical Society 2012, 134 (29) , 12010-12015. https://doi.org/10.1021/ja300002k
    42. Sergiy V. Rosokha, Vasiliy Korotchenko, Charlotte L. Stern, Vladimir Zaitsev, and Jeremy T. Ritzert . Substituent-Induced Switch of the Role of Charge-Transfer Complexes in the Diels–Alder Reactions of o-Chloranil and Styrenes. The Journal of Organic Chemistry 2012, 77 (14) , 5971-5981. https://doi.org/10.1021/jo300614k
    43. Chelsea G. Gordon, Joel L. Mackey, John C. Jewett, Ellen M. Sletten, K. N. Houk, and Carolyn R. Bertozzi . Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry. Journal of the American Chemical Society 2012, 134 (22) , 9199-9208. https://doi.org/10.1021/ja3000936
    44. Daniel H. Ess . Transition-Structure Catalog of Organic Reactions. Journal of Chemical Education 2012, 89 (6) , 817-818. https://doi.org/10.1021/ed2005856
    45. Brian Gold, Nikolay E. Shevchenko, Natalie Bonus, Gregory B. Dudley, and Igor V. Alabugin . Selective Transition State Stabilization via Hyperconjugative and Conjugative Assistance: Stereoelectronic Concept for Copper-Free Click Chemistry. The Journal of Organic Chemistry 2012, 77 (1) , 75-89. https://doi.org/10.1021/jo201434w
    46. Yu Lan, Lufeng Zou, Yang Cao, and K. N. Houk . Computational Methods To Calculate Accurate Activation and Reaction Energies of 1,3-Dipolar Cycloadditions of 24 1,3-Dipoles. The Journal of Physical Chemistry A 2011, 115 (47) , 13906-13920. https://doi.org/10.1021/jp207563h
    47. Aida Ajaz, Alexander Z. Bradley, Richard C. Burrell, William Hoi Hong Li, Kimberly J. Daoust, Laura Boddington Bovee, Kenneth J. DiRico, and Richard P. Johnson . Concerted vs Stepwise Mechanisms in Dehydro-Diels–Alder Reactions. The Journal of Organic Chemistry 2011, 76 (22) , 9320-9328. https://doi.org/10.1021/jo201567d
    48. Stephan N. Steinmann and Clemence Corminboeuf . Comprehensive Benchmarking of a Density-Dependent Dispersion Correction. Journal of Chemical Theory and Computation 2011, 7 (11) , 3567-3577. https://doi.org/10.1021/ct200602x
    49. Paul Ha-Yeon Cheong, Claude Y. Legault, Joann M. Um, Nihan Çelebi-Ölçüm, and K. N. Houk . Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities. Chemical Reviews 2011, 111 (8) , 5042-5137. https://doi.org/10.1021/cr100212h
    50. Yu Lan, Steven E. Wheeler, and K. N. Houk . Extraordinary Difference in Reactivity of Ozone (OOO) and Sulfur Dioxide (OSO): A Theoretical Study. Journal of Chemical Theory and Computation 2011, 7 (7) , 2104-2111. https://doi.org/10.1021/ct200293w
    51. Elizabeth H. Krenske, Russell C. Petter, Zhendong Zhu, and K. N. Houk . Transition States and Energetics of Nucleophilic Additions of Thiols to Substituted α,β-Unsaturated Ketones: Substituent Effects Involve Enone Stabilization, Product Branching, and Solvation. The Journal of Organic Chemistry 2011, 76 (12) , 5074-5081. https://doi.org/10.1021/jo200761w
    52. Xuefei Xu, I. M. Alecu, and Donald G. Truhlar . How Well Can Modern Density Functionals Predict Internuclear Distances at Transition States?. Journal of Chemical Theory and Computation 2011, 7 (6) , 1667-1676. https://doi.org/10.1021/ct2001057
    53. Robert S. Paton, Sarah E. Steinhardt, Christopher D. Vanderwal, and K. N. Houk . Unraveling the Mechanism of Cascade Reactions of Zincke Aldehydes. Journal of the American Chemical Society 2011, 133 (11) , 3895-3905. https://doi.org/10.1021/ja107988b
    54. Yan Zhao , Donald G. Truhlar . Density Functional Theory for Reaction Energies: Test of Meta and Hybrid Meta Functionals, Range-Separated Functionals, and Other High-Performance Functionals. Journal of Chemical Theory and Computation 2011, 7 (3) , 669-676. https://doi.org/10.1021/ct1006604
    55. Lars Goerigk and Stefan Grimme . Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals—Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation 2011, 7 (2) , 291-309. https://doi.org/10.1021/ct100466k
    56. Bun Chan, Jia Deng, and Leo Radom. G4(MP2)-6X: A Cost-Effective Improvement to G4(MP2). Journal of Chemical Theory and Computation 2011, 7 (1) , 112-120. https://doi.org/10.1021/ct100542x
    57. Sebastian Kozuch, David Gruzman, and Jan M. L. Martin. DSD-BLYP: A General Purpose Double Hybrid Density Functional Including Spin Component Scaling and Dispersion Correction. The Journal of Physical Chemistry C 2010, 114 (48) , 20801-20808. https://doi.org/10.1021/jp1070852
    58. Jens Blotevogel, Thomas Borch, Yury Desyaterik, Arthur N. Mayeno and Tom C. Sale . Quantum Chemical Prediction of Redox Reactivity and Degradation Pathways for Aqueous Phase Contaminants: An Example with HMPA. Environmental Science & Technology 2010, 44 (15) , 5868-5874. https://doi.org/10.1021/es1006675
    59. Dean J. Tantillo. How an Enzyme Might Accelerate an Intramolecular Diels−Alder Reaction: Theozymes for the Formation of Salvileucalin B. Organic Letters 2010, 12 (6) , 1164-1167. https://doi.org/10.1021/ol9028435
    60. Steven E. Wheeler, Anne J. McNeil, Peter Müller, Timothy M. Swager and K. N. Houk . Probing Substituent Effects in Aryl−Aryl Interactions Using Stereoselective Diels−Alder Cycloadditions. Journal of the American Chemical Society 2010, 132 (10) , 3304-3311. https://doi.org/10.1021/ja903653j
    61. Lars Goerigk and Stefan Grimme . A General Database for Main Group Thermochemistry, Kinetics, and Noncovalent Interactions − Assessment of Common and Reparameterized (meta-)GGA Density Functionals. Journal of Chemical Theory and Computation 2010, 6 (1) , 107-126. https://doi.org/10.1021/ct900489g
    62. Michelle Lynn Hall, Dahlia A. Goldfeld, Arteum D. Bochevarov and Richard A. Friesner. Localized Orbital Corrections for the Barrier Heights in Density Functional Theory. Journal of Chemical Theory and Computation 2009, 5 (11) , 2996-3009. https://doi.org/10.1021/ct9003965
    63. Steven E. Wheeler, Antonio Moran, Susan N. Pieniazek and K. N. Houk. Accurate Reaction Enthalpies and Sources of Error in DFT Thermochemistry for Aldol, Mannich, and α-Aminoxylation Reactions. The Journal of Physical Chemistry A 2009, 113 (38) , 10376-10384. https://doi.org/10.1021/jp9058565
    64. Nicole D. Harrold, Rory Waterman, Gregory L. Hillhouse and Thomas R. Cundari. Group-Transfer Reactions of Nickel−Carbene and −Nitrene Complexes with Organoazides and Nitrous Oxide that Form New C═N, C═O, and N═N Bonds. Journal of the American Chemical Society 2009, 131 (36) , 12872-12873. https://doi.org/10.1021/ja904370h
    65. Alexander Paasche, Mario Arnone, Reinhold F. Fink, Tanja Schirmeister and Bernd Engels . Origin of the Reactivity Differences of Substituted Aziridines: CN vs CC Bond Breakages. The Journal of Organic Chemistry 2009, 74 (15) , 5244-5249. https://doi.org/10.1021/jo900505q
    66. Gül A. Özpınar, Safiye S. Erdem, Christian Meyer and Dieter E. Kaufmann. A DFT Study on the Mechanism of the Annulation Reaction of Trichloronitroethylene with Aniline in the Synthesis of Quinoxalinone-N-oxides. The Journal of Organic Chemistry 2009, 74 (13) , 4727-4739. https://doi.org/10.1021/jo9003629
    67. Franziska Schoenebeck, Daniel H. Ess, Gavin O. Jones and K. N. Houk. Reactivity and Regioselectivity in 1,3-Dipolar Cycloadditions of Azides to Strained Alkynes and Alkenes: A Computational Study. Journal of the American Chemical Society 2009, 131 (23) , 8121-8133. https://doi.org/10.1021/ja9003624
    68. Alicia C. Voukides, Kaleen M. Konrad and Richard P. Johnson. Competing Mechanistic Channels in the Oxidation of Aldehydes by Ozone. The Journal of Organic Chemistry 2009, 74 (5) , 2108-2113. https://doi.org/10.1021/jo8026593
    69. Amir Karton, Alex Tarnopolsky, Jean-François Lamère, George C. Schatz and Jan M. L. Martin. Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. The Journal of Physical Chemistry A 2008, 112 (50) , 12868-12886. https://doi.org/10.1021/jp801805p
    70. Daniel H. Ess, Amy E. Hayden, Frank-Gerrit Klärner and K. N. Houk . Transition States for the Dimerization of 1,3-Cyclohexadiene: A DFT, CASPT2, and CBS-QB3 Quantum Mechanical Investigation. The Journal of Organic Chemistry 2008, 73 (19) , 7586-7592. https://doi.org/10.1021/jo8011804
    71. Juan M. Ruiz, David Regás, María M. Afonso and J. Antonio Palenzuela. Study of an Unexpected Rearrangement of the α-Phenyl Pyrane Derivatives Prepared via Hetero-Diels−Alder Reaction of Acyclic Vinyl Allenes and Aldehydes. The Journal of Organic Chemistry 2008, 73 (18) , 7246-7254. https://doi.org/10.1021/jo8010107
    72. Daniel H. Ess and K. N. Houk. Theory of 1,3-Dipolar Cycloadditions: Distortion/Interaction and Frontier Molecular Orbital Models. Journal of the American Chemical Society 2008, 130 (31) , 10187-10198. https://doi.org/10.1021/ja800009z
    73. Zhe Li, Chen Wang, Yao Fu, Qing-Xiang Guo and Lei Liu. Substituent Effect on the Efficiency of Desulfurizative Rearrangement of Allylic Disulfides. The Journal of Organic Chemistry 2008, 73 (16) , 6127-6136. https://doi.org/10.1021/jo800747g
    74. Petr Melša,, Michal Čajan,, Zdeněk Havlas, and, Ctibor Mazal. Substituent Effect on exo Stereoselectivity in the 1,3-Dipolar Cycloaddition Reaction of Tulipalin A with Nitrile Ylides. The Journal of Organic Chemistry 2008, 73 (8) , 3032-3039. https://doi.org/10.1021/jo702563n
    75. Steven E. Wheeler,, Daniel H. Ess, and, K. N. Houk. Thinking Out of the Black Box:  Accurate Barrier Heights of 1,3-Dipolar Cycloadditions of Ozone with Acetylene and Ethylene. The Journal of Physical Chemistry A 2008, 112 (8) , 1798-1807. https://doi.org/10.1021/jp710104d
    76. Carles Acosta-Silva and, Vicenç Branchadell. Comparison of Density Functionals for Reactions of Sulfur Ylides with Aldehydes and Olefins. The Journal of Physical Chemistry A 2007, 111 (47) , 12019-12025. https://doi.org/10.1021/jp075708f
    77. Daniel H. Ess and, K. N. Houk. Distortion/Interaction Energy Control of 1,3-Dipolar Cycloaddition Reactivity. Journal of the American Chemical Society 2007, 129 (35) , 10646-10647. https://doi.org/10.1021/ja0734086
    78. Cherumuttathu H. Suresh,, Danaboyina Ramaiah, and, Manapurathu V. George. Rearrangement of 1,3-Dipolar Cycloadducts Derived from Bis(phenylazo)stilbene:  A DFT Level Mechanistic Investigation. The Journal of Organic Chemistry 2007, 72 (2) , 367-375. https://doi.org/10.1021/jo061707s
    79. Stefan Grimme,, Christian Mück-Lichtenfeld, and, Ernst-Ulrich Würthwein, , Andreas W. Ehlers,, T. P. M. Goumans, and, Koop Lammertsma. Consistent Theoretical Description of 1,3-Dipolar Cycloaddition Reactions. The Journal of Physical Chemistry A 2006, 110 (8) , 2583-2586. https://doi.org/10.1021/jp057329x
    80. Errol G. Lewars. Density Functional Calculations. 2024, 493-577. https://doi.org/10.1007/978-3-031-51443-2_7
    81. Errol G. Lewars. Ab Initio Calculations. 2024, 199-432. https://doi.org/10.1007/978-3-031-51443-2_5
    82. Martina Kieninger, Oscar N. Ventura. SVECV ‐f12: A composite scheme for accurate and cost‐effective evaluation of reaction barriers. II . Benchmarking using Karton's BH28 barrier heights database. International Journal of Quantum Chemistry 2023, 123 (24) https://doi.org/10.1002/qua.27069
    83. Thijs Stuyver, Kjell Jorner, Connor W. Coley. Reaction profiles for quantum chemistry-computed [3 + 2] cycloaddition reactions. Scientific Data 2023, 10 (1) https://doi.org/10.1038/s41597-023-01977-8
    84. W.O. Usama, D.J. Markewich, A.L.L. East. Regioselectivity in Wacker oxidations of internal alkenes: antiperiplanar effects?. Canadian Journal of Chemistry 2023, 101 (9) , 579-584. https://doi.org/10.1139/cjc-2022-0151
    85. Samuel G. Espley, Elliot H. E. Farrar, David Buttar, Simone Tomasi, Matthew N. Grayson. Machine learning reaction barriers in low data regimes: a horizontal and diagonal transfer learning approach. Digital Discovery 2023, 2 (4) , 941-951. https://doi.org/10.1039/D3DD00085K
    86. Ruoyue Tang, Song Cheng. Combustion Chemistry of Unsaturated Hydrocarbons Mixed with NOx: A Review with a Focus on Their Interactions. Energies 2023, 16 (13) , 4967. https://doi.org/10.3390/en16134967
    87. Loránd Kiss, Jorge Escorihuela. A computational study of 1,3-dipolar cycloadditions of nitrile oxides with dienes. Tetrahedron 2023, 139 , 133435. https://doi.org/10.1016/j.tet.2023.133435
    88. Leandro Ayarde-Henríquez, Cristian Guerra, Mario Duque-Noreña, Eduardo Chamorro. A simple topology-based model for predicting the activation barriers of reactive processes at 0 K. Physical Chemistry Chemical Physics 2023, 25 (20) , 14274-14284. https://doi.org/10.1039/D3CP01008B
    89. Boulanouar MESSAOUDI, Mouna CHERIET, Rayenne DJEMIL, Djameleddine KHATMİ. Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene. Turkish Computational and Theoretical Chemistry 2023, 7 (2) , 1-11. https://doi.org/10.33435/tcandtc.1144794
    90. Masoud Ghaghaei, Mirzaagha Babazadeh, Farnaz Behmagham, Ladan Edjlali, Esmail Vessally. A theoretical evaluation for new fused remote N ‐heterocyclic silylenes (RNHSis) using density functional theory. Journal of Physical Organic Chemistry 2023, 36 (4) https://doi.org/10.1002/poc.4475
    91. Yuxinxin Chen, Yanchi Ou, Peikun Zheng, Yaohuang Huang, Fuchun Ge, Pavlo O. Dral. Benchmark of general-purpose machine learning-based quantum mechanical method AIQM1 on reaction barrier heights. The Journal of Chemical Physics 2023, 158 (7) https://doi.org/10.1063/5.0137101
    92. Inemesit A. Udofia, Trust Ekama, Taofeek B. Ogunbayo, Oluwakemi A. Oloba-Whenu, Lydia Rhyman, Chukwuemeka Isanbor, Ponnadurai Ramasami. Experimental and theoretical calculation of pKa values of substituted-2,4,6-trinitrodiphenylamines. Journal of Molecular Liquids 2023, 371 , 120926. https://doi.org/10.1016/j.molliq.2022.120926
    93. Marcelo T. de Oliveira, Júlia M. A. Alves, Natália L. Vrech, Ataualpa A. C. Braga, Cristina A. Barboza. A comprehensive benchmark investigation of quantum chemical methods for carbocations. Physical Chemistry Chemical Physics 2023, 25 https://doi.org/10.1039/D2CP04603B
    94. Mustafa M. Kadhim, Evan Abdulkareem Mahmood, Vahideh Abbasi, Mohammad Reza Poor Heravi, Sepideh Habibzadeh, Sarvin Mohammadi-Aghdam, Somayeh Soleimani-Amiri. Investigation of the substituted—titanium nanocages using computational chemistry. Journal of Molecular Graphics and Modelling 2023, 118 , 108317. https://doi.org/10.1016/j.jmgm.2022.108317
    95. Jan Rosenboom, Alexander Villinger, Axel Schulz, Jonas Bresien. Concerted addition of aldehydes to the singlet biradical [P(μ-NTer)] 2. Dalton Transactions 2022, 51 (35) , 13479-13487. https://doi.org/10.1039/D2DT02229J
    96. Pascal Vermeeren, Marco Dalla Tiezza, Mark E. Wolf, Mitchell E. Lahm, Wesley D. Allen, Henry F. Schaefer, Trevor A. Hamlin, F. Matthias Bickelhaupt. Pericyclic reaction benchmarks: hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance. Physical Chemistry Chemical Physics 2022, 24 (30) , 18028-18042. https://doi.org/10.1039/D2CP02234F
    97. Arno Förster, Lucas Visscher. Exploring the statically screened G 3 W 2 correction to the G W self-energy: Charged excitations and total energies of finite systems. Physical Review B 2022, 105 (12) https://doi.org/10.1103/PhysRevB.105.125121
    98. Katarzyna Pernal, Michał Hapka. Range‐separated multiconfigurational density functional theory methods. WIREs Computational Molecular Science 2022, 12 (2) https://doi.org/10.1002/wcms.1566
    99. Maria S. Ledovskaya, Vladimir V. Voronin, Konstantin S. Rodygin, Valentine P. Ananikov. Acetylene and Ethylene: Universal C2 Molecular Units in Cycloaddition Reactions. Synthesis 2022, 54 (04) , 999-1042. https://doi.org/10.1055/a-1654-2318
    100. Liu Zhong‐yang, He Long‐qiang, Sheida Ahmadi. Substituent effects on the stability of N ‐heterocyclic germylenes using density functional theory. Journal of Physical Organic Chemistry 2021, 34 (11) https://doi.org/10.1002/poc.4266
    Load more citations