ACS Publications. Most Trusted. Most Cited. Most Read
Mechanisms of Glycerol Dehydration
My Activity

Figure 1Loading Img
    Article

    Mechanisms of Glycerol Dehydration
    Click to copy article linkArticle link copied!

    • Mark R. Nimlos*
      Mark R. Nimlos
      National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A., Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, and Rx-Innovation, Inc., Fort Collins, Colorado 80525, U.S.A.
       To whom correspondence should be addressed. E-mail: [email protected].
    • Stephen J. Blanksby
      Stephen J. Blanksby
      National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A., Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, and Rx-Innovation, Inc., Fort Collins, Colorado 80525, U.S.A.
    • Xianghong Qian
      Xianghong Qian
      National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A., Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, and Rx-Innovation, Inc., Fort Collins, Colorado 80525, U.S.A.
    • Michael E. Himmel
      Michael E. Himmel
      National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A., Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, and Rx-Innovation, Inc., Fort Collins, Colorado 80525, U.S.A.
    • David K. Johnson
      David K. Johnson
      National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A., Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, and Rx-Innovation, Inc., Fort Collins, Colorado 80525, U.S.A.
    Other Access OptionsSupporting Information (8)

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2006, 110, 18, 6145–6156
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp060597q
    Published April 18, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Dehydration of neutral and protonated glycerol was investigated using quantum mechanical calculations (CBS-QB3). Calculations on neutral glycerol show that there is a high barrier for simple 1,2-dehydration, Ea = 70.9 kcal mol-1, which is lowered to 65.2 kcal mol-1 for pericyclic 1,3-dehydration. In contrast, the barriers for dehydration of protonated glycerol are much lower. Dehydration mechanisms involving hydride transfer, pinacol rearrangement, or substitution reactions have barriers between 20 and 25 kcal mol-1. Loss of water from glycerol via substitution results in either oxirane or oxetane intermediates, which can interconvert over a low barrier. Subsequent decomposition of these intermediates proceeds via either a second dehydration step or loss of formaldehyde. The computed mechanisms for decomposition of protonated glycerol are supported by the gas-phase fragmentation of protonated glycerol observed using a triple−quadrupole mass spectrometer.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Calculated structures of the reactants, transition states, and products. This material is available free of charge via the Internet at http://acs.pubs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 239 publications.

    1. Trevor Harris. Physical and Chemical Characterization of Aerosols Produced from Experimentally Designed Nicotine Salt-Based E-Liquids. Chemical Research in Toxicology 2024, 37 (8) , 1315-1328. https://doi.org/10.1021/acs.chemrestox.4c00073
    2. Noel Bielik, Daniela Correia, Kelly Rodrigues Crespo, Catherine Goujon-Ginglinger, Maya I. Mitova. Pitfalls in the Detection of Volatiles Associated with Heated Tobacco and e-Vapor Products When Using PTR-TOF-MS. Journal of the American Society for Mass Spectrometry 2024, 35 (6) , 1261-1271. https://doi.org/10.1021/jasms.4c00062
    3. Vijendra Kumar Yadav, Krunalsinh Y Chauhan, Taraknath Das. Spectroscopic and Kinetic Study of Cyclohexane Oxidation Reaction in Vapor Phase over the Catalyst 20FeMnOδ/(3CeAl). Industrial & Engineering Chemistry Research 2023, 62 (47) , 20170-20188. https://doi.org/10.1021/acs.iecr.3c02635
    4. Melba Domes Denson, Evan Terrell, Pavlo Kostetskyy, Mariefel Olarte, Linda Broadbelt, Manuel Garcia-Perez. Elucidation of Structure and Physical Properties of Pyrolytic Sugar Oligomers Derived from Cellulose Depolymerization/Dehydration Reactions: A Density Functional Theory Study. Energy & Fuels 2023, 37 (11) , 7834-7847. https://doi.org/10.1021/acs.energyfuels.3c00641
    5. Ram Singh, Prakash Biswas, Prateek K. Jha. Study of the Glycerol Hydrogenolysis Reaction on Cu, Cu–Zn, and Cu–ZnO Clusters. ACS Omega 2022, 7 (37) , 33629-33636. https://doi.org/10.1021/acsomega.2c05342
    6. Chen Chen, Yu Liang, Qiong Tang, Dong Li, Lei Liu, Jinxiang Dong. In Situ Growth of Tungsten Oxide on Alumina to Boost the Catalytic Performance of Platinum for Glycerol Hydrogenolysis. Industrial & Engineering Chemistry Research 2022, 61 (34) , 12504-12512. https://doi.org/10.1021/acs.iecr.2c02275
    7. Yang Zeng, Lan Jiang, Xiaoxin Zhang, Songhai Xie, Yan Pei, Gongbing Zhou, Weiming Hua, Minghua Qiao, Zhen-Hua Li, Baoning Zong. Effect of Titania Polymorphs on the Structure and Catalytic Performance of the Pt–WOx/TiO2 Catalyst in Glycerol Hydrogenolysis to 1,3-Propanediol. ACS Sustainable Chemistry & Engineering 2022, 10 (29) , 9532-9545. https://doi.org/10.1021/acssuschemeng.2c02205
    8. Yang Sik Yun, Claudia E. Berdugo-Díaz, David W. Flaherty. Advances in Understanding the Selective Hydrogenolysis of Biomass Derivatives. ACS Catalysis 2021, 11 (17) , 11193-11232. https://doi.org/10.1021/acscatal.1c02866
    9. Binbin Zhao, Yu Liang, Wenjun Yan, Lei Liu, Jinxiang Dong. A Facile Approach to Tune WOx Species Combining Pt Catalyst for Enhanced Catalytic Performance in Glycerol Hydrogenolysis. Industrial & Engineering Chemistry Research 2021, 60 (34) , 12534-12544. https://doi.org/10.1021/acs.iecr.1c02184
    10. Ding Jiang, Shuang Wang, Hongping Li, Lujiang Xu, Xun Hu, Bahram Barati, Anqing Zheng. Insight into the Mechanism of Glycerol Dehydration and Subsequent Pyridine Synthesis. ACS Sustainable Chemistry & Engineering 2021, 9 (8) , 3095-3103. https://doi.org/10.1021/acssuschemeng.0c07460
    11. Marion Carrier, René Fournet, Baptiste Sirjean, Sam Amsbury, Yoselin Benitez Alfonso, Pierre-Yves Pontalier, Anthony Bridgwater. Fast Pyrolysis of Hemicelluloses into Short-Chain Acids: An Investigation on Concerted Mechanisms. Energy & Fuels 2020, 34 (11) , 14232-14248. https://doi.org/10.1021/acs.energyfuels.0c02901
    12. José F. Ureña, Lauren A. Ebersol, Alexey Silakov, Ryan J. Elias, Joshua D. Lambert. Impact of Atomizer Age and Flavor on In Vitro Toxicity of Aerosols from a Third-Generation Electronic Cigarette against Human Oral Cells. Chemical Research in Toxicology 2020, 33 (10) , 2527-2537. https://doi.org/10.1021/acs.chemrestox.0c00028
    13. Bin Hu, Bing Zhang, Wen-luan Xie, Xiao-yan Jiang, Ji Liu, Qiang Lu. Recent Progress in Quantum Chemistry Modeling on the Pyrolysis Mechanisms of Lignocellulosic Biomass. Energy & Fuels 2020, 34 (9) , 10384-10440. https://doi.org/10.1021/acs.energyfuels.0c01948
    14. Jason M. Hudzik, Mohamad Barekati-Goudarzi, Lavrent Khachatryan, Joseph W. Bozzelli, Eli Ruckenstein, Rubik Asatryan. OH-Initiated Reactions of para-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part II. Kinetic Analysis. The Journal of Physical Chemistry A 2020, 124 (24) , 4875-4904. https://doi.org/10.1021/acs.jpca.9b11894
    15. Jason M. Hudzik, Joseph W. Bozzelli, Rubik Asatryan, Eli Ruckenstein. OH-Initiated Reactions of para-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part III. Kinetics of H-Abstraction by H, OH, and CH3 Radicals. The Journal of Physical Chemistry A 2020, 124 (24) , 4905-4915. https://doi.org/10.1021/acs.jpca.9b11898
    16. Shanghua Feng, Binbin Zhao, Yu Liang, Lei Liu, Jinxiang Dong. Improving Selectivity to 1,3-Propanediol for Glycerol Hydrogenolysis Using W- and Al-Incorporated SBA-15 as Support for Pt Nanoparticles. Industrial & Engineering Chemistry Research 2019, 58 (8) , 2661-2671. https://doi.org/10.1021/acs.iecr.8b03982
    17. Bin Hu, Qiang Lu, Yu-ting Wu, Ji Liu, Kai Li, Chang-qing Dong, Yong-ping Yang. Interaction between Acetic Acid and Glycerol: A Model for Secondary Reactions during Holocellulose Pyrolysis. The Journal of Physical Chemistry A 2019, 123 (3) , 674-681. https://doi.org/10.1021/acs.jpca.8b11264
    18. Rubik Asatryan, Yudhajit Pal, Johannes Hachmann, Eli Ruckenstein. Roaming-like Mechanism for Dehydration of Diol Radicals. The Journal of Physical Chemistry A 2018, 122 (51) , 9738-9754. https://doi.org/10.1021/acs.jpca.8b08690
    19. Yang Fang, Jian Li, Yingquan Chen, Qiang Lu, Haiping Yang, Xianhua Wang, Hanping Chen. Experiment and Modeling Study of Glucose Pyrolysis: Formation of 3-Hydroxy-γ-butyrolactone and 3-(2H)-Furanone. Energy & Fuels 2018, 32 (9) , 9519-9529. https://doi.org/10.1021/acs.energyfuels.8b01877
    20. Shawna Vreeke, David H. Peyton, Robert M. Strongin. Triacetin Enhances Levels of Acrolein, Formaldehyde Hemiacetals, and Acetaldehyde in Electronic Cigarette Aerosols. ACS Omega 2018, 3 (7) , 7165-7170. https://doi.org/10.1021/acsomega.8b00842
    21. Khursheed B. Ansari, Jyotsna S. Arora, Jia Wei Chew, Paul J. Dauenhauer, Samir H. Mushrif. Effect of Temperature and Transport on the Yield and Composition of Pyrolysis-Derived Bio-Oil from Glucose. Energy & Fuels 2018, 32 (5) , 6008-6021. https://doi.org/10.1021/acs.energyfuels.8b00852
    22. Nitin Naresh Pandhare, Satyanarayana Murty Pudi, Smita Mondal, Keval Pareta, Manish Kumar, and Prakash Biswas . Development of Kinetic Model for Hydrogenolysis of Glycerol over Cu/MgO Catalyst in a Slurry Reactor. Industrial & Engineering Chemistry Research 2018, 57 (1) , 101-110. https://doi.org/10.1021/acs.iecr.7b03684
    23. Shanghua Feng, Binbin Zhao, Lei Liu, and Jinxiang Dong . Platinum Supported on WO3-Doped Aluminosilicate: A Highly Efficient Catalyst for Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. Industrial & Engineering Chemistry Research 2017, 56 (39) , 11065-11074. https://doi.org/10.1021/acs.iecr.7b02951
    24. Skylar Klager, Jose Vallarino, Piers MacNaughton, David C. Christiani, Quan Lu, and Joseph G. Allen . Flavoring Chemicals and Aldehydes in E-Cigarette Emissions. Environmental Science & Technology 2017, 51 (18) , 10806-10813. https://doi.org/10.1021/acs.est.7b02205
    25. Robert R. O. Brydon and Linda J. Broadbelt . Mechanistic Modeling of the Partial Oxidation of 1,3-Propanediol: Comparison of Free-Radical and Concerted Mechanisms. Industrial & Engineering Chemistry Research 2017, 56 (23) , 6599-6607. https://doi.org/10.1021/acs.iecr.7b00851
    26. Lingyu Jia, Zhenzhou Zhang, Yan Qiao, Christian Marcus Pedersen, Hui Ge, Zhihong Wei, Tiansheng Deng, Jun Ren, Xingchen Liu, Yingxiong Wang, and Xianglin Hou . Product Distribution Control for Glucosamine Condensation: Nuclear Magnetic Resonance (NMR) Investigation Substantiated by Density Functional Calculations. Industrial & Engineering Chemistry Research 2017, 56 (11) , 2925-2934. https://doi.org/10.1021/acs.iecr.6b05057
    27. Arturo Alberto Vitale, Eduardo A. Bernatene, Martín Gustavo Vitale, and Alicia Beatriz Pomilio . New Insights of the Fenton Reaction Using Glycerol as the Experimental Model. Effect of O2, Inhibition by Mg2+, and Oxidation State of Fe. The Journal of Physical Chemistry A 2016, 120 (28) , 5435-5445. https://doi.org/10.1021/acs.jpca.6b03805
    28. Wen-Jing Wang, Xin Hai, Quan-Xing Mao, Ming-Li Chen, and Jian-Hua Wang . Polyhedral Oligomeric Silsesquioxane Functionalized Carbon Dots for Cell Imaging. ACS Applied Materials & Interfaces 2015, 7 (30) , 16609-16616. https://doi.org/10.1021/acsami.5b04172
    29. Guo Shiou Foo, Daniel Wei, David S. Sholl, and Carsten Sievers . Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis 2014, 4 (9) , 3180-3192. https://doi.org/10.1021/cs5006376
    30. Mingming Zhang and Hongwei Wu . Phase Behavior and Fuel Properties of Bio-Oil/Glycerol/Methanol Blends. Energy & Fuels 2014, 28 (7) , 4650-4656. https://doi.org/10.1021/ef501176z
    31. Franziska Bell, Qiao N. Ruan, Amir Golan, Paul R. Horn, Musahid Ahmed, Stephen R. Leone, and Martin Head-Gordon . Dissociative Photoionization of Glycerol and its Dimer Occurs Predominantly via a Ternary Hydrogen-Bridged Ion–Molecule Complex. Journal of the American Chemical Society 2013, 135 (38) , 14229-14239. https://doi.org/10.1021/ja405511v
    32. Benjamin Katryniok, Sébastien Paul, and Franck Dumeignil . Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catalysis 2013, 3 (8) , 1819-1834. https://doi.org/10.1021/cs400354p
    33. Shih-Kang Liu and Yu-Chuan Lin . Autothermal Partial Oxidation of Glycerol to Syngas over Pt-, LaMnO3-, and Pt/LaMnO3-Coated Monoliths. Industrial & Engineering Chemistry Research 2012, 51 (50) , 16278-16287. https://doi.org/10.1021/ie3021686
    34. Vikram Seshadri and Phillip R. Westmoreland . Concerted Reactions and Mechanism of Glucose Pyrolysis and Implications for Cellulose Kinetics. The Journal of Physical Chemistry A 2012, 116 (49) , 11997-12013. https://doi.org/10.1021/jp3085099
    35. Vishal Agarwal, Paul J. Dauenhauer, George W. Huber, and Scott M. Auerbach . Ab Initio Dynamics of Cellulose Pyrolysis: Nascent Decomposition Pathways at 327 and 600 °C. Journal of the American Chemical Society 2012, 134 (36) , 14958-14972. https://doi.org/10.1021/ja305135u
    36. Xianghong Qian and Xingfei Wei . Glucose Isomerization to Fructose from ab Initio Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2012, 116 (35) , 10898-10904. https://doi.org/10.1021/jp303842g
    37. Stavros Caratzoulas, Timothy Courtney, and Dionisios G. Vlachos . Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water. The Journal of Physical Chemistry A 2011, 115 (32) , 8816-8821. https://doi.org/10.1021/jp203436e
    38. Minhua Zhang, Zhongfeng Geng, and Yingzhe Yu . Density Functional Theory (DFT) Study on the Dehydration of Cellulose. Energy & Fuels 2011, 25 (6) , 2664-2670. https://doi.org/10.1021/ef101619e
    39. Rajeev S. Assary, Paul C. Redfern, Jeffrey Greeley, and Larry A. Curtiss . Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods. The Journal of Physical Chemistry B 2011, 115 (15) , 4341-4349. https://doi.org/10.1021/jp1104278
    40. Teodoro Laino, Christian Tuma, Alessandro Curioni, Evan Jochnowitz, and Steffen Stolz . A Revisited Picture of the Mechanism of Glycerol Dehydration. The Journal of Physical Chemistry A 2011, 115 (15) , 3592-3595. https://doi.org/10.1021/jp201078e
    41. Mark W. Jarvis, John W. Daily, Hans-Heinrich Carstensen, Anthony M. Dean, Shantanu Sharma, David C. Dayton, David J. Robichaud, and Mark R. Nimlos . Direct Detection of Products from the Pyrolysis of 2-Phenethyl Phenyl Ether. The Journal of Physical Chemistry A 2011, 115 (4) , 428-438. https://doi.org/10.1021/jp1076356
    42. E. Salzano, M. Di Serio, and E. Santacesaria . Emerging Risks in the Biodiesel Production by Transesterification of Virgin and Renewable Oils. Energy & Fuels 2010, 24 (11) , 6103-6109. https://doi.org/10.1021/ef101229b
    43. Mark R. Nimlos,, Xianghong Qian,, Mark Davis,, Michael E. Himmel, and, David K. Johnson. Energetics of Xylose Decomposition as Determined Using Quantum Mechanics Modeling. The Journal of Physical Chemistry A 2006, 110 (42) , 11824-11838. https://doi.org/10.1021/jp0626770
    44. Felipe Fernandes Barbosa, Adonay R. Loiola, Sibele B.C. Pergher, Tiago Pinheiro Braga. Challenges, prospects and comprehensive evolution of zeolite-based materials for the catalytic conversion of glycerol: A review. Catalysis Today 2025, 444 , 114998. https://doi.org/10.1016/j.cattod.2024.114998
    45. Lu Liu, Fei Yu, Siqun Wang, Xiaofei Philip Ye. Synergistic Effects of Nonthermal Plasma and Solid Acid Catalysts in Thermo-Catalytic Glycerol Dehydration. Catalysts 2024, 14 (11) , 790. https://doi.org/10.3390/catal14110790
    46. Azahar R. Sheikh, Jyotsna G. Vitore, Vijay S. Bhalekar, Sonali Jain, Divya Kukreja, Tushar Giri, Nitish Sharma, Derajram Benival, Ravi P. Shah. Reactivity of N terminal histidine of peptides towards excipients/impurity of excipients: A case study of liraglutide excipient compatibility study. Journal of Pharmaceutical Sciences 2024, 113 (11) , 3246-3254. https://doi.org/10.1016/j.xphs.2024.08.007
    47. Diogo Nogueira, Ricardo R. Oliveira, Alexandre B. Rocha. Vicinal effect on chlorination of diols. Chemical Physics 2024, 585 , 112366. https://doi.org/10.1016/j.chemphys.2024.112366
    48. Lukas Fliri, Kseniia Dubivka, Dmitrii Rusakov, Alexander Volikov, Chamseddine Guizani, Sami Hietala, Svitlana Filonenko, Michael Hummel. Identification of a polyfuran network as the initial carbonization intermediate in cellulose pyrolysis: A comparative analysis with cellulosic hydrochars. Journal of Analytical and Applied Pyrolysis 2024, 181 , 106591. https://doi.org/10.1016/j.jaap.2024.106591
    49. Takashi Nomoura, Eiji Minami, Haruo Kawamoto. Furan and benzene ring formation in cellulose char: the roles of 5-HMF and reducing ends. RSC Advances 2024, 14 (30) , 21544-21552. https://doi.org/10.1039/D4RA03344B
    50. Jiachang Zuo, Shiyi Chen, Xianghui Wang, Cong Huang, Qihui Huang, Qiaofeng Liu, Linmin Ye, Xinping Duan, Youzhu Yuan. The crucial role of interaction between WO and Ti–Si composite oxide for selective hydrogenolysis of glycerol to 1,3-propanediol. Journal of Environmental Chemical Engineering 2024, 12 (3) , 112683. https://doi.org/10.1016/j.jece.2024.112683
    51. Arul Mozhi Devan Padmanathan, Seth Beck, Khursheed B. Ansari, Samir H. Mushrif. Impact of lignin–carbohydrate complex (LCC) linkages on cellulose pyrolysis chemistry. Energy Advances 2024, 3 (2) , 515-528. https://doi.org/10.1039/D3YA00427A
    52. Jingwei Chen, Yilin Guo, Xiaomin Wu. Challenges of hydrogen production from biomass gasification. 2024, 153-203. https://doi.org/10.1016/B978-0-443-13613-9.00005-2
    53. Yehao Sun, Prital Prabhu, Dongmei Li, Scott McIntosh, Irfan Rahman. Vaping: Public Health, Social Media, and Toxicity. Online Journal of Public Health Informatics 2024, 16 , e53245. https://doi.org/10.2196/53245
    54. Lukas Fliri, Kseniia Dubivka, Dmitrii Rusakov, Alexander Volikov, Chamseddine Guizani, Sami Hietala, Svitlana Filonenko, Michael Hummel. Identification of a Polyfuran Network as the Initial Carbonization Intermediate in Cellulose Pyrolysis: A Comparative Analysis with Cellulosic Hydrochars. 2024https://doi.org/10.2139/ssrn.4798378
    55. Hai Lan, Qi Yao, Miao Liu, Pucheng Zhao, Qingyun Yang, Fei Li, Biao Zhang, Yi Jiang. TS-1 Molecular Sieves Facilitated Aldehyde Stable Production from Gas-Glycerol Dehydration: Using Liquid Feed of Glycerol-Methanol Solution. Catalysis Letters 2023, 153 (11) , 3480-3491. https://doi.org/10.1007/s10562-022-04246-2
    56. Sébastien Soulet, Carine Casile. Thermal engineering of electronic cigarettes. Case Studies in Thermal Engineering 2023, 51 , 103512. https://doi.org/10.1016/j.csite.2023.103512
    57. Xuefeng Shao, Sheng Yang, Liwu Fan, Yanping Yuan. Sugar alcohol phase change materials for low-to-medium temperature thermal energy storage: A comprehensive review. Journal of Energy Storage 2023, 68 , 107848. https://doi.org/10.1016/j.est.2023.107848
    58. Lu Liu, Xiaofei Philip Ye, Ashim Datta. Glycerol dehydration catalyzed by solid acid in nonthermal plasma and simulation analysis of plasma electric field. Journal of the American Oil Chemists' Society 2023, 6 https://doi.org/10.1002/aocs.12737
    59. Xue-Feng Shao, Sheng Yang, Hong-Yi Shi, Li-Wu Fan, Yan-Ping Yuan. A comprehensive evaluation on the cycling stability of sugar alcohols for medium-temperature latent heat storage. Journal of Energy Storage 2023, 64 , 107190. https://doi.org/10.1016/j.est.2023.107190
    60. Martín N. Gatti, Federico M. Perez, Gerardo F. Santori, Nora N. Nichio, Francisco Pompeo. Heterogeneous Catalysts for Glycerol Biorefineries: Hydrogenolysis to 1,2-Propylene Glycol. Materials 2023, 16 (9) , 3551. https://doi.org/10.3390/ma16093551
    61. Lu Liu, Fei Yu, Siqun Wang, Xiaofei Philip Ye. Glycerol Dehydration to Acrolein Catalyzed by Silicotungstic Acid: Effect of Mesoporous Support. Eng 2023, 4 (1) , 206-222. https://doi.org/10.3390/eng4010012
    62. Alexander Shaw, Xiaolei Zhang, Shuya Jia, Juan Fu, Lin Lang, Robert C. Brown. Mechanistic investigation of char growth from lignin monomers during biomass utilisation. Fuel Processing Technology 2023, 239 , 107556. https://doi.org/10.1016/j.fuproc.2022.107556
    63. Dinesh Kumar Pandey, Shyam Pratap Singh, Ajay K. Dalai, Prakash Biswas. Kinetics of glycerol dehydration-hydrogenation reaction in the vapor phase in a fixed bed down flow tubular reactor over a bi-functional Cu-Zn/MgO catalyst. Catalysis Today 2022, 404 , 190-200. https://doi.org/10.1016/j.cattod.2022.03.021
    64. Sébastien Soulet, Carine Casile. Thermodynamic behaviour of an e-cigarette: Investigation of nicotine delivery consistency using nicotine yield. Thermal Science and Engineering Progress 2022, 35 , 101452. https://doi.org/10.1016/j.tsep.2022.101452
    65. Susmita Bhowmik, Nagasuresh Enjamuri, Govind Sethia, Venugopal Akula, Banu Marimuthu, Srinivas Darbha. Insights into active tungsten species on Pt/W/SBA-15 catalysts for selective hydrodeoxygenation of glycerol to 1,3-propanediol. Molecular Catalysis 2022, 531 , 112704. https://doi.org/10.1016/j.mcat.2022.112704
    66. Roger Sheu, Tori Hass-Mitchell, Akima Ringsdorf, Thomas Berkemeier, Jo Machesky, Achim Edtbauer, Thomas Klüpfel, Alexander Filippi, Benjamin A. Musa Bandowe, Marco Wietzoreck, Petr Kukučka, Haijie Tong, Gerhard Lammel, Ulrich Pöschl, Jonathan Williams, Drew R. Gentner. Emerging investigator series: deposited particles and human lung lining fluid are dynamic, chemically-complex reservoirs leading to thirdhand smoke emissions and exposure. Environmental Science: Atmospheres 2022, 2 (5) , 943-963. https://doi.org/10.1039/D1EA00107H
    67. Susmita Bhowmik, Nagasuresh Enjamuri, Banu Marimuthu, Srinivas Darbha. C–O Hydrogenolysis of C3–C4 Polyols Selectively to Terminal Diols over Pt/W/SBA-15 Catalysts. Catalysts 2022, 12 (9) , 1070. https://doi.org/10.3390/catal12091070
    68. Martin Nicolás Gatti, Nora Nancy Nichio, Francisco Pompeo. Advances for Biorefineries: Glycerol Hydrogenolysis to 1,3-Propylene Glycol. Reactions 2022, 3 (3) , 451-498. https://doi.org/10.3390/reactions3030032
    69. Thanasak Solos, Napanot Methiritthikul, Chanakran Homla-or, Preedawan Duangchan, Kittisak Choojun, Tawan Sooknoi. Direct conversion of glycerol to n -propanol over a tandem catalytic dehydration–hydrogenation system. Catalysis Science & Technology 2022, 12 (16) , 5053-5066. https://doi.org/10.1039/D2CY00671E
    70. Luan A. Martinho, Carlos Kleber Z. Andrade. A greener approach for the synthesis of pyrido[2,3‐ d ]pyrimidine derivatives in glycerol under microwave heating. Journal of Heterocyclic Chemistry 2022, 59 (8) , 1417-1429. https://doi.org/10.1002/jhet.4483
    71. Diogo Nogueira, Ricardo R. Oliveira, Alexandre B. Rocha. Microsolvation effect on chlorination reaction of simple alcohols. International Journal of Chemical Kinetics 2022, 54 (6) , 381-388. https://doi.org/10.1002/kin.21567
    72. Daniela Millán, Felipe González-Turen, Josei Perez-Recabarren, Christopher Gonzalez-Ponce, Marcos Caroli Rezende, André M. Da Costa Lopes. Solvent effects on the wood delignification with sustainable solvents. International Journal of Biological Macromolecules 2022, 211 , 490-498. https://doi.org/10.1016/j.ijbiomac.2022.05.030
    73. Atekeh Sadat Ghaemaghami Najafi, Taher Alizadeh. One-step hydrothermal synthesis of carbon nano onions anchored on graphene sheets for potential use in electrochemical energy storage. Journal of Materials Science: Materials in Electronics 2022, 33 (10) , 7444-7462. https://doi.org/10.1007/s10854-022-07870-1
    74. Siti Aqilah Nadhirah Md. Rahim, Ching Shya Lee, Mohamed Kheireddine Aroua, Wan Mohd Ashri Wan Daud, Faisal Abnisa, Patrick Cognet, Yolande Pérès. Glycerol Electrocatalytic Reduction Using an Activated Carbon Composite Electrode: Understanding the Reaction Mechanisms and an Optimization Study. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.845614
    75. Zheng Zhou, Xin Ren, Yueqiang Cao, Yi-An Zhu, Jinghong Zhou, Xinggui Zhou. Mechanistic insights into acid-affected hydrogenolysis of glycerol to 1,3-propanediol over an Ir–Re/SiO 2 catalyst. Chemical Communications 2022, 58 (16) , 2694-2697. https://doi.org/10.1039/D1CC06437A
    76. S. Basu, Vibha Shree, A.K. Sen. Role of cerium as a promoter and process optimization studies for dehydration of glycerol to acetol over copper chromite catalyst. Journal of Rare Earths 2022, 40 (1) , 63-72. https://doi.org/10.1016/j.jre.2021.01.013
    77. Hai Lan, Qi Yao, Hailing Shi, Pucheng Zhao, Biao Zhang. Acidic [(Ti, Si)O4] of Ts-1 Molecular Sieves Facilitated Aldehyde Stable Production from Gas-Glycerol Dehydration: Using Liquid Feed of Glycerol-Methanol Solution. SSRN Electronic Journal 2022, 10 https://doi.org/10.2139/ssrn.4167184
    78. Shan Liu, Zhiquan Yu, Yao Wang, Zhichao Sun, Yingya Liu, Chuan Shi, Anjie Wang. Catalytic dehydration of glycerol to acrolein over unsupported MoP. Catalysis Today 2021, 379 , 132-140. https://doi.org/10.1016/j.cattod.2020.11.029
    79. Susmita Bhowmik, Srinivas Darbha. Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol. Catalysis Reviews 2021, 63 (4) , 639-703. https://doi.org/10.1080/01614940.2020.1794737
    80. Dongdong Zhang, Yi Cao, Pan Zhang, Jiankang Liang, Ke Xue, Yong Xia, Zhengjian Qi. Investigation of the thermal decomposition mechanism of glycerol: the combination of a theoretical study based on the Minnesota functional and experimental support. Physical Chemistry Chemical Physics 2021, 23 (36) , 20466-20477. https://doi.org/10.1039/D1CP01526E
    81. Binbin Zhao, Yu Liang, Lei Liu, Qian He, Jin‐Xiang Dong. Facilitating Pt−WO x Species Interaction for Efficient Glycerol Hydrogenolysis to 1,3‐Propanediol. ChemCatChem 2021, 13 (16) , 3695-3705. https://doi.org/10.1002/cctc.202100773
    82. Shufang Zhao, Songlin He, Kyung Du Kim, Lizhuo Wang, Ryong Ryoo, Zichun Wang, Jun Huang. Influence of hierarchical ZSM-5 catalysts with various acidity on the dehydration of glycerol to acrolein. Magnetic Resonance Letters 2021, 1 (1) , 71-80. https://doi.org/10.1016/j.mrl.2021.100002
    83. Takashi Nomura, Eiji Minami, Haruo Kawamoto. Hydroxymethylfurfural as an Intermediate of Cellulose Carbonization. ChemistryOpen 2021, 10 (6) , 610-617. https://doi.org/10.1002/open.202000314
    84. Katarzyna Stawicka, Maciej Trejda, Maria Ziolek. Insight into Active Centers and Anti-Coke Behavior of Niobium-Containing SBA-15 for Glycerol Dehydration. Catalysts 2021, 11 (4) , 488. https://doi.org/10.3390/catal11040488
    85. Susmita Bhowmik, Nagasuresh Enjamuri, Srinivas Darbha. Hydrogenolysis of glycerol in an aqueous medium over Pt/WO 3 /zirconium phosphate catalysts studied by 1 H NMR spectroscopy. New Journal of Chemistry 2021, 45 (11) , 5013-5022. https://doi.org/10.1039/D0NJ05557C
    86. Diogo Nogueira, Ricardo R. Oliveira, Alexandre B. Rocha. Glycerol chlorination reaction mechanism. International Journal of Chemical Kinetics 2021, 53 (3) , 369-378. https://doi.org/10.1002/kin.21449
    87. Fengliang Wu, Huifang Jiang, Xuhai Zhu, Rui Lu, Lei Shi, Fang Lu. Effect of Tungsten Species on Selective Hydrogenolysis of Glycerol to 1,3‐Propanediol. ChemSusChem 2021, 14 (2) , 569-581. https://doi.org/10.1002/cssc.202002405
    88. Binbin Zhao, Yu Liang, Lei Liu, Qian He, Jinxiang Dong. Discovering positively charged Pt for enhanced hydrogenolysis of glycerol to 1,3-propanediol. Green Chemistry 2020, 22 (23) , 8254-8259. https://doi.org/10.1039/D0GC03364B
    89. Hai Lan, Qi Yao, Yibo Zhou, Biao Zhang, Yi Jiang. Direct conversion of gas-glycerol to Allyl alcohol over V, Ti or Nb modified MoFe/KIT-6 oxide catalysts. Molecular Catalysis 2020, 498 , 111279. https://doi.org/10.1016/j.mcat.2020.111279
    90. Qing Wang, Hao Song, Shuo Pan, Nanhang Dong, Xinmin Wang, Shipeng Sun. Initial pyrolysis mechanism and product formation of cellulose: An Experimental and Density functional theory(DFT) study. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-60095-2
    91. Takeshi Aihara, Katsuya Asazuma, Hiroki Miura, Tetsuya Shishido. Highly active and durable WO 3 /Al 2 O 3 catalysts for gas-phase dehydration of polyols. RSC Advances 2020, 10 (61) , 37538-37544. https://doi.org/10.1039/D0RA08340B
    92. Ana Beatriz Benites, Rafael T. Alarcon, Caroline Gaglieri, Katie J. Lamb, Gilbert Bannach. Effect of metal oxide fillers in urethane dimethacrylate polymer with glycerol obtained by photopolymerization synthesis. Journal of Polymer Research 2020, 27 (10) https://doi.org/10.1007/s10965-020-02292-1
    93. Xue-Feng Shao, Sheng Yang, Chao Wang, Wu-Jun Wang, Yi Zeng, Li-Wu Fan. Screening of sugar alcohols and their binary eutectic mixtures as phase change materials for low-to-medium temperature thermal energy storage. (Ⅲ): Thermal endurance. Energy 2020, 209 , 118483. https://doi.org/10.1016/j.energy.2020.118483
    94. Jia Wang, Man Yang, Aiqin Wang. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts. Chinese Journal of Catalysis 2020, 41 (9) , 1311-1319. https://doi.org/10.1016/S1872-2067(20)63586-0
    95. Yuxin Liang, Guojun Shi, Kai Jin. Promotion Effect of Al2O3 on Pt–WOx/SiO2 Catalysts for Selective Hydrogenolysis of Bioglycerol to 1,3-Propanediol in Liquid Phase. Catalysis Letters 2020, 150 (8) , 2365-2376. https://doi.org/10.1007/s10562-020-03140-z
    96. Andrii Kostyniuk, David Bajec, Petar Djinović, Blaž Likozar. One-step synthesis of glycidol from glycerol in a gas-phase packed-bed continuous flow reactor over HZSM-5 zeolite catalysts modified by CsNO3. Chemical Engineering Journal 2020, 394 , 124945. https://doi.org/10.1016/j.cej.2020.124945
    97. M. El Doukkali, A. Iriondo, I. Gandarias. Enhanced catalytic upgrading of glycerol into high value-added H2 and propanediols: Recent developments and future perspectives. Molecular Catalysis 2020, 490 , 110928. https://doi.org/10.1016/j.mcat.2020.110928
    98. Asuka Fukutome, Haruo Kawamoto. Dehydration Leads to Hydrocarbon Gas Formation in Thermal Degradation of Gas-Phase Polyalcohols. Energies 2020, 13 (14) , 3726. https://doi.org/10.3390/en13143726
    99. Zahra Babaei, Alireza Najafi Chermahini, Mohammad Dinari. Glycerol adsorption and mechanism of dehydration to acrolein over TiO2 surface: A density functional theory study. Journal of Colloid and Interface Science 2020, 563 , 1-7. https://doi.org/10.1016/j.jcis.2019.12.051
    100. Sébastien Soulet, Marie Duquesne, Jean Toutain, Charly Pairaud, Maud Mercury. Impact of Vaping Regimens on Electronic Cigarette Efficiency. International Journal of Environmental Research and Public Health 2019, 16 (23) , 4753. https://doi.org/10.3390/ijerph16234753
    Load more citations

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2006, 110, 18, 6145–6156
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp060597q
    Published April 18, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    6398

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.