ACS Publications. Most Trusted. Most Cited. Most Read
Thermodynamic Properties Underlying the α-Helix-to-β-Sheet Transition, Aggregation, and Amyloidogenesis of Polylysine as Probed by Calorimetry, Densimetry, and Ultrasound Velocimetry
My Activity

Figure 1Loading Img
    Letter

    Thermodynamic Properties Underlying the α-Helix-to-β-Sheet Transition, Aggregation, and Amyloidogenesis of Polylysine as Probed by Calorimetry, Densimetry, and Ultrasound Velocimetry
    Click to copy article linkArticle link copied!

    View Author Information
    University of Dortmund, Department of Chemistry, Physical Chemistry I, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
    TF Instruments, Im Neuenheimer Feld 515, D-69129 Heidelberg, Germany
    Institute for High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2005, 109, 41, 19043–19045
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp053283w
    Published September 27, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In this work, we performed a detailed thermodynamic study of an aggregation-prone polypeptide, polylysine, to gain a deeper insight into the scenario of physicochemical events during its unfolding, aggregation, and amyloidogenesis. The precise and simultaneous determination of the partial molar volume, the heat capacity, and the coefficients of thermal expansion, as well as adiabatic and isothermal compressibility of the protein upon unfolding and aggregation, yields a thermodynamic picture of the aggregation process highlighting the importance of volume fluctuations during unfolding and amyloidogenesis of proteins.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 34 publications.

    1. Samantha Micciulla, Philipp Gutfreund, Matej Kanduč, Leonardo Chiappisi. Pressure-Induced Phase Transitions of Nonionic Polymer Brushes. Macromolecules 2023, 56 (3) , 1177-1188. https://doi.org/10.1021/acs.macromol.2c01979
    2. Agnieszka Hernik-Magoń, Wojciech Puławski, Bartłomiej Fedorczyk, Dagmara Tymecka, Aleksandra Misicka, Piotr Szymczak, and Wojciech Dzwolak . Beware of Cocktails: Chain-Length Bidispersity Triggers Explosive Self-Assembly of Poly-l-Glutamic Acid β2-Fibrils. Biomacromolecules 2016, 17 (4) , 1376-1382. https://doi.org/10.1021/acs.biomac.5b01770
    3. Aleksandra Fulara and Wojciech Dzwolak . Bifurcated Hydrogen Bonds Stabilize Fibrils of Poly(l-glutamic) Acid. The Journal of Physical Chemistry B 2010, 114 (24) , 8278-8283. https://doi.org/10.1021/jp102440n
    4. Aleksandra Fulara, Sławomir Wojcik, Anna Loksztejn and Wojciech Dzwolak . De novo Refolding and Aggregation of Insulin in a Nonaqueous Environment: An Inside out Protein Remake. The Journal of Physical Chemistry B 2008, 112 (29) , 8744-8747. https://doi.org/10.1021/jp8029727
    5. Kazuyuki Akasaka,, Abdul Raziq Abdul Latif,, Akihiro Nakamura,, Koichi Matsuo,, Hideki Tachibana, and, Kunihiko Gekko. Amyloid Protofibril is Highly Voluminous and Compressible. Biochemistry 2007, 46 (37) , 10444-10450. https://doi.org/10.1021/bi700648b
    6. Yi Guo,, Yudan Ma,, Li Xu,, Jun Li, and, Wensheng Yang. Conformational Change Induced Reversible Assembly/Disassembly of Poly-l-lysine-Functionalized Gold Nanoparticles. The Journal of Physical Chemistry C 2007, 111 (26) , 9172-9176. https://doi.org/10.1021/jp072012d
    7. Tim J. Kamerzell,, Jay R. Unruh,, Carey K. Johnson, and, C. Russell Middaugh. Conformational Flexibility, Hydration and State Parameter Fluctuations of Fibroblast Growth Factor-10:  Effects of Ligand Binding. Biochemistry 2006, 45 (51) , 15288-15300. https://doi.org/10.1021/bi061712q
    8. Bo Yu, Xiangtao Wang, Lijuan Ding, Meihua Han, Yifei Guo. Hydrophilic Natural Polylysine as Drug Nanocarrier for Preparation of Helical Delivery System. Pharmaceutics 2022, 14 (11) , 2512. https://doi.org/10.3390/pharmaceutics14112512
    9. Andrew Chang, Xinyu Xiang, Jing Wang, Carolyn Lee, Tamta Arakhamia, Marija Simjanoska, Chi Wang, Yari Carlomagno, Guoan Zhang, Shikhar Dhingra, Manon Thierry, Jolien Perneel, Bavo Heeman, Lauren M. Forgrave, Michael DeTure, Mari L. DeMarco, Casey N. Cook, Rosa Rademakers, Dennis W. Dickson, Leonard Petrucelli, Michael H.B. Stowell, Ian R.A. Mackenzie, Anthony W.P. Fitzpatrick. Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell 2022, 185 (8) , 1346-1355.e15. https://doi.org/10.1016/j.cell.2022.02.026
    10. Imen Naassaoui, Adel Aschi. Influence of temperature and salt on coacervation in an aqueous mixture of poly-L-lysine (PLL) and poly-(sodium styrene sulfonate) (PSSNa). European Biophysics Journal 2021, 50 (6) , 877-887. https://doi.org/10.1007/s00249-021-01542-4
    11. Imen Naassaoui, Adel Aschi. Evaluation of Properties and Structural Transitions of Poly-L-lysine: Effects of pH and Temperature. Journal of Macromolecular Science, Part B 2019, 58 (8) , 673-688. https://doi.org/10.1080/00222348.2019.1638593
    12. Joanna Krakowiak, Magdalena Krajewska, Jarosław Wawer. Monitoring of lysozyme thermal denaturation by volumetric measurements and nanoDSF technique in the presence of N-butylurea. Journal of Biological Physics 2019, 45 (2) , 161-172. https://doi.org/10.1007/s10867-019-09521-9
    13. Jim-Marcel Knop, Roland Winter. Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine. Zeitschrift für Physikalische Chemie 2018, 232 (7-8) , 1111-1125. https://doi.org/10.1515/zpch-2017-1012
    14. Lingyun Zhang. Assembly Mechanism for Aggregation of Amyloid Fibrils. International Journal of Molecular Sciences 2018, 19 (7) , 2141. https://doi.org/10.3390/ijms19072141
    15. Hui-Juan Li, Peng-Yun Li, Li-Ying Li, Abdul Haleem, Wei-Dong He. Gold Nanoparticles Grafted with PLL-b-PNIPAM: Interplay on Thermal/pH Dual-Response and Optical Properties. Molecules 2018, 23 (4) , 921. https://doi.org/10.3390/molecules23040921
    16. Katarzyna Kurpiewska, Kamil Dziubek, Andrzej Katrusiak, Josep Font, Marc Ribò, Maria Vilanova, Krzysztof Lewiński. Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography. Chemical Physics 2016, 468 , 53-62. https://doi.org/10.1016/j.chemphys.2016.01.010
    17. Florent Laferrière, Philippe Tixador, Mohammed Moudjou, Jérôme Chapuis, Pierre Sibille, Laetitia Herzog, Fabienne Reine, Emilie Jaumain, Hubert Laude, Human Rezaei, Vincent Béringue, . Quaternary Structure of Pathological Prion Protein as a Determining Factor of Strain-Specific Prion Replication Dynamics. PLoS Pathogens 2013, 9 (10) , e1003702. https://doi.org/10.1371/journal.ppat.1003702
    18. Marc Stanke, Patrick Lindner, Stephanie Holz, Bernd Hitzmann. Automated sonic velocity calculation based on ultrasonic resonator measurements for on-line process monitoring. Sensors and Actuators A: Physical 2013, 198 , 69-74. https://doi.org/10.1016/j.sna.2013.03.024
    19. Helge Pfeiffer, Nikos Chatziathanasiou, Bert Verstraeten, Filip Meersman, Christ Glorieux, Karel Heremans, Martine Wevers. In-situ spectroscopic investigation of ultrasonic assisted unfolding and aggregation of insulin. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2013, 1834 (1) , 336-341. https://doi.org/10.1016/j.bbapap.2012.08.006
    20. Sarika Saxena, Satoru Nagatoishi, Daisuke Miyoshi, Naoki Sugimoto. Structural and Functional Characterization of RecG Helicase under Dilute and Molecular Crowding Conditions. Journal of Nucleic Acids 2012, 2012 , 1-8. https://doi.org/10.1155/2012/392039
    21. Yong Zhai, Linus Okoro, Alan Cooper, Roland Winter. Applications of pressure perturbation calorimetry in biophysical studies. Biophysical Chemistry 2011, 156 (1) , 13-23. https://doi.org/10.1016/j.bpc.2010.12.010
    22. Magdalena Stobiecka, Maria Hepel. Double-shell gold nanoparticle-based DNA-carriers with poly-l-lysine binding surface. Biomaterials 2011, 32 (12) , 3312-3321. https://doi.org/10.1016/j.biomaterials.2010.12.064
    23. Parkson Lee-Gau Chong, Michael Sulc, Roland Winter. Compressibilities and Volume Fluctuations of Archaeal Tetraether Liposomes. Biophysical Journal 2010, 99 (10) , 3319-3326. https://doi.org/10.1016/j.bpj.2010.09.061
    24. Dina Morshedi, Azadeh Ebrahim-Habibi, Ali Akbar Moosavi-Movahedi, Mohsen Nemat-Gorgani. Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2010, 1804 (4) , 714-722. https://doi.org/10.1016/j.bbapap.2009.11.012
    25. Yudan Ma, Yi Guo, Jun Li, Jian Guan, Li Xu, Wensheng Yang. Poly( L ‐lysine)‐Induced Aggregation of Single‐Strand Oligo‐DNA‐Modified Gold Nanoparticles. Chemistry – A European Journal 2009, 15 (47) , 13135-13140. https://doi.org/10.1002/chem.200900916
    26. Udo Kaatze, Frieder Eggers, Karl Lautscham. Ultrasonic velocity measurements in liquids with high resolution—techniques, selected applications and perspectives. Measurement Science and Technology 2008, 19 (6) , 062001. https://doi.org/10.1088/0957-0233/19/6/062001
    27. Soyoung Lee, Anna Tikhomirova, Napol Shalvardjian, Tigran V. Chalikian. Partial molar volumes and adiabatic compressibilities of unfolded protein states. Biophysical Chemistry 2008, 134 (3) , 185-199. https://doi.org/10.1016/j.bpc.2008.02.009
    28. Roland Krivanek, Linus Okoro, Roland Winter. Effect of Cholesterol and Ergosterol on the Compressibility and Volume Fluctuations of Phospholipid-Sterol Bilayers in the Critical Point Region: A Molecular Acoustic and Calorimetric Study. Biophysical Journal 2008, 94 (9) , 3538-3548. https://doi.org/10.1529/biophysj.107.122549
    29. Vytautas Smirnovas, Roland Winter. Revealing Different Aggregation Pathways of Amyloidogenic Proteins by Ultrasound Velocimetry. Biophysical Journal 2008, 94 (8) , 3241-3246. https://doi.org/10.1529/biophysj.107.123133
    30. Roland Winter, Dahabada Lopes, Stefan Grudzielanek, Karsten Vogtt. Towards an Understanding of the Temperature/ Pressure Configurational and Free-Energy Landscape of Biomolecules. Journal of Non-Equilibrium Thermodynamics 2007, 32 (1) https://doi.org/10.1515/JNETDY.2007.003
    31. Vytautas Smirnovas, Roland Winter, Theodor Funck, Wojciech Dzwolak. Protein Amyloidogenesis in the Context of Volume Fluctuations: A Case Study on Insulin. ChemPhysChem 2006, 7 (5) , 1046-1049. https://doi.org/10.1002/cphc.200500717
    32. Filip Meersman, László Smeller, Karel Heremans. Protein stability and dynamics in the pressure–temperature plane. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2006, 1764 (3) , 346-354. https://doi.org/10.1016/j.bbapap.2005.11.019
    33. Filip Meersman, Christopher M. Dobson, Karel Heremans. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chemical Society Reviews 2006, 35 (10) , 908. https://doi.org/10.1039/b517761h
    34. Elena Boldyreva. Crystalline Amino Acids. , 167-192. https://doi.org/10.1007/978-1-4020-5941-4_7

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2005, 109, 41, 19043–19045
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp053283w
    Published September 27, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    611

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.