ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Modeling of the Carbon Dioxide Solubility in Imidazolium-Based Ionic Liquids with the tPC-PSAFT Equation of State

View Author Information
Physical Chemistry and Molecular Thermodynamics, Department of Chemical Technology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Laboratory for Process Equipment, Department of Process & Energy, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands, and Molecular Thermodynamics and Modeling of Materials Laboratory, Institute of Physical Chemistry, National Center for Scientific Research “Demokritos”, GR-15310 Aghia Paraskevi Attikis, Greece
Cite this: J. Phys. Chem. B 2006, 110, 18, 9262–9269
Publication Date (Web):April 20, 2006
https://doi.org/10.1021/jp060300o
Copyright © 2006 American Chemical Society

    Article Views

    1566

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    In this work, an equation of state (EoS) is developed to predict accurately the phase behavior of ionic liquid + CO2 systems based on the truncated perturbed chain polar statistical associating fluid theory (tPC-PSAFT) EoS. This EoS accounts explicitly for the dipolar interactions between ionic liquid molecules, the quadrupolar interactions between CO2 molecules, and the Lewis acid−base type of association between the ionic liquid and the CO2 molecules. Physically meaningful model pure-component parameters for ionic liquids are estimated based on literature data. All experimental vapor−liquid equilibrium data are correlated with a single linearly temperature-dependent binary interaction parameter. The ability of the model to describe accurately carbon dioxide solubility in various 1-alkyl-3-methylimidazolium-based ionic liquids with different alkyl chain lengths and different anions at pressures from 0 to 100 MPa and carbon dioxide fractions from 0 to 75 mol % is demonstrated. In all cases, good agreement with experimental data is obtained.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding authors. E-mail:  [email protected] (I.G.E.); [email protected] (C.J.P); [email protected] (M.C.K.).

     Department of Chemical Technology, Faculty of Applied Sciences, Delft University of Technology.

     Department of Process & Energy, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology.

    §

     National Center for Scientific Research “Demokritos”.

    Cited By

    This article is cited by 161 publications.

    1. Chenyang Zhu, Maogang He, Xiangyang Liu, Georgios M. Kontogeorgis, Xiaodong Liang. Quantification of Dipolar Contribution and Modeling of Green Polar Fluids with the Polar Cubic-Plus-Association Equation of State. ACS Sustainable Chemistry & Engineering 2021, 9 (22) , 7602-7619. https://doi.org/10.1021/acssuschemeng.1c01545
    2. Yunhao Sun, Xiaohua Lu, Xiaoyan Ji. Modeling Interfacial Properties with Spot-DGT-ePC-SAFT for Binary Mixtures Including Ionic Liquid-Based Systems. Industrial & Engineering Chemistry Research 2021, 60 (11) , 4484-4497. https://doi.org/10.1021/acs.iecr.1c00271
    3. C. J. Kelsheimer, Sean Garrett-Roe. Intramolecular Vibrational Energy Relaxation of CO2 in Cross-Linked Poly(ethylene glycol) Diacrylate-Based Ion Gels. The Journal of Physical Chemistry B 2021, 125 (5) , 1402-1415. https://doi.org/10.1021/acs.jpcb.0c06685
    4. Yunhao Sun, Aatto Laaksonen, Xiaohua Lu, Xiaoyan Ji. How to Detect Possible Pitfalls in ePC-SAFT Modeling. 2. Extension to Binary Mixtures of 96 Ionic Liquids with CO2, H2S, CO, O2, CH4, N2, and H2. Industrial & Engineering Chemistry Research 2020, 59 (49) , 21579-21591. https://doi.org/10.1021/acs.iecr.0c04485
    5. Yunhao Sun, Arne Schemann, Christoph Held, Xiaohua Lu, Gulou Shen, Xiaoyan Ji. Modeling Thermodynamic Derivative Properties and Gas Solubility of Ionic Liquids with ePC-SAFT. Industrial & Engineering Chemistry Research 2019, 58 (19) , 8401-8417. https://doi.org/10.1021/acs.iecr.9b00254
    6. Yunhao Sun, Gulou Shen, Christoph Held, Xin Feng, Xiaohua Lu, Xiaoyan Ji. Modeling Viscosity of Ionic Liquids with Electrolyte Perturbed-Chain Statistical Associating Fluid Theory and Free Volume Theory. Industrial & Engineering Chemistry Research 2018, 57 (26) , 8784-8801. https://doi.org/10.1021/acs.iecr.8b00328
    7. Kamil Paduszyński. Thermodynamic Modeling of Multicomponent Liquid–Liquid Equilibria in Ionic Liquid Systems with PC-SAFT Equation of State. Industrial & Engineering Chemistry Research 2018, 57 (15) , 5413-5432. https://doi.org/10.1021/acs.iecr.8b00175
    8. Ying Chen, Kaihua Guo, and Lixia Huangpu . Experiments and Modeling of Absorption of CO2 by Amino-cation and Amino-anion Dual Functionalized Ionic Liquid with the Addition of Aqueous Medium. Journal of Chemical & Engineering Data 2017, 62 (11) , 3732-3743. https://doi.org/10.1021/acs.jced.7b00462
    9. Khalil Parvaneh and Alireza Shariati . Quasi-Chemical PC-SAFT: An Extended Perturbed Chain-Statistical Associating Fluid Theory for Lattice-Fluid Mixtures. The Journal of Physical Chemistry B 2017, 121 (35) , 8338-8347. https://doi.org/10.1021/acs.jpcb.7b05483
    10. Roberto I. Canales, Christoph Held, Michael J. Lubben, Joan F. Brennecke, and Gabriele Sadowski . Predicting the Solubility of CO2 in Toluene + Ionic Liquid Mixtures with PC-SAFT. Industrial & Engineering Chemistry Research 2017, 56 (35) , 9885-9894. https://doi.org/10.1021/acs.iecr.7b01497
    11. Lawien F. Zubeir, Christoph Held, Gabriele Sadowski, and Maaike C. Kroon . PC-SAFT Modeling of CO2 Solubilities in Deep Eutectic Solvents. The Journal of Physical Chemistry B 2016, 120 (9) , 2300-2310. https://doi.org/10.1021/acs.jpcb.5b07888
    12. Orlando Guzmán, J. Eloy Ramos Lara, and Fernando del Río . Liquid–Vapor Equilibria of Ionic Liquids from a SAFT Equation of State with Explicit Electrostatic Free Energy Contributions. The Journal of Physical Chemistry B 2015, 119 (18) , 5864-5872. https://doi.org/10.1021/jp511571h
    13. Gulou Shen, Christoph Held, Jyri-Pekka Mikkola, Xiaohua Lu, and Xiaoyan Ji . Modeling the Viscosity of Ionic Liquids with the Electrolyte Perturbed-Chain Statistical Association Fluid Theory. Industrial & Engineering Chemistry Research 2014, 53 (52) , 20258-20268. https://doi.org/10.1021/ie503485h
    14. R. Miri, P. Aagaard, and H. Hellevang . Examination of CO2–SO2 Solubility in Water by SAFT1. Implications for CO2 Transport and Storage. The Journal of Physical Chemistry B 2014, 118 (34) , 10214-10223. https://doi.org/10.1021/jp505562j
    15. N. Mac Dowell, F. Llovell, N. Sun, J. P. Hallett, A. George, P. A. Hunt, T. Welton, B. A. Simmons, and L. F. Vega . New Experimental Density Data and Soft-SAFT Models of Alkylimidazolium ([CnC1im]+) Chloride (Cl–), Methylsulfate ([MeSO4]−), and Dimethylphosphate ([Me2PO4]−) Based Ionic Liquids. The Journal of Physical Chemistry B 2014, 118 (23) , 6206-6221. https://doi.org/10.1021/jp501619y
    16. Mohammad Z. Hossain and Amyn S. Teja . Extension of an Associated Lattice–Fluid Equation of State to CO2 + Ionic Liquid Systems. Journal of Chemical & Engineering Data 2014, 59 (4) , 1038-1044. https://doi.org/10.1021/je4007458
    17. Zhigang Lei, Chengna Dai, and Biaohua Chen . Gas Solubility in Ionic Liquids. Chemical Reviews 2014, 114 (2) , 1289-1326. https://doi.org/10.1021/cr300497a
    18. Nawin R. Nannan, Carlo M. De Servi, Teus van der Stelt, Piero Colonna, and André Bardow . An Equation of State Based on PC-SAFT for Physical Solvents Composed of Polyethylene Glycol Dimethylethers. Industrial & Engineering Chemistry Research 2013, 52 (51) , 18401-18412. https://doi.org/10.1021/ie401456q
    19. Aristides P. Carneiro, Christoph Held, Oscar Rodríguez, Gabriele Sadowski, and Eugénia A. Macedo . Solubility of Sugars and Sugar Alcohols in Ionic Liquids: Measurement and PC-SAFT Modeling. The Journal of Physical Chemistry B 2013, 117 (34) , 9980-9995. https://doi.org/10.1021/jp404864c
    20. Kamil Paduszyński, Marcin Okuniewski, and Urszula Domańska . Renewable Feedstocks in Green Solvents: Thermodynamic Study on Phase Diagrams of d-Sorbitol and Xylitol with Dicyanamide Based Ionic Liquids. The Journal of Physical Chemistry B 2013, 117 (23) , 7034-7046. https://doi.org/10.1021/jp401937p
    21. Kamil Paduszyński, Marek Królikowski, and Urszula Domańska . Excess Enthalpies of Mixing of Piperidinium Ionic Liquids with Short-Chain Alcohols: Measurements and PC-SAFT Modeling. The Journal of Physical Chemistry B 2013, 117 (14) , 3884-3891. https://doi.org/10.1021/jp401253r
    22. Nikolaos I. Diamantonis, Georgios C. Boulougouris, Erum Mansoor, Dimitrios M. Tsangaris, and Ioannis G. Economou . Evaluation of Cubic, SAFT, and PC-SAFT Equations of State for the Vapor–Liquid Equilibrium Modeling of CO2 Mixtures with Other Gases. Industrial & Engineering Chemistry Research 2013, 52 (10) , 3933-3942. https://doi.org/10.1021/ie303248q
    23. Yanan Gong, Hongtao Wang, Yifan Chen, Xiaohui Hu, Abdul-Rauf Ibrahim, Ako-Rajour Tanyi, Yanzhen Hong, Yuzhong Su, and Jun Li . A High-Pressure Quartz Spring Method for Measuring Solubility and Diffusivity of CO2 in Ionic Liquids. Industrial & Engineering Chemistry Research 2013, 52 (10) , 3926-3932. https://doi.org/10.1021/ie400267h
    24. Yushu Chen, Fabrice Mutelet, and Jean-Noël Jaubert . Modeling the Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids with the PC-SAFT Equation of State. The Journal of Physical Chemistry B 2012, 116 (49) , 14375-14388. https://doi.org/10.1021/jp309944t
    25. Kamil Paduszyński and Urszula Domańska . Thermodynamic Modeling of Ionic Liquid Systems: Development and Detailed Overview of Novel Methodology Based on the PC-SAFT. The Journal of Physical Chemistry B 2012, 116 (16) , 5002-5018. https://doi.org/10.1021/jp3009207
    26. Changchun He, Jinlong Li, Changjun Peng, Honglai Liu, and Ying Hu . Capturing Thermodynamic Behavior of Ionic Liquid Systems: Correlations with the SWCF-VR Equation. Industrial & Engineering Chemistry Research 2012, 51 (7) , 3137-3148. https://doi.org/10.1021/ie202237e
    27. Kamil Paduszyński and Urszula Domańska . Solubility of Aliphatic Hydrocarbons in Piperidinium Ionic Liquids: Measurements and Modeling in Terms of Perturbed-Chain Statistical Associating Fluid Theory and Nonrandom Hydrogen-Bonding Theory. The Journal of Physical Chemistry B 2011, 115 (43) , 12537-12548. https://doi.org/10.1021/jp205048b
    28. Jinlong Li, Changchun He, Changjun Peng, Honglai Liu, Ying Hu, and Patrice Paricaud . Modeling of the Thermodynamic Properties of Aqueous Ionic Liquid Solutions with an Equation of State for Square-Well Chain Fluid with Variable Range. Industrial & Engineering Chemistry Research 2011, 50 (11) , 7027-7040. https://doi.org/10.1021/ie102156m
    29. Maria Gonzalez-Miquel, Jose Palomar, Salama Omar, and Francisco Rodriguez . CO2/N2 Selectivity Prediction in Supported Ionic Liquid Membranes (SILMs) by COSMO-RS. Industrial & Engineering Chemistry Research 2011, 50 (9) , 5739-5748. https://doi.org/10.1021/ie102450x
    30. F. Llovell, E. Valente, O. Vilaseca, and L. F. Vega . Modeling Complex Associating Mixtures with [Cn-mim][Tf2N] Ionic Liquids: Predictions from the Soft-SAFT Equation. The Journal of Physical Chemistry B 2011, 115 (15) , 4387-4398. https://doi.org/10.1021/jp112315b
    31. Moisés R. Currás, Javier Vijande, Manuel M. Piñeiro, Luis Lugo, Josefa Salgado, and Josefa García . Behavior of the Environmentally Compatible Absorbent 1-Butyl-3-methylimidazolium Tetrafluoroborate with 2,2,2-Trifluoroethanol: Experimental Densities at High Pressures and Modeling of PVT and Phase Equilibria Behavior with PC-SAFT EoS. Industrial & Engineering Chemistry Research 2011, 50 (7) , 4065-4076. https://doi.org/10.1021/ie101880t
    32. María Dolores Bermejo, David Méndez and Ángel Martín. Application of a Group Contribution Equation of State for the Thermodynamic Modeling of Gas + Ionic Liquid Mixtures. Industrial & Engineering Chemistry Research 2010, 49 (10) , 4966-4973. https://doi.org/10.1021/ie901989f
    33. Pedro J. Carvalho and João A. P. Coutinho. On the Nonideality of CO2 Solutions in Ionic Liquids and Other Low Volatile Solvents. The Journal of Physical Chemistry Letters 2010, 1 (4) , 774-780. https://doi.org/10.1021/jz100009c
    34. Xiaochun Xu, Changjun Peng, Honglai Liu and Ying Hu. Modeling pVT Properties and Phase Equilibria for Systems Containing Ionic Liquids Using a New Lattice-Fluid Equation of State. Industrial & Engineering Chemistry Research 2009, 48 (24) , 11189-11201. https://doi.org/10.1021/ie9011722
    35. Norfaizah Ab Manan, Christopher Hardacre, Johan Jacquemin, David W. Rooney and Tristan G. A. Youngs. Evaluation of Gas Solubility Prediction in Ionic Liquids using COSMOthermX. Journal of Chemical & Engineering Data 2009, 54 (7) , 2005-2022. https://doi.org/10.1021/je800857x
    36. John P. O’Connell, Rafiqul Gani, Paul M. Mathias, Gerd Maurer, James D. Olson and Peter A. Crafts . Thermodynamic Property Modeling for Chemical Process and Product Engineering: Some Perspectives. Industrial & Engineering Chemistry Research 2009, 48 (10) , 4619-4637. https://doi.org/10.1021/ie801535a
    37. Sugata P. Tan, Hertanto Adidharma and Maciej Radosz. Recent Advances and Applications of Statistical Associating Fluid Theory. Industrial & Engineering Chemistry Research 2008, 47 (21) , 8063-8082. https://doi.org/10.1021/ie8008764
    38. Manuel A. Iglesias-Otero, Jacobo Troncoso, Enrique Carballo and Luis Romaní. Densities and Excess Enthalpies for Ionic Liquids + Ethanol or + Nitromethane. Journal of Chemical & Engineering Data 2008, 53 (6) , 1298-1301. https://doi.org/10.1021/je700754k
    39. Aaron M. Scurto,, Elizabeth Newton,, Ross R. Weikel,, Laura Draucker,, Jason Hallett,, Charles L. Liotta,, Walter Leitner, and, Charles A. Eckert. Melting Point Depression of Ionic Liquids with CO2:  Phase Equilibria. Industrial & Engineering Chemistry Research 2008, 47 (3) , 493-501. https://doi.org/10.1021/ie070312b
    40. Bianca Breure,, Susana B. Bottini,, Geert-Jan Witkamp, and, Cor J. Peters. Thermodynamic Modeling of the Phase Behavior of Binary Systems of Ionic Liquids and Carbon Dioxide with the Group Contribution Equation of State. The Journal of Physical Chemistry B 2007, 111 (51) , 14265-14270. https://doi.org/10.1021/jp0776098
    41. Jessica L. Anderson, JaNeille K. Dixon and Joan F. Brennecke. Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: Comparison to Other Ionic Liquids. Accounts of Chemical Research 2007, 40 (11) , 1208-1216. https://doi.org/10.1021/ar7001649
    42. Eirini K. Karakatsani,, Ioannis G. Economou,, Maaike C. Kroon,, Cor J. Peters, and, Geert-Jan Witkamp. tPC-PSAFT Modeling of Gas Solubility in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry C 2007, 111 (43) , 15487-15492. https://doi.org/10.1021/jp070556+
    43. Jordi S. Andreu and, Lourdes F. Vega. Capturing the Solubility Behavior of CO2 in Ionic Liquids by a Simple Model. The Journal of Physical Chemistry C 2007, 111 (43) , 16028-16034. https://doi.org/10.1021/jp074353x
    44. Josef Planeta,, Pavel Karásek, and, Michal Roth. Limiting Partition Coefficients of Solutes in Biphasic Trihexyltetradecylphosphonium Chloride Ionic Liquid−Supercritical CO2 System:  Measurement and LSER-Based Correlation. The Journal of Physical Chemistry B 2007, 111 (26) , 7620-7625. https://doi.org/10.1021/jp071514o
    45. Tengfang Wang,, Changjun Peng,, Honglai Liu, and, Ying Hu, , Jianwen Jiang. Equation of State for the Vapor−Liquid Equilibria of Binary Systems Containing Imidazolium-Based Ionic Liquids. Industrial & Engineering Chemistry Research 2007, 46 (12) , 4323-4329. https://doi.org/10.1021/ie061577d
    46. B. L. Bhargava and, S. Balasubramanian. Insights into the Structure and Dynamics of a Room-Temperature Ionic Liquid:  Ab Initio Molecular Dynamics Simulation Studies of 1-n-Butyl-3-methylimidazolium Hexafluorophosphate ([bmim][PF6]) and the [bmim][PF6]−CO2 Mixture. The Journal of Physical Chemistry B 2007, 111 (17) , 4477-4487. https://doi.org/10.1021/jp068898n
    47. Behnaz Basirat, Fariborz Shaahmadi, Seyed Sorosh Mirfasihi, Abolfazl Jomekian, Bahamin Bazooyar. Intelligent solubility estimation of gaseous hydrocarbons in ionic liquids. Petroleum 2024, 10 (1) , 109-123. https://doi.org/10.1016/j.petlm.2023.09.002
    48. Bahamin Bazooyar, Fariborz Shaahmadi, Abolfazl Jomekian, Seyed Sorosh Mirfasihi. Carbon capture via aqueous ionic liquids intelligent modelling. Case Studies in Chemical and Environmental Engineering 2023, 8 , 100444. https://doi.org/10.1016/j.cscee.2023.100444
    49. Samira Heidari, Ali Aleosfoor, Masoumeh Mohammadi, Feridun Esmaeilzadeh. Solubility prediction of CO2 in ionic liquids under subcritical and supercritical carbon dioxide conditions by the adaptive neuro-fuzzy inference system. Case Studies in Chemical and Environmental Engineering 2023, 7 , 100317. https://doi.org/10.1016/j.cscee.2023.100317
    50. Yiran Wang, Shaoxuan Huang, Xiangyang Liu, Maogang He. Thermodynamic model for CO2 absorption in imidazolium-based ionic liquids using cubic plus association equation of state. Journal of Molecular Liquids 2023, 378 , 121587. https://doi.org/10.1016/j.molliq.2023.121587
    51. Fariborz Shaahmadi, Sonja AM Smith, Cara E Schwarz, Andries J Burger, Jamie T Cripwell. Group-contribution SAFT equations of state: A review. Fluid Phase Equilibria 2023, 565 , 113674. https://doi.org/10.1016/j.fluid.2022.113674
    52. Indrajit Das, K. Rama Swami, Ramesh L. Gardas. Ionic liquids: a tool for CO2 capture and reduced emission. 2023, 327-350. https://doi.org/10.1016/B978-0-323-99921-2.00008-2
    53. Anthoula Plakia, Vassilis Koulocheris, Vasiliki Louli, Epaminondas Voutsas. Vapor-liquid equilibrium of acid gases with imidazolium-based ionic liquids using the UMR-PRU model. Chemical Thermodynamics and Thermal Analysis 2022, 8 , 100097. https://doi.org/10.1016/j.ctta.2022.100097
    54. Jafar Abdi, Masoud Hadipoor, Seyyed Hamid Esmaeili-Faraj, Behzad Vaferi. A modeling approach for estimating hydrogen sulfide solubility in fifteen different imidazole-based ionic liquids. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-08304-y
    55. Ilya Polishuk, Asaf Chiko, Esteban Cea-Klapp, José Matías Garrido. Simultaneous prediction of vapor-liquid and liquid-liquid phase equilibria in systems of ionic liquids belonging to [Cnmim][BF4] and [Cnmim][PF6] families by CP-PC-SAFT and SAFT-VR-Mie with universal kij values. Journal of Molecular Liquids 2022, 365 , 120141. https://doi.org/10.1016/j.molliq.2022.120141
    56. Sébastien Livi, Jérôme Baudoux, Jean-François Gérard, Jannick Duchet-Rumeau. Ionic Liquids: A Versatile Platform for the Design of a Multifunctional Epoxy Networks 2.0 Generation. Progress in Polymer Science 2022, 132 , 101581. https://doi.org/10.1016/j.progpolymsci.2022.101581
    57. Gangqiang Yu, Zhong Wei, Kai Chen, Ruili Guo, Zhigang Lei. Predictive molecular thermodynamic models for ionic liquids. AIChE Journal 2022, 68 (4) https://doi.org/10.1002/aic.17575
    58. Hiroaki Matsukawa, Masayuki Kitahara, Katsuto Otake. Estimation of pure component parameters of PC-SAFT EoS by an artificial neural network based on a group contribution method. Fluid Phase Equilibria 2021, 548 , 113179. https://doi.org/10.1016/j.fluid.2021.113179
    59. Seyedeh-Saba Ashrafmansouri. Modeling the density and the second-order thermodynamic derivative properties of imidazolium-, cyano-based ionic liquids using the SAFT-γ EoS. Fluid Phase Equilibria 2021, 548 , 113190. https://doi.org/10.1016/j.fluid.2021.113190
    60. Seyedeh-Saba Ashrafmansouri, Sona Raeissi. Extension of SAFT-γ to model the phase behavior of CO2+ionic liquid systems. Fluid Phase Equilibria 2021, 538 , 113026. https://doi.org/10.1016/j.fluid.2021.113026
    61. Afshin Hosseini Monjezi, Mohammad Mesbah, Mashallah Rezakazemi, Mohammad Younas. Prediction bubble point pressure for CO2/CH4 gas mixtures in ionic liquids using intelligent approaches. Emergent Materials 2021, 4 (2) , 565-578. https://doi.org/10.1007/s42247-020-00148-4
    62. Sonja A.M. Smith, Jamie T. Cripwell, Cara E. Schwarz. Accounting for quadrupolar interactions in the CPA equation of state: A modelling approach for binary mixtures of CO2 or benzene with n-alkanes and 1-alkanols. Fluid Phase Equilibria 2021, 528 , 112848. https://doi.org/10.1016/j.fluid.2020.112848
    63. Amal Mechergui, Alsu I. Akhmetshina, Olga V. Kazarina, Maria E. Atlaskina, Anton N. Petukhov, Ilya V. Vorotyntsev. Acidic Gases Solubility in Bis(2-Ethylhexyl) Sulfosuccinate Based Ionic Liquids Using the Predictive Thermodynamic Model. Membranes 2020, 10 (12) , 429. https://doi.org/10.3390/membranes10120429
    64. Yunhao Sun, Zhida Zuo, Aatto Laaksonen, Xiaohua Lu, Xiaoyan Ji. How to detect possible pitfalls in ePC-SAFT modelling: Extension to ionic liquids. Fluid Phase Equilibria 2020, 519 , 112641. https://doi.org/10.1016/j.fluid.2020.112641
    65. Mohamed K. Hadj-Kali, Mamoun Althuluth, Salim Mokraoui, Irfan Wazeer, Emad Ali, Dominique Richon. Screening of ionic liquids for gas separation using COSMO-RS and comparison between performances of ionic liquids and aqueous alkanolamine solutions. Chemical Engineering Communications 2020, 207 (9) , 1264-1277. https://doi.org/10.1080/00986445.2019.1680363
    66. Anwesa Karmakar, Rangachary Mukundan. Modeling solubility of CO 2 gas in room temperature ionic liquids using the COSMOSAC-LANL model: a first principles study. Physical Chemistry Chemical Physics 2019, 21 (35) , 19667-19685. https://doi.org/10.1039/C9CP02725D
    67. Fábio P. Nascimento, Márcio L.L. Paredes, Fernando L.P. Pessoa. Evaluation of the polar contribution in the SAFT-VR Mie equation of state for simultaneous correlation of condensed-phase density, condensed-phase speed of sound, saturated density and saturated pressure of pure polar fluids. The Journal of Chemical Thermodynamics 2019, 134 , 106-118. https://doi.org/10.1016/j.jct.2019.02.032
    68. Shakhawath Hossain, Aleksei Kabedev, Albin Parrow, Christel A.S. Bergström, Per Larsson. Molecular simulation as a computational pharmaceutics tool to predict drug solubility, solubilization processes and partitioning. European Journal of Pharmaceutics and Biopharmaceutics 2019, 137 , 46-55. https://doi.org/10.1016/j.ejpb.2019.02.007
    69. Mahsa Aghaie, Nima Rezaei, Sohrab Zendehboudi. Assessment of carbon dioxide solubility in ionic liquid/toluene/water systems by extended PR and PC-SAFT EOSs: Carbon capture implication. Journal of Molecular Liquids 2019, 275 , 323-337. https://doi.org/10.1016/j.molliq.2018.11.038
    70. Falamarz Akbari, Faisal Dahi ALmutairi, Mohammad Mehdi Alavianmehr. Solubility of gases in ionic liquids using PHTC equation of state. Journal of Molecular Liquids 2019, 276 , 553-561. https://doi.org/10.1016/j.molliq.2018.11.151
    71. Maryam Raeisi, Amineh Keshavarz, Mohammad Reza Rahimpour. Ionic Liquids for Carbon Dioxide Capture. 2019, 193-219. https://doi.org/10.1007/978-3-030-29337-6_8
    72. Marlon Loreno, Rodrigo A. Reis, Silvana Mattedi, Márcio L.L. Paredes. Predicting the solubility of carbon dioxide or methane in imidazolium-based ionic liquids with GC-sPC-SAFT equation of state. Fluid Phase Equilibria 2019, 479 , 85-98. https://doi.org/10.1016/j.fluid.2018.09.010
    73. Sayed Mostafa Hosseini, Angel Mulero, Mohammad Mehdi Alavianmehr. Predictive methods and semi-classical Equations of State for pure ionic liquids: A review. The Journal of Chemical Thermodynamics 2019, 130 , 47-94. https://doi.org/10.1016/j.jct.2018.09.022
    74. Khalil Parvaneh, Ali Rasoolzadeh, Alireza Shariati. Modeling the phase behavior of refrigerants with ionic liquids using the QC-PC-SAFT equation of state. Journal of Molecular Liquids 2019, 274 , 497-504. https://doi.org/10.1016/j.molliq.2018.10.116
    75. Amir Dashti, Hossein Riasat Harami, Mashallah Rezakazemi, Saeed Shirazian. Estimating CH4 and CO2 solubilities in ionic liquids using computational intelligence approaches. Journal of Molecular Liquids 2018, 271 , 661-669. https://doi.org/10.1016/j.molliq.2018.08.150
    76. Yingying Zhang, Xiaoyan Ji, Xiaohua Lu. Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis. Renewable and Sustainable Energy Reviews 2018, 97 , 436-455. https://doi.org/10.1016/j.rser.2018.08.007
    77. Mahsa Aghaie, Nima Rezaei, Sohrab Zendehboudi. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable and Sustainable Energy Reviews 2018, 96 , 502-525. https://doi.org/10.1016/j.rser.2018.07.004
    78. Mohsen Taheri, Chengna Dai, Zhigang Lei. CO 2 capture by methanol, ionic liquid, and their binary mixtures: Experiments, modeling, and process simulation. AIChE Journal 2018, 64 (6) , 2168-2180. https://doi.org/10.1002/aic.16070
    79. Mohammad Mesbah, Shohreh Shahsavari, Ebrahim Soroush, Neda Rahaei, Mashallah Rezakazemi. Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. Journal of CO2 Utilization 2018, 25 , 99-107. https://doi.org/10.1016/j.jcou.2018.03.004
    80. N. Ain Ramli, N. Awanis Hashim, M. K. Aroua. Prediction of CO 2 /O 2 absorption selectivity using supported ionic liquid membranes (SILMs) for gas–liquid membrane contactor. Chemical Engineering Communications 2018, 205 (3) , 295-310. https://doi.org/10.1080/00986445.2017.1387854
    81. Karsten Klauke, Dzmitry H. Zaitsau, Mark Bülow, Li He, Maximilian Klopotowski, Tim-Oliver Knedel, Juri Barthel, Christoph Held, Sergey P. Verevkin, Christoph Janiak. Thermodynamic properties of selenoether-functionalized ionic liquids and their use for the synthesis of zinc selenide nanoparticles. Dalton Transactions 2018, 47 (14) , 5083-5097. https://doi.org/10.1039/C8DT00233A
    82. Fariborz Shaahmadi, Mohammad Amin Anbaz, Bahamin Bazooyar. Analysis of intelligent models in prediction nitrous oxide (N2O) solubility in ionic liquids (ILs). Journal of Molecular Liquids 2017, 246 , 48-57. https://doi.org/10.1016/j.molliq.2017.09.051
    83. Heba Al-fnaish, Leo Lue. Modelling the solubility of H2S and CO2 in ionic liquids using PC-SAFT equation of state. Fluid Phase Equilibria 2017, 450 , 30-41. https://doi.org/10.1016/j.fluid.2017.07.008
    84. Mahdi Sohrabi Mahboub, Hossein Farrokhpour. Modeling the p – v – T behavior of furfural compounds using perturbed linear Yukawa isotherm regularity. Journal of Molecular Liquids 2017, 236 , 18-26. https://doi.org/10.1016/j.molliq.2017.04.002
    85. Xiuwu Liu, Xinru Zhai, Dongyang Liu, Yan Sun. Different CO 2 absorbents-modified SBA-15 sorbent for highly selective CO 2 capture. Chemical Physics Letters 2017, 676 , 53-57. https://doi.org/10.1016/j.cplett.2017.03.048
    86. Hamidreza Soltani Panah. Modeling H2S and CO2 solubility in ionic liquids using the CPA equation of state through a new approach. Fluid Phase Equilibria 2017, 437 , 155-165. https://doi.org/10.1016/j.fluid.2017.01.023
    87. Ali Haghtalab, Abolfazl Shojaeian. Representation of phase behavior of ionic liquids and their mixtures using various forms of cubic-two-state equation of state. Fluid Phase Equilibria 2017, 435 , 15-26. https://doi.org/10.1016/j.fluid.2016.12.009
    88. A. Shamiri, M.S. Shafeeyan, H.C. Tee, C.Y. Leo, M.K. Aroua, N. Aghamohammadi. Absorption of CO 2 into aqueous mixtures of glycerol and monoethanolamine. Journal of Natural Gas Science and Engineering 2016, 35 , 605-613. https://doi.org/10.1016/j.jngse.2016.08.072
    89. Amin Kamgar, Feridun Esmaeilzadeh. Prediction of H2S solubility in [hmim][Pf6], [hmim][Bf4] and [hmim][Tf2N] using UNIQUAC, NRTL and COSMO-RS. Journal of Molecular Liquids 2016, 220 , 631-634. https://doi.org/10.1016/j.molliq.2016.04.110
    90. Mahdi Sohrabi Mahboub, Hossein Farrokhpour. Molecular thermodynamic modeling of ionic liquids using the perturbation-based linear Yukawa isotherm regularity. Journal of Physics: Condensed Matter 2016, 28 (23) , 235101. https://doi.org/10.1088/0953-8984/28/23/235101
    91. Zohreh Bazargani, Fatemeh Sabzi. Prediction of CO2 solubility in ionic liquids with [HMIM] and [OMIM] cations by equation of state. Journal of Molecular Liquids 2016, 216 , 87-93. https://doi.org/10.1016/j.molliq.2015.12.092
    92. Afshin Tatar, Saeid Naseri, Mohammad Bahadori, Ali Zeinolabedini Hezave, Tomoaki Kashiwao, Alireza Bahadori, Hoda Darvish. Prediction of carbon dioxide solubility in ionic liquids using MLP and radial basis function (RBF) neural networks. Journal of the Taiwan Institute of Chemical Engineers 2016, 60 , 151-164. https://doi.org/10.1016/j.jtice.2015.11.002
    93. Xiaoyan Ji, Christoph Held. Modeling the density of ionic liquids with ePC-SAFT. Fluid Phase Equilibria 2016, 410 , 9-22. https://doi.org/10.1016/j.fluid.2015.11.014
    94. Kamil Paduszyński, Elena V. Lukoshko, Marek Królikowski, Urszula Domańska. Measurements and equation-of-state modelling of thermodynamic properties of binary mixtures of 1-butyl-1-methylpyrrolidinium tetracyanoborate ionic liquid with molecular compounds. The Journal of Chemical Thermodynamics 2015, 90 , 317-326. https://doi.org/10.1016/j.jct.2015.06.004
    95. Ji Eun Kim, Jeong Won Kang, Jong Sung Lim. Measurement of CO2 solubility in cyanide anion based ionic liquids; [c4mim][SCN], [c4mim][N(CN)2], [c4mim][C(CN)3]. Korean Journal of Chemical Engineering 2015, 32 (8) , 1678-1687. https://doi.org/10.1007/s11814-014-0378-7
    96. Hanee F. Hizaddin, Mohamed K. Hadj-Kali, Inas M. AlNashef, Farouq S. Mjalli, Mohd A. Hashim. Prediction of CO2 solubility in ionic liquids using the PSRK model. The Journal of Supercritical Fluids 2015, 100 , 184-193. https://doi.org/10.1016/j.supflu.2015.02.009
    97. V.R. Ferro, J. de Riva, D. Sanchez, E. Ruiz, J. Palomar. Conceptual design of unit operations to separate aromatic hydrocarbons from naphtha using ionic liquids. COSMO-based process simulations with multi-component “real” mixture feed. Chemical Engineering Research and Design 2015, 94 , 632-647. https://doi.org/10.1016/j.cherd.2014.10.001
    98. Emilio J. González, Susana B. Bottini, Eugénia A. Macedo. Application of a group contribution equation of state to model the phase behavior of mixtures containing alkanes and ionic liquids. Fluid Phase Equilibria 2015, 387 , 32-37. https://doi.org/10.1016/j.fluid.2014.12.010
    99. Ali Haghtalab, Abolfazl Shojaeian. High pressure measurement and thermodynamic modelling of the solubility of carbon dioxide in N-methyldiethanolamine and 1-butyl-3-methylimidazolium acetate mixture. The Journal of Chemical Thermodynamics 2015, 81 , 237-244. https://doi.org/10.1016/j.jct.2014.10.011
    100. Mohammad-Ali Ahmadi, Behzad Pouladi, Yahya Javvi, Shahab Alfkhani, Reza Soleimani. Connectionist technique estimates H2S solubility in ionic liquids through a low parameter approach. The Journal of Supercritical Fluids 2015, 97 , 81-87. https://doi.org/10.1016/j.supflu.2014.11.009
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect