ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Mechanisms of Glycerol Dehydration

  • Mark R. Nimlos*
    Mark R. Nimlos
    National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A., Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, and Rx-Innovation, Inc., Fort Collins, Colorado 80525, U.S.A.
     To whom correspondence should be addressed. E-mail: [email protected].
  • Stephen J. Blanksby
    Stephen J. Blanksby
    National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A., Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, and Rx-Innovation, Inc., Fort Collins, Colorado 80525, U.S.A.
  • Xianghong Qian
    Xianghong Qian
    National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A., Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, and Rx-Innovation, Inc., Fort Collins, Colorado 80525, U.S.A.
  • Michael E. Himmel
    Michael E. Himmel
    National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A., Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, and Rx-Innovation, Inc., Fort Collins, Colorado 80525, U.S.A.
  • , and 
  • David K. Johnson
    David K. Johnson
    National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A., Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia, and Rx-Innovation, Inc., Fort Collins, Colorado 80525, U.S.A.
Cite this: J. Phys. Chem. A 2006, 110, 18, 6145–6156
Publication Date (Web):April 18, 2006
https://doi.org/10.1021/jp060597q
Copyright © 2006 American Chemical Society

    Article Views

    5736

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (612 KB)
    Supporting Info (8)»

    Abstract

    Dehydration of neutral and protonated glycerol was investigated using quantum mechanical calculations (CBS-QB3). Calculations on neutral glycerol show that there is a high barrier for simple 1,2-dehydration, Ea = 70.9 kcal mol-1, which is lowered to 65.2 kcal mol-1 for pericyclic 1,3-dehydration. In contrast, the barriers for dehydration of protonated glycerol are much lower. Dehydration mechanisms involving hydride transfer, pinacol rearrangement, or substitution reactions have barriers between 20 and 25 kcal mol-1. Loss of water from glycerol via substitution results in either oxirane or oxetane intermediates, which can interconvert over a low barrier. Subsequent decomposition of these intermediates proceeds via either a second dehydration step or loss of formaldehyde. The computed mechanisms for decomposition of protonated glycerol are supported by the gas-phase fragmentation of protonated glycerol observed using a triple−quadrupole mass spectrometer.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Calculated structures of the reactants, transition states, and products. This material is available free of charge via the Internet at http://acs.pubs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 226 publications.

    1. Melba Domes Denson, Evan Terrell, Pavlo Kostetskyy, Mariefel Olarte, Linda Broadbelt, Manuel Garcia-Perez. Elucidation of Structure and Physical Properties of Pyrolytic Sugar Oligomers Derived from Cellulose Depolymerization/Dehydration Reactions: A Density Functional Theory Study. Energy & Fuels 2023, 37 (11) , 7834-7847. https://doi.org/10.1021/acs.energyfuels.3c00641
    2. Ram Singh, Prakash Biswas, Prateek K. Jha. Study of the Glycerol Hydrogenolysis Reaction on Cu, Cu–Zn, and Cu–ZnO Clusters. ACS Omega 2022, 7 (37) , 33629-33636. https://doi.org/10.1021/acsomega.2c05342
    3. Chen Chen, Yu Liang, Qiong Tang, Dong Li, Lei Liu, Jinxiang Dong. In Situ Growth of Tungsten Oxide on Alumina to Boost the Catalytic Performance of Platinum for Glycerol Hydrogenolysis. Industrial & Engineering Chemistry Research 2022, 61 (34) , 12504-12512. https://doi.org/10.1021/acs.iecr.2c02275
    4. Yang Zeng, Lan Jiang, Xiaoxin Zhang, Songhai Xie, Yan Pei, Gongbing Zhou, Weiming Hua, Minghua Qiao, Zhen-Hua Li, Baoning Zong. Effect of Titania Polymorphs on the Structure and Catalytic Performance of the Pt–WOx/TiO2 Catalyst in Glycerol Hydrogenolysis to 1,3-Propanediol. ACS Sustainable Chemistry & Engineering 2022, 10 (29) , 9532-9545. https://doi.org/10.1021/acssuschemeng.2c02205
    5. Yang Sik Yun, Claudia E. Berdugo-Díaz, David W. Flaherty. Advances in Understanding the Selective Hydrogenolysis of Biomass Derivatives. ACS Catalysis 2021, 11 (17) , 11193-11232. https://doi.org/10.1021/acscatal.1c02866
    6. Binbin Zhao, Yu Liang, Wenjun Yan, Lei Liu, Jinxiang Dong. A Facile Approach to Tune WOx Species Combining Pt Catalyst for Enhanced Catalytic Performance in Glycerol Hydrogenolysis. Industrial & Engineering Chemistry Research 2021, 60 (34) , 12534-12544. https://doi.org/10.1021/acs.iecr.1c02184
    7. Ding Jiang, Shuang Wang, Hongping Li, Lujiang Xu, Xun Hu, Bahram Barati, Anqing Zheng. Insight into the Mechanism of Glycerol Dehydration and Subsequent Pyridine Synthesis. ACS Sustainable Chemistry & Engineering 2021, 9 (8) , 3095-3103. https://doi.org/10.1021/acssuschemeng.0c07460
    8. Marion Carrier, René Fournet, Baptiste Sirjean, Sam Amsbury, Yoselin Benitez Alfonso, Pierre-Yves Pontalier, Anthony Bridgwater. Fast Pyrolysis of Hemicelluloses into Short-Chain Acids: An Investigation on Concerted Mechanisms. Energy & Fuels 2020, 34 (11) , 14232-14248. https://doi.org/10.1021/acs.energyfuels.0c02901
    9. José F. Ureña, Lauren A. Ebersol, Alexey Silakov, Ryan J. Elias, Joshua D. Lambert. Impact of Atomizer Age and Flavor on In Vitro Toxicity of Aerosols from a Third-Generation Electronic Cigarette against Human Oral Cells. Chemical Research in Toxicology 2020, 33 (10) , 2527-2537. https://doi.org/10.1021/acs.chemrestox.0c00028
    10. Bin Hu, Bing Zhang, Wen-luan Xie, Xiao-yan Jiang, Ji Liu, Qiang Lu. Recent Progress in Quantum Chemistry Modeling on the Pyrolysis Mechanisms of Lignocellulosic Biomass. Energy & Fuels 2020, 34 (9) , 10384-10440. https://doi.org/10.1021/acs.energyfuels.0c01948
    11. Jason M. Hudzik, Mohamad Barekati-Goudarzi, Lavrent Khachatryan, Joseph W. Bozzelli, Eli Ruckenstein, Rubik Asatryan. OH-Initiated Reactions of para-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part II. Kinetic Analysis. The Journal of Physical Chemistry A 2020, 124 (24) , 4875-4904. https://doi.org/10.1021/acs.jpca.9b11894
    12. Jason M. Hudzik, Joseph W. Bozzelli, Rubik Asatryan, Eli Ruckenstein. OH-Initiated Reactions of para-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part III. Kinetics of H-Abstraction by H, OH, and CH3 Radicals. The Journal of Physical Chemistry A 2020, 124 (24) , 4905-4915. https://doi.org/10.1021/acs.jpca.9b11898
    13. Shanghua Feng, Binbin Zhao, Yu Liang, Lei Liu, Jinxiang Dong. Improving Selectivity to 1,3-Propanediol for Glycerol Hydrogenolysis Using W- and Al-Incorporated SBA-15 as Support for Pt Nanoparticles. Industrial & Engineering Chemistry Research 2019, 58 (8) , 2661-2671. https://doi.org/10.1021/acs.iecr.8b03982
    14. Bin Hu, Qiang Lu, Yu-ting Wu, Ji Liu, Kai Li, Chang-qing Dong, Yong-ping Yang. Interaction between Acetic Acid and Glycerol: A Model for Secondary Reactions during Holocellulose Pyrolysis. The Journal of Physical Chemistry A 2019, 123 (3) , 674-681. https://doi.org/10.1021/acs.jpca.8b11264
    15. Rubik Asatryan, Yudhajit Pal, Johannes Hachmann, Eli Ruckenstein. Roaming-like Mechanism for Dehydration of Diol Radicals. The Journal of Physical Chemistry A 2018, 122 (51) , 9738-9754. https://doi.org/10.1021/acs.jpca.8b08690
    16. Yang Fang, Jian Li, Yingquan Chen, Qiang Lu, Haiping Yang, Xianhua Wang, Hanping Chen. Experiment and Modeling Study of Glucose Pyrolysis: Formation of 3-Hydroxy-γ-butyrolactone and 3-(2H)-Furanone. Energy & Fuels 2018, 32 (9) , 9519-9529. https://doi.org/10.1021/acs.energyfuels.8b01877
    17. Shawna Vreeke, David H. Peyton, Robert M. Strongin. Triacetin Enhances Levels of Acrolein, Formaldehyde Hemiacetals, and Acetaldehyde in Electronic Cigarette Aerosols. ACS Omega 2018, 3 (7) , 7165-7170. https://doi.org/10.1021/acsomega.8b00842
    18. Khursheed B. Ansari, Jyotsna S. Arora, Jia Wei Chew, Paul J. Dauenhauer, Samir H. Mushrif. Effect of Temperature and Transport on the Yield and Composition of Pyrolysis-Derived Bio-Oil from Glucose. Energy & Fuels 2018, 32 (5) , 6008-6021. https://doi.org/10.1021/acs.energyfuels.8b00852
    19. Nitin Naresh Pandhare, Satyanarayana Murty Pudi, Smita Mondal, Keval Pareta, Manish Kumar, and Prakash Biswas . Development of Kinetic Model for Hydrogenolysis of Glycerol over Cu/MgO Catalyst in a Slurry Reactor. Industrial & Engineering Chemistry Research 2018, 57 (1) , 101-110. https://doi.org/10.1021/acs.iecr.7b03684
    20. Shanghua Feng, Binbin Zhao, Lei Liu, and Jinxiang Dong . Platinum Supported on WO3-Doped Aluminosilicate: A Highly Efficient Catalyst for Selective Hydrogenolysis of Glycerol to 1,3-Propanediol. Industrial & Engineering Chemistry Research 2017, 56 (39) , 11065-11074. https://doi.org/10.1021/acs.iecr.7b02951
    21. Skylar Klager, Jose Vallarino, Piers MacNaughton, David C. Christiani, Quan Lu, and Joseph G. Allen . Flavoring Chemicals and Aldehydes in E-Cigarette Emissions. Environmental Science & Technology 2017, 51 (18) , 10806-10813. https://doi.org/10.1021/acs.est.7b02205
    22. Robert R. O. Brydon and Linda J. Broadbelt . Mechanistic Modeling of the Partial Oxidation of 1,3-Propanediol: Comparison of Free-Radical and Concerted Mechanisms. Industrial & Engineering Chemistry Research 2017, 56 (23) , 6599-6607. https://doi.org/10.1021/acs.iecr.7b00851
    23. Lingyu Jia, Zhenzhou Zhang, Yan Qiao, Christian Marcus Pedersen, Hui Ge, Zhihong Wei, Tiansheng Deng, Jun Ren, Xingchen Liu, Yingxiong Wang, and Xianglin Hou . Product Distribution Control for Glucosamine Condensation: Nuclear Magnetic Resonance (NMR) Investigation Substantiated by Density Functional Calculations. Industrial & Engineering Chemistry Research 2017, 56 (11) , 2925-2934. https://doi.org/10.1021/acs.iecr.6b05057
    24. Arturo Alberto Vitale, Eduardo A. Bernatene, Martín Gustavo Vitale, and Alicia Beatriz Pomilio . New Insights of the Fenton Reaction Using Glycerol as the Experimental Model. Effect of O2, Inhibition by Mg2+, and Oxidation State of Fe. The Journal of Physical Chemistry A 2016, 120 (28) , 5435-5445. https://doi.org/10.1021/acs.jpca.6b03805
    25. Wen-Jing Wang, Xin Hai, Quan-Xing Mao, Ming-Li Chen, and Jian-Hua Wang . Polyhedral Oligomeric Silsesquioxane Functionalized Carbon Dots for Cell Imaging. ACS Applied Materials & Interfaces 2015, 7 (30) , 16609-16616. https://doi.org/10.1021/acsami.5b04172
    26. Guo Shiou Foo, Daniel Wei, David S. Sholl, and Carsten Sievers . Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia. ACS Catalysis 2014, 4 (9) , 3180-3192. https://doi.org/10.1021/cs5006376
    27. Mingming Zhang and Hongwei Wu . Phase Behavior and Fuel Properties of Bio-Oil/Glycerol/Methanol Blends. Energy & Fuels 2014, 28 (7) , 4650-4656. https://doi.org/10.1021/ef501176z
    28. Franziska Bell, Qiao N. Ruan, Amir Golan, Paul R. Horn, Musahid Ahmed, Stephen R. Leone, and Martin Head-Gordon . Dissociative Photoionization of Glycerol and its Dimer Occurs Predominantly via a Ternary Hydrogen-Bridged Ion–Molecule Complex. Journal of the American Chemical Society 2013, 135 (38) , 14229-14239. https://doi.org/10.1021/ja405511v
    29. Benjamin Katryniok, Sébastien Paul, and Franck Dumeignil . Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catalysis 2013, 3 (8) , 1819-1834. https://doi.org/10.1021/cs400354p
    30. Shih-Kang Liu and Yu-Chuan Lin . Autothermal Partial Oxidation of Glycerol to Syngas over Pt-, LaMnO3-, and Pt/LaMnO3-Coated Monoliths. Industrial & Engineering Chemistry Research 2012, 51 (50) , 16278-16287. https://doi.org/10.1021/ie3021686
    31. Vikram Seshadri and Phillip R. Westmoreland . Concerted Reactions and Mechanism of Glucose Pyrolysis and Implications for Cellulose Kinetics. The Journal of Physical Chemistry A 2012, 116 (49) , 11997-12013. https://doi.org/10.1021/jp3085099
    32. Vishal Agarwal, Paul J. Dauenhauer, George W. Huber, and Scott M. Auerbach . Ab Initio Dynamics of Cellulose Pyrolysis: Nascent Decomposition Pathways at 327 and 600 °C. Journal of the American Chemical Society 2012, 134 (36) , 14958-14972. https://doi.org/10.1021/ja305135u
    33. Xianghong Qian and Xingfei Wei . Glucose Isomerization to Fructose from ab Initio Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2012, 116 (35) , 10898-10904. https://doi.org/10.1021/jp303842g
    34. Stavros Caratzoulas, Timothy Courtney, and Dionisios G. Vlachos . Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water. The Journal of Physical Chemistry A 2011, 115 (32) , 8816-8821. https://doi.org/10.1021/jp203436e
    35. Minhua Zhang, Zhongfeng Geng, and Yingzhe Yu . Density Functional Theory (DFT) Study on the Dehydration of Cellulose. Energy & Fuels 2011, 25 (6) , 2664-2670. https://doi.org/10.1021/ef101619e
    36. Rajeev S. Assary, Paul C. Redfern, Jeffrey Greeley, and Larry A. Curtiss . Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods. The Journal of Physical Chemistry B 2011, 115 (15) , 4341-4349. https://doi.org/10.1021/jp1104278
    37. Teodoro Laino, Christian Tuma, Alessandro Curioni, Evan Jochnowitz, and Steffen Stolz . A Revisited Picture of the Mechanism of Glycerol Dehydration. The Journal of Physical Chemistry A 2011, 115 (15) , 3592-3595. https://doi.org/10.1021/jp201078e
    38. Mark W. Jarvis, John W. Daily, Hans-Heinrich Carstensen, Anthony M. Dean, Shantanu Sharma, David C. Dayton, David J. Robichaud, and Mark R. Nimlos . Direct Detection of Products from the Pyrolysis of 2-Phenethyl Phenyl Ether. The Journal of Physical Chemistry A 2011, 115 (4) , 428-438. https://doi.org/10.1021/jp1076356
    39. E. Salzano, M. Di Serio, and E. Santacesaria . Emerging Risks in the Biodiesel Production by Transesterification of Virgin and Renewable Oils. Energy & Fuels 2010, 24 (11) , 6103-6109. https://doi.org/10.1021/ef101229b
    40. Mark R. Nimlos,, Xianghong Qian,, Mark Davis,, Michael E. Himmel, and, David K. Johnson. Energetics of Xylose Decomposition as Determined Using Quantum Mechanics Modeling. The Journal of Physical Chemistry A 2006, 110 (42) , 11824-11838. https://doi.org/10.1021/jp0626770
    41. Xuefeng Shao, Sheng Yang, Liwu Fan, Yanping Yuan. Sugar alcohol phase change materials for low-to-medium temperature thermal energy storage: A comprehensive review. Journal of Energy Storage 2023, 68 , 107848. https://doi.org/10.1016/j.est.2023.107848
    42. Se´bastien Soulet, Carine Casile. Thermal engineering of electronic cigarettes. Case Studies in Thermal Engineering 2023, EB93.2 , 103512. https://doi.org/10.1016/j.csite.2023.103512
    43. Lu Liu, Xiaofei Philip Ye, Ashim Datta. Glycerol dehydration catalyzed by solid acid in nonthermal plasma and simulation analysis of plasma electric field. Journal of the American Oil Chemists' Society 2023, 6 https://doi.org/10.1002/aocs.12737
    44. Xue-Feng Shao, Sheng Yang, Hong-Yi Shi, Li-Wu Fan, Yan-Ping Yuan. A comprehensive evaluation on the cycling stability of sugar alcohols for medium-temperature latent heat storage. Journal of Energy Storage 2023, 64 , 107190. https://doi.org/10.1016/j.est.2023.107190
    45. Martín N. Gatti, Federico M. Perez, Gerardo F. Santori, Nora N. Nichio, Francisco Pompeo. Heterogeneous Catalysts for Glycerol Biorefineries: Hydrogenolysis to 1,2-Propylene Glycol. Materials 2023, 16 (9) , 3551. https://doi.org/10.3390/ma16093551
    46. Lu Liu, Fei Yu, Siqun Wang, Xiaofei Philip Ye. Glycerol Dehydration to Acrolein Catalyzed by Silicotungstic Acid: Effect of Mesoporous Support. Eng 2023, 4 (1) , 206-222. https://doi.org/10.3390/eng4010012
    47. Alexander Shaw, Xiaolei Zhang, Shuya Jia, Juan Fu, Lin Lang, Robert C. Brown. Mechanistic investigation of char growth from lignin monomers during biomass utilisation. Fuel Processing Technology 2023, 239 , 107556. https://doi.org/10.1016/j.fuproc.2022.107556
    48. Hai Lan, Qi Yao, Miao Liu, Pucheng Zhao, Qingyun Yang, Fei Li, Biao Zhang, Yi Jiang. TS-1 Molecular Sieves Facilitated Aldehyde Stable Production from Gas-Glycerol Dehydration: Using Liquid Feed of Glycerol-Methanol Solution. Catalysis Letters 2022, 10 https://doi.org/10.1007/s10562-022-04246-2
    49. Dinesh Kumar Pandey, Shyam Pratap Singh, Ajay K. Dalai, Prakash Biswas. Kinetics of glycerol dehydration-hydrogenation reaction in the vapor phase in a fixed bed down flow tubular reactor over a bi-functional Cu-Zn/MgO catalyst. Catalysis Today 2022, 404 , 190-200. https://doi.org/10.1016/j.cattod.2022.03.021
    50. Sébastien Soulet, Carine Casile. Thermodynamic behaviour of an e-cigarette: Investigation of nicotine delivery consistency using nicotine yield. Thermal Science and Engineering Progress 2022, 35 , 101452. https://doi.org/10.1016/j.tsep.2022.101452
    51. Susmita Bhowmik, Nagasuresh Enjamuri, Govind Sethia, Venugopal Akula, Banu Marimuthu, Srinivas Darbha. Insights into active tungsten species on Pt/W/SBA-15 catalysts for selective hydrodeoxygenation of glycerol to 1,3-propanediol. Molecular Catalysis 2022, 531 , 112704. https://doi.org/10.1016/j.mcat.2022.112704
    52. Martin Nicolás Gatti, Nora Nancy Nichio, Francisco Pompeo. Advances for Biorefineries: Glycerol Hydrogenolysis to 1,3-Propylene Glycol. Reactions 2022, 3 (3) , 451-498. https://doi.org/10.3390/reactions3030032
    53. Susmita Bhowmik, Nagasuresh Enjamuri, Banu Marimuthu, Srinivas Darbha. C–O Hydrogenolysis of C3–C4 Polyols Selectively to Terminal Diols over Pt/W/SBA-15 Catalysts. Catalysts 2022, 12 (9) , 1070. https://doi.org/10.3390/catal12091070
    54. Thanasak Solos, Napanot Methiritthikul, Chanakran Homla-or, Preedawan Duangchan, Kittisak Choojun, Tawan Sooknoi. Direct conversion of glycerol to n -propanol over a tandem catalytic dehydration–hydrogenation system. Catalysis Science & Technology 2022, 12 (16) , 5053-5066. https://doi.org/10.1039/D2CY00671E
    55. Luan A. Martinho, Carlos Kleber Z. Andrade. A greener approach for the synthesis of pyrido[2,3‐ d ]pyrimidine derivatives in glycerol under microwave heating. Journal of Heterocyclic Chemistry 2022, 59 (8) , 1417-1429. https://doi.org/10.1002/jhet.4483
    56. Daniela Millán, Felipe González-Turen, Josei Perez-Recabarren, Christopher Gonzalez-Ponce, Marcos Caroli Rezende, André M. Da Costa Lopes. Solvent effects on the wood delignification with sustainable solvents. International Journal of Biological Macromolecules 2022, 211 , 490-498. https://doi.org/10.1016/j.ijbiomac.2022.05.030
    57. Diogo Nogueira, Ricardo R. Oliveira, Alexandre B. Rocha. Microsolvation effect on chlorination reaction of simple alcohols. International Journal of Chemical Kinetics 2022, 54 (6) , 381-388. https://doi.org/10.1002/kin.21567
    58. Atekeh Sadat Ghaemaghami Najafi, Taher Alizadeh. One-step hydrothermal synthesis of carbon nano onions anchored on graphene sheets for potential use in electrochemical energy storage. Journal of Materials Science: Materials in Electronics 2022, 33 (10) , 7444-7462. https://doi.org/10.1007/s10854-022-07870-1
    59. Siti Aqilah Nadhirah Md. Rahim, Ching Shya Lee, Mohamed Kheireddine Aroua, Wan Mohd Ashri Wan Daud, Faisal Abnisa, Patrick Cognet, Yolande Pérès. Glycerol Electrocatalytic Reduction Using an Activated Carbon Composite Electrode: Understanding the Reaction Mechanisms and an Optimization Study. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.845614
    60. Zheng Zhou, Xin Ren, Yueqiang Cao, Yi-An Zhu, Jinghong Zhou, Xinggui Zhou. Mechanistic insights into acid-affected hydrogenolysis of glycerol to 1,3-propanediol over an Ir–Re/SiO 2 catalyst. Chemical Communications 2022, 58 (16) , 2694-2697. https://doi.org/10.1039/D1CC06437A
    61. S. Basu, Vibha Shree, A.K. Sen. Role of cerium as a promoter and process optimization studies for dehydration of glycerol to acetol over copper chromite catalyst. Journal of Rare Earths 2022, 40 (1) , 63-72. https://doi.org/10.1016/j.jre.2021.01.013
    62. Roger Sheu, Tori Hass-Mitchell, Akima Ringsdorf, Thomas Berkemeier, Jo Machesky, Achim Edtbauer, Thomas Klüpfel, Alexander Filippi, Benjamin A. Musa Bandowe, Marco Wietzoreck, Petr Kukučka, Haijie Tong, Gerhard Lammel, Ulrich Pöschl, Jonathan Williams, Drew R. Gentner. Emerging investigator series: deposited particles and human lung lining fluid are dynamic, chemically-complex reservoirs leading to thirdhand smoke emissions and exposure. Environmental Science: Atmospheres 2022, 30 https://doi.org/10.1039/D1EA00107H
    63. Hai Lan, Qi Yao, Hailing Shi, Pucheng Zhao, Biao Zhang. Acidic [(Ti, Si)O4] of Ts-1 Molecular Sieves Facilitated Aldehyde Stable Production from Gas-Glycerol Dehydration: Using Liquid Feed of Glycerol-Methanol Solution. SSRN Electronic Journal 2022, 10 https://doi.org/10.2139/ssrn.4167184
    64. Shan Liu, Zhiquan Yu, Yao Wang, Zhichao Sun, Yingya Liu, Chuan Shi, Anjie Wang. Catalytic dehydration of glycerol to acrolein over unsupported MoP. Catalysis Today 2021, 379 , 132-140. https://doi.org/10.1016/j.cattod.2020.11.029
    65. Susmita Bhowmik, Srinivas Darbha. Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol. Catalysis Reviews 2021, 63 (4) , 639-703. https://doi.org/10.1080/01614940.2020.1794737
    66. Dongdong Zhang, Yi Cao, Pan Zhang, Jiankang Liang, Ke Xue, Yong Xia, Zhengjian Qi. Investigation of the thermal decomposition mechanism of glycerol: the combination of a theoretical study based on the Minnesota functional and experimental support. Physical Chemistry Chemical Physics 2021, 23 (36) , 20466-20477. https://doi.org/10.1039/D1CP01526E
    67. Binbin Zhao, Yu Liang, Lei Liu, Qian He, Jin‐Xiang Dong. Facilitating Pt−WO x Species Interaction for Efficient Glycerol Hydrogenolysis to 1,3‐Propanediol. ChemCatChem 2021, 13 (16) , 3695-3705. https://doi.org/10.1002/cctc.202100773
    68. Shufang Zhao, Songlin He, Kyung Du Kim, Lizhuo Wang, Ryong Ryoo, Zichun Wang, Jun Huang. Influence of hierarchical ZSM-5 catalysts with various acidity on the dehydration of glycerol to acrolein. Magnetic Resonance Letters 2021, 1 (1) , 71-80. https://doi.org/10.1016/j.mrl.2021.100002
    69. Takashi Nomura, Eiji Minami, Haruo Kawamoto. Hydroxymethylfurfural as an Intermediate of Cellulose Carbonization. ChemistryOpen 2021, 10 (6) , 610-617. https://doi.org/10.1002/open.202000314
    70. Katarzyna Stawicka, Maciej Trejda, Maria Ziolek. Insight into Active Centers and Anti-Coke Behavior of Niobium-Containing SBA-15 for Glycerol Dehydration. Catalysts 2021, 11 (4) , 488. https://doi.org/10.3390/catal11040488
    71. Susmita Bhowmik, Nagasuresh Enjamuri, Srinivas Darbha. Hydrogenolysis of glycerol in an aqueous medium over Pt/WO 3 /zirconium phosphate catalysts studied by 1 H NMR spectroscopy. New Journal of Chemistry 2021, 45 (11) , 5013-5022. https://doi.org/10.1039/D0NJ05557C
    72. Diogo Nogueira, Ricardo R. Oliveira, Alexandre B. Rocha. Glycerol chlorination reaction mechanism. International Journal of Chemical Kinetics 2021, 53 (3) , 369-378. https://doi.org/10.1002/kin.21449
    73. Fengliang Wu, Huifang Jiang, Xuhai Zhu, Rui Lu, Lei Shi, Fang Lu. Effect of Tungsten Species on Selective Hydrogenolysis of Glycerol to 1,3‐Propanediol. ChemSusChem 2021, 14 (2) , 569-581. https://doi.org/10.1002/cssc.202002405
    74. Binbin Zhao, Yu Liang, Lei Liu, Qian He, Jinxiang Dong. Discovering positively charged Pt for enhanced hydrogenolysis of glycerol to 1,3-propanediol. Green Chemistry 2020, 22 (23) , 8254-8259. https://doi.org/10.1039/D0GC03364B
    75. Hai Lan, Qi Yao, Yibo Zhou, Biao Zhang, Yi Jiang. Direct conversion of gas-glycerol to Allyl alcohol over V, Ti or Nb modified MoFe/KIT-6 oxide catalysts. Molecular Catalysis 2020, 498 , 111279. https://doi.org/10.1016/j.mcat.2020.111279
    76. Qing Wang, Hao Song, Shuo Pan, Nanhang Dong, Xinmin Wang, Shipeng Sun. Initial pyrolysis mechanism and product formation of cellulose: An Experimental and Density functional theory(DFT) study. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-60095-2
    77. Takeshi Aihara, Katsuya Asazuma, Hiroki Miura, Tetsuya Shishido. Highly active and durable WO 3 /Al 2 O 3 catalysts for gas-phase dehydration of polyols. RSC Advances 2020, 10 (61) , 37538-37544. https://doi.org/10.1039/D0RA08340B
    78. Ana Beatriz Benites, Rafael T. Alarcon, Caroline Gaglieri, Katie J. Lamb, Gilbert Bannach. Effect of metal oxide fillers in urethane dimethacrylate polymer with glycerol obtained by photopolymerization synthesis. Journal of Polymer Research 2020, 27 (10) https://doi.org/10.1007/s10965-020-02292-1
    79. Xue-Feng Shao, Sheng Yang, Chao Wang, Wu-Jun Wang, Yi Zeng, Li-Wu Fan. Screening of sugar alcohols and their binary eutectic mixtures as phase change materials for low-to-medium temperature thermal energy storage. (Ⅲ): Thermal endurance. Energy 2020, 209 , 118483. https://doi.org/10.1016/j.energy.2020.118483
    80. Jia Wang, Man Yang, Aiqin Wang. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts. Chinese Journal of Catalysis 2020, 41 (9) , 1311-1319. https://doi.org/10.1016/S1872-2067(20)63586-0
    81. Yuxin Liang, Guojun Shi, Kai Jin. Promotion Effect of Al2O3 on Pt–WOx/SiO2 Catalysts for Selective Hydrogenolysis of Bioglycerol to 1,3-Propanediol in Liquid Phase. Catalysis Letters 2020, 150 (8) , 2365-2376. https://doi.org/10.1007/s10562-020-03140-z
    82. Andrii Kostyniuk, David Bajec, Petar Djinović, Blaž Likozar. One-step synthesis of glycidol from glycerol in a gas-phase packed-bed continuous flow reactor over HZSM-5 zeolite catalysts modified by CsNO3. Chemical Engineering Journal 2020, 394 , 124945. https://doi.org/10.1016/j.cej.2020.124945
    83. M. El Doukkali, A. Iriondo, I. Gandarias. Enhanced catalytic upgrading of glycerol into high value-added H2 and propanediols: Recent developments and future perspectives. Molecular Catalysis 2020, 490 , 110928. https://doi.org/10.1016/j.mcat.2020.110928
    84. Asuka Fukutome, Haruo Kawamoto. Dehydration Leads to Hydrocarbon Gas Formation in Thermal Degradation of Gas-Phase Polyalcohols. Energies 2020, 13 (14) , 3726. https://doi.org/10.3390/en13143726
    85. Zahra Babaei, Alireza Najafi Chermahini, Mohammad Dinari. Glycerol adsorption and mechanism of dehydration to acrolein over TiO2 surface: A density functional theory study. Journal of Colloid and Interface Science 2020, 563 , 1-7. https://doi.org/10.1016/j.jcis.2019.12.051
    86. Sébastien Soulet, Marie Duquesne, Jean Toutain, Charly Pairaud, Maud Mercury. Impact of Vaping Regimens on Electronic Cigarette Efficiency. International Journal of Environmental Research and Public Health 2019, 16 (23) , 4753. https://doi.org/10.3390/ijerph16234753
    87. Lujie Liu, Shota Kawakami, Yoshinao Nakagawa, Masazumi Tamura, Keiichi Tomishige. Highly active iridium–rhenium catalyst condensed on silica support for hydrogenolysis of glycerol to 1,3-propanediol. Applied Catalysis B: Environmental 2019, 256 , 117775. https://doi.org/10.1016/j.apcatb.2019.117775
    88. Chao Wang, Changlin Chen. Stabilized hydrogenolysis of glycerol to 1,3-propanediol over Mg modified Pt/WOx–ZrO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis 2019, 128 (1) , 461-477. https://doi.org/10.1007/s11144-019-01650-5
    89. Andrew C. Weems, Kevin T. Wacker, Duncan J. Maitland. Improved oxidative biostability of porous shape memory polymers by substituting triethanolamine for glycerol. Journal of Applied Polymer Science 2019, 136 (35) https://doi.org/10.1002/app.47857
    90. Israel Pala Rosas, Jose Luis Contreras Larios, Beatriz Zeifert, José Salmones Blásquez. Catalytic Dehydration of Glycerine to Acrolein. 2019https://doi.org/10.5772/intechopen.85751
    91. Véronique Perraud, Michael J. Lawler, Kurtis T. Malecha, Rebecca M. Johnson, David A. Herman, Norbert Staimer, Michael T. Kleinman, Sergey A. Nizkorodov, James N. Smith. Chemical characterization of nanoparticles and volatiles present in mainstream hookah smoke. Aerosol Science and Technology 2019, 53 (9) , 1023-1039. https://doi.org/10.1080/02786826.2019.1628342
    92. Teng Li, Shengqin Liu, Bing Wang, Jingen Long, Jun Jiang, Ping Jin, Yao Fu, Haizhu Yu, Weiran Yang. Highly selective conversion of glyceric acid to 3-iodopropionic acid by hydriodic acid mediated hydrogenation. Green Chemistry 2019, 21 (16) , 4434-4442. https://doi.org/10.1039/C9GC01084J
    93. S Basu, A K Sen, M Mukherjee. Synthesis and performance evaluation of silica-supported copper chromite catalyst for glycerol dehydration to acetol. Journal of Chemical Sciences 2019, 131 (8) https://doi.org/10.1007/s12039-019-1662-1
    94. Dinesh Kumar Pandey, Nitin Naresh Pandhare, Prakash Biswas. Production of propylene glycol (propane-1,2-diol) in vapor phase over Cu–Ni/γ-Al2O3 catalyst in a down flow tubular reactor: effect of catalyst calcination temperature and kinetic study. Reaction Kinetics, Mechanisms and Catalysis 2019, 127 (1) , 523-542. https://doi.org/10.1007/s11144-019-01582-0
    95. Paul J. Smith, Louise Smith, Nicholas F. Dummer, Mark Douthwaite, David J. Willock, Mark Howard, David W. Knight, Stuart H. Taylor, Graham J. Hutchings. Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies 2019, 12 (7) , 1359. https://doi.org/10.3390/en12071359
    96. Young Chul Kim, Dong Ju Moon. Sustainable Process for the Synthesis of Value-Added Products Using Glycerol as a Useful Raw Material. Catalysis Surveys from Asia 2019, 23 (1) , 10-22. https://doi.org/10.1007/s10563-018-09263-z
    97. Wei Zhou, Juan Luo, Yue Wang, Jianfeng Liu, Yujun Zhao, Shengping Wang, Xinbin Ma. WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2. Applied Catalysis B: Environmental 2019, 242 , 410-421. https://doi.org/10.1016/j.apcatb.2018.10.006
    98. Smita Mondal, Himanshu Malviya, Prakash Biswas. Kinetic modelling for the hydrogenolysis of bio-glycerol in the presence of a highly selective Cu–Ni–Al 2 O 3 catalyst in a slurry reactor. Reaction Chemistry & Engineering 2019, 4 (3) , 595-609. https://doi.org/10.1039/C8RE00138C
    99. A. N. Zavilopulo, O. B. Shpenik, O. V. Pilipchinets. Mass Spectrometry of a Xylitol Molecule. Technical Physics 2019, 64 (1) , 8-13. https://doi.org/10.1134/S1063784219010274
    100. Astrid Sanchez, Mauricio Velasquez, Catherine Batiot-Dupeyrat, Juan F. Espinal, Alexander Santamaría. Mechanism of glycerol dehydration and dehydrogenation: an experimental and computational correlation. DYNA 2019, 86 (208) , 126-135. https://doi.org/10.15446/dyna.v86n208.69941
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect