ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Phase Segregation in Cerium−Lanthanum Solid Solutions

View Author Information
Inorganic Chemistry and Catalysis, Department of Chemistry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, and Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay Cédex, France
Cite this: J. Phys. Chem. B 2006, 110, 20, 9984–9990
Publication Date (Web):May 3, 2006
https://doi.org/10.1021/jp060882+
Copyright © 2006 American Chemical Society

    Article Views

    1029

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (280 KB)

    Abstract

    Electron energy-loss spectroscopy (EELS) in combination with scanning transmission electron microscopy (STEM) reveals that the La enrichment at the surface of cerium−lanthanum solid solutions is an averaged effect and that segregation occurs in a mixed oxide phase. This separation occurs within a crystalline particle, where the dopant-rich phase is located at the surface of the dopant-deficient phase. The limiting structure appears to be a solid solution with a La fraction of x = 0.6 in the bulk and x = 0.75 at the surface. Up to a La fraction of 0.6, this phase will coexist with a lanthanum-type structure in different proportions depending on the dopant amount. STEM-EELS appears to be a powerful technique to clarify the existence of a multiphase system, and it shows that XRF, XPS, and XRD measure averaged results and do not show the phase complexity of the solids.

     Utrecht University.

     Université Paris-Sud.

    *

     Corresponding author. Phone:  +31 30 253 4328; fax:  +31 30 251 1027; e-mail:  [email protected].

    Cited By

    This article is cited by 58 publications.

    1. Rui Li, Matthew D. Krcha, Michael J. Janik, Amitava D. Roy, and Kerry M. Dooley . Ce–Mn Oxides for High-Temperature Gasifier Effluent Desulfurization. Energy & Fuels 2012, 26 (11) , 6765-6776. https://doi.org/10.1021/ef301386f
    2. Stéphanie Szenknect, Adel Mesbah, Denis Horlait, Nicolas Clavier, Sandrine Dourdain, Johann Ravaux, and Nicolas Dacheux . Kinetics of Structural and Microstructural Changes at the Solid/Solution Interface during Dissolution of Cerium(IV)–Neodymium(III) Oxides. The Journal of Physical Chemistry C 2012, 116 (22) , 12027-12037. https://doi.org/10.1021/jp3007602
    3. D. Horlait, N. Clavier, S. Szenknect, N. Dacheux, and V. Dubois . Dissolution of Cerium(IV)–Lanthanide(III) Oxides: Comparative Effect of Chemical Composition, Temperature, and Acidity. Inorganic Chemistry 2012, 51 (6) , 3868-3878. https://doi.org/10.1021/ic300071c
    4. Laurent Claparede, Nicolas Clavier, Nicolas Dacheux, Philippe Moisy, Renaud Podor, and Johann Ravaux . Influence of Crystallization State and Microstructure on the Chemical Durability of Cerium–Neodymium Mixed Oxides. Inorganic Chemistry 2011, 50 (18) , 9059-9072. https://doi.org/10.1021/ic201269c
    5. D. Horlait, L. Claparède, N. Clavier, S. Szenknect, N. Dacheux, J. Ravaux, and R. Podor . Stability and Structural Evolution of CeIV1–xLnIIIxO2–x/2 Solid Solutions: A Coupled μ-Raman/XRD Approach. Inorganic Chemistry 2011, 50 (15) , 7150-7161. https://doi.org/10.1021/ic200751m
    6. Kerry M. Dooley, Vikram Kalakota, and Sumana Adusumilli . High-Temperature Desulfurization of Gasifier Effluents with Rare Earth and Rare Earth/Transition Metal Oxides. Energy & Fuels 2011, 25 (3) , 1213-1220. https://doi.org/10.1021/ef101487v
    7. A. K. Samal and T. Pradeep. Lanthanum Telluride Nanowires: Formation, Doping, and Raman Studies. The Journal of Physical Chemistry C 2010, 114 (13) , 5871-5878. https://doi.org/10.1021/jp911658k
    8. Benjaram, M. Reddy, Lakshmi Katta and Gode Thrimurthulu. Novel Nanocrystalline Ce1−xLaxO2−δ (x = 0.2) Solid Solutions: Structural Characteristics and Catalytic Performance. Chemistry of Materials 2010, 22 (2) , 467-475. https://doi.org/10.1021/cm903282w
    9. Matías Jobbágy, Cecilia Sorbello and Elsa E. Sileo. Crystalline Ce(III)−La(III) Double Basic Carbonates: A Chemical Shortcut To Obtain Nanometric La(III)-Doped Ceria. The Journal of Physical Chemistry C 2009, 113 (25) , 10853-10857. https://doi.org/10.1021/jp810321y
    10. María P. Rodríguez-Luque,, Juan C. Hernández,, María P. Yeste,, Serafin Bernal,, Miguel A. Cauqui,, José M. Pintado,, José A. Pérez-Omil,, Odile Stéphan,, José J. Calvino, and, Susana Trasobares. Preparation of Rhodium/CexPr1-xO2 Catalysts:  A Nanostructural and Nanoanalytical Investigation of Surface Modifications by Transmission and Scanning-Transmission Electron Microscopy. The Journal of Physical Chemistry C 2008, 112 (15) , 5900-5910. https://doi.org/10.1021/jp710363j
    11. Yuan Tian, Zoe Benedict, Fanxing Li, Yingchao Yang, Debtanu Maiti, Yixiao Wang, Rebecca Fushimi. Carbon-Assisted, Continuous Syngas Production in a Chemical Looping Scheme. Topics in Catalysis 2023, 66 (19-20) , 1581-1593. https://doi.org/10.1007/s11244-023-01840-5
    12. Thomas Barral, Laurent Claparede, Renaud Podor, Nicolas Dacheux. Understanding the solid/liquid interface evolution during the dissolution of Nd-doped UO2 by macro-/microscopic dual approach. Corrosion Science 2023, 222 , 111380. https://doi.org/10.1016/j.corsci.2023.111380
    13. Kang Yin, Licheng Lou, Jinlin Wang, Xiao Xu, Jiazheng Zhou, Jiangjian Shi, Dongmei Li, Huijue Wu, Yanhong Luo, Qingbo Meng. Lanthanum-induced synergetic carrier doping of heterojunction to achieve high-efficiency kesterite solar cells. Journal of Materials Chemistry A 2023, 11 (17) , 9646-9653. https://doi.org/10.1039/D3TA00597F
    14. Adriana P. Ramon, Xiansheng Li, Adam H. Clark, Olga V. Safonova, Francielle C. Marcos, Elisabete M. Assaf, Jeroen A. van Bokhoven, Luca Artiglia, José M. Assaf. In situ study of low-temperature dry reforming of methane over La2Ce2O7 and LaNiO3 mixed oxides. Applied Catalysis B: Environmental 2022, 315 , 121528. https://doi.org/10.1016/j.apcatb.2022.121528
    15. Peng Zhao, Nengjie Feng, Bangjie Tan, Zhuobin Huo, Geng Liu, Hui Wan, Guofeng Guan. Exposed crystal facet tuning of CeO2 for boosting catalytic soot combustion: The effect of La dopant. Journal of Environmental Chemical Engineering 2022, 10 (5) , 108503. https://doi.org/10.1016/j.jece.2022.108503
    16. Piotr Woźniak, Piotr Kraszkiewicz, Małgorzata A. Małecka. Hierarchical Au/CeO 2 systems – influence of Ln 3+ dopants on the catalytic activity in the propane oxidation process. CrystEngComm 2022, 24 (36) , 6408-6420. https://doi.org/10.1039/D2CE00827K
    17. M. Grabchenko, G. Pantaleo, F. Puleo, T.S. Kharlamova, V.I. Zaikovskii, O. Vodyankina, L.F. Liotta. Design of Ni-based catalysts supported over binary La-Ce oxides: Influence of La/Ce ratio on the catalytic performances in DRM. Catalysis Today 2021, 382 , 71-81. https://doi.org/10.1016/j.cattod.2021.07.012
    18. Changyi Jiang, Emily Loisel, David A. Cullen, James A. Dorman, Kerry M. Dooley. On the enhanced sulfur and coking tolerance of Ni-Co-rare earth oxide catalysts for the dry reforming of methane. Journal of Catalysis 2021, 393 , 215-229. https://doi.org/10.1016/j.jcat.2020.11.028
    19. Md. Moniruzzaman, Taishi Kobayashi, Takayuki Sasaki. Phase transformation of mixed lanthanide oxides in an aqueous solution. Journal of Nuclear and Radiochemical Sciences 2021, 21 (0) , 15-27. https://doi.org/10.14494/jnrs.21.15
    20. Piotr Woźniak, Włodzimierz Miśta, Małgorzata A. Małecka. Function of various levels of hierarchical organization of porous Ce 0.9 REE 0.1 O 1.95 mixed oxides in catalytic activity. CrystEngComm 2020, 22 (35) , 5914-5930. https://doi.org/10.1039/D0CE00883D
    21. Supalak Isarapakdeetham, Pattaraporn Kim-Lohsoontorn, Suwimol Wongsakulphasatch, Worapon Kiatkittipong, Navadol Laosiripojana, Jinlong Gong, Suttichai Assabumrungrat. Hydrogen production via chemical looping steam reforming of ethanol by Ni-based oxygen carriers supported on CeO2 and La2O3 promoted Al2O3. International Journal of Hydrogen Energy 2020, 45 (3) , 1477-1491. https://doi.org/10.1016/j.ijhydene.2019.11.077
    22. Changyi Jiang, Monica Roy Akkullu, Bo Li, Jose C. Davila, Michael J. Janik, Kerry M. Dooley. Rapid screening of ternary rare-earth – Transition metal catalysts for dry reforming of methane and characterization of final structures. Journal of Catalysis 2019, 377 , 332-342. https://doi.org/10.1016/j.jcat.2019.07.020
    23. X.Y. Liu, H. Yi, J.W. Che, G.Y. Liang. Phase, compositional, structural, and chemical stability of La2Ce2O7 after high temperature heat treatment. Ceramics International 2019, 45 (4) , 5030-5035. https://doi.org/10.1016/j.ceramint.2018.11.204
    24. Mauro Coduri, Stefano Checchia, Mariangela Longhi, Davide Ceresoli, Marco Scavini. Rare Earth Doped Ceria: The Complex Connection Between Structure and Properties. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00526
    25. Wenjun Zhu, Jianhui Jin, Xiao Chen, Chuang Li, Tonghua Wang, Chi-Wing Tsang, Changhai Liang. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion. Environmental Science and Pollution Research 2018, 25 (6) , 5643-5654. https://doi.org/10.1007/s11356-017-0934-x
    26. Mihaela Florea, Daniel Avram, Valentin Adrian Maraloiu, Bogdan Cojocaru, Carmen Tiseanu. Heavy doping of ceria by wet impregnation: a viable alternative to bulk doping approaches. Nanoscale 2018, 10 (37) , 18043-18054. https://doi.org/10.1039/C8NR03695K
    27. D.W. Wheeler. The oxidation behaviour of Ce-5 at.% La in air at ambient temperature. Solid State Ionics 2017, 313 , 22-31. https://doi.org/10.1016/j.ssi.2017.11.001
    28. Sean M. Collins, Susana Fernandez-Garcia, José J. Calvino, Paul A. Midgley. Sub-nanometer surface chemistry and orbital hybridization in lanthanum-doped ceria nano-catalysts revealed by 3D electron microscopy. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-05671-9
    29. Małgorzata A. Małecka. Characterization and thermal stability of Yb-doped ceria prepared by methods enabling control of the crystal morphology. CrystEngComm 2017, 19 (41) , 6199-6207. https://doi.org/10.1039/C7CE01095H
    30. Arya Shafiefarhood, Junshe Zhang, Luke Michael Neal, Fanxing Li. Rh-promoted mixed oxides for “low-temperature” methane partial oxidation in the absence of gaseous oxidants. Journal of Materials Chemistry A 2017, 5 (23) , 11930-11939. https://doi.org/10.1039/C7TA01398A
    31. Małgorzata A. Małecka. Ceria-Based Mixed Oxides - Beautiful Structures.. ChemistrySelect 2016, 1 (14) , 4246-4254. https://doi.org/10.1002/slct.201600845
    32. Xue HAN, Yafei WANG, Hongrui HAO, Ronggui GUO, Yunsheng HU, Wenquan JIANG. Ce1–xLaxOy solid solution prepared from mixed rare earth chloride for soot oxidation. Journal of Rare Earths 2016, 34 (6) , 590-596. https://doi.org/10.1016/S1002-0721(16)60066-2
    33. Dalia R. Abd El-Hafiz, Mohamed A. Ebiad. A study to develop nano-spray freeze dried Co/Ce–La catalyst for the production of hydrogen from bio-renewable feedstock. Journal of Natural Gas Science and Engineering 2015, 27 , 1158-1164. https://doi.org/10.1016/j.jngse.2015.09.060
    34. Matthew D. Krcha, Kerry M. Dooley, Michael J. Janik. Alkane reforming on partially sulfided CeO2 (1 1 1) surfaces. Journal of Catalysis 2015, 330 , 167-176. https://doi.org/10.1016/j.jcat.2015.07.002
    35. Olga Ravkina, Jan Räthel, Armin Feldhoff. Influence of different sintering techniques on microstructure and phase composition of oxygen-transporting ceramic. Journal of the European Ceramic Society 2015, 35 (10) , 2833-2843. https://doi.org/10.1016/j.jeurceramsoc.2015.03.039
    36. Praveen Kumar, Vimal Chandra Srivastava, Indra Mani Mishra. Synthesis and characterization of Ce–La oxides for the formation of dimethyl carbonate by transesterification of propylene carbonate. Catalysis Communications 2015, 60 , 27-31. https://doi.org/10.1016/j.catcom.2014.11.006
    37. Xavier Beaudoux, Matthieu Virot, Tony Chave, Gilles Leturcq, Nicolas Clavier, Nicolas Dacheux, Sergey I. Nikitenko. Catalytic dissolution of ceria–lanthanide mixed oxides provides environmentally friendly partitioning of lanthanides and platinum. Hydrometallurgy 2015, 151 , 107-115. https://doi.org/10.1016/j.hydromet.2014.11.011
    38. S. Finkeldei, F. Brandt, K. Rozov, A.A. Bukaemskiy, S. Neumeier, D. Bosbach. Dissolution of ZrO2 based pyrochlores in the acid pH range: A macroscopic and electron microscopy study. Applied Geochemistry 2014, 49 , 31-41. https://doi.org/10.1016/j.apgeochem.2014.06.014
    39. Denis Horlait, Richard Caraballo, Florent Lebreton, Christophe Jégou, Pascal Roussel, Thibaud Delahaye. Self-irradiation and oxidation effects on americium sesquioxide and Raman spectroscopy studies of americium oxides. Journal of Solid State Chemistry 2014, 217 , 159-168. https://doi.org/10.1016/j.jssc.2014.05.025
    40. Lidia Pino, Antonio Vita, Massimo Laganà, Vincenzo Recupero. Hydrogen from biogas: Catalytic tri-reforming process with Ni/LaCeO mixed oxides. Applied Catalysis B: Environmental 2014, 148-149 , 91-105. https://doi.org/10.1016/j.apcatb.2013.10.043
    41. D. Horlait, L. Claparede, F. Tocino, N. Clavier, J. Ravaux, S. Szenknect, R. Podor, N. Dacheux. Environmental SEM monitoring of Ce 1−x Ln x O 2−x/2 mixed-oxide microstructural evolution during dissolution. J. Mater. Chem. A 2014, 2 (15) , 5193-5203. https://doi.org/10.1039/C3TA14623E
    42. Danny E. P. Vanpoucke, Patrick Bultinck, Stefaan Cottenier, Veronique Van Speybroeck, Isabel Van Driessche. Aliovalent doping of CeO 2 : DFT study of oxidation state and vacancy effects. J. Mater. Chem. A 2014, 2 (33) , 13723-13737. https://doi.org/10.1039/C4TA02449D
    43. Xue Han, Yunbo Yu, Hong He, Jiaojiao Zhao, Yafei Wang. Oxidative steam reforming of ethanol over Rh catalyst supported on Ce1−xLaxOy (x = 0.3) solid solution prepared by urea co-precipitation method. Journal of Power Sources 2013, 238 , 57-64. https://doi.org/10.1016/j.jpowsour.2013.03.032
    44. Xue Han, Yunbo Yu, Hong He, Wenpo Shan. Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce–La solid solution. International Journal of Hydrogen Energy 2013, 38 (25) , 10293-10304. https://doi.org/10.1016/j.ijhydene.2013.05.137
    45. D. Horlait, N. Clavier, N. Dacheux, R. Cavalier, R. Podor. Synthesis and characterization of Th1−xLnxO2−x/2 mixed-oxides. Materials Research Bulletin 2012, 47 (12) , 4017-4025. https://doi.org/10.1016/j.materresbull.2012.08.068
    46. D. Horlait, F. Tocino, N. Clavier, N. Dacheux, S. Szenknect. Multiparametric study of Th1−xLnxO2−x/2 mixed oxides dissolution in nitric acid media. Journal of Nuclear Materials 2012, 429 (1-3) , 237-244. https://doi.org/10.1016/j.jnucmat.2012.05.047
    47. Małgorzata A. Małecka, Juan J. Delgado, Leszek Kępiński, Jose J. Calvino, Serafin Bernal, Ginesa Blanco, Xiaowei Chen. Structure transformations and reducibility of nanocrystalline Ce1−xYbxO2−(x/2) mixed oxides. Catalysis Today 2012, 187 (1) , 56-64. https://doi.org/10.1016/j.cattod.2012.01.004
    48. Vyshnavi Narayanan, Petra Lommens, Klaartje De Buysser, Danny E. P. Vanpoucke, Ruben Huehne, Leopoldo Molina, Gustaaf Van Tendeloo, Pascal Van Der Voort, Isabel Van Driessche. Aqueous CSD approach for the growth of novel, lattice-tuned LaxCe1−xOδ epitaxial layers. Journal of Materials Chemistry 2012, 22 (17) , 8476. https://doi.org/10.1039/c2jm15752g
    49. Novica Paunović, Zorana Dohčević-Mitrović, Rareş Scurtu, Sonja Aškrabić, Marija Prekajski, Branko Matović, Zoran V. Popović. Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals. Nanoscale 2012, 4 (17) , 5469. https://doi.org/10.1039/c2nr30799e
    50. Wei-ping GONG, Rui ZHANG, Zhong-sheng CHEN. Thermodynamic modelling and applications of Ce–La–O phase diagram. Transactions of Nonferrous Metals Society of China 2011, 21 (12) , 2671-2676. https://doi.org/10.1016/S1003-6326(11)61109-6
    51. Shuang Liang, Esteban Broitman, Yanan Wang, Anmin Cao, Götz Veser. Highly stable, mesoporous mixed lanthanum–cerium oxides with tailored structure and reducibility. Journal of Materials Science 2011, 46 (9) , 2928-2937. https://doi.org/10.1007/s10853-010-5168-y
    52. Manas Kumar Rath, Susant Kumar Acharya, Bok-Hee Kim, Ki Tae Lee, Byung Guk Ahn. Photoluminescence properties of sesquioxide doped ceria synthesized by modified sol–gel route. Materials Letters 2011, 65 (6) , 955-958. https://doi.org/10.1016/j.matlet.2011.01.004
    53. Bo Zhang, Dao Li, Xingyi Wang. Catalytic performance of La–Ce–O mixed oxide for combustion of methane. Catalysis Today 2010, 158 (3-4) , 348-353. https://doi.org/10.1016/j.cattod.2010.04.019
    54. C. Bueno-Ferrer, S. Parres-Esclapez, D. Lozano-Castelló, A. Bueno-López. Relationship between surface area and crystal size of pure and doped cerium oxides. Journal of Rare Earths 2010, 28 (5) , 647-653. https://doi.org/10.1016/S1002-0721(09)60172-1
    55. A. Papavasiliou, A. Tsetsekou, V. Matsouka, M. Konsolakis, I.V. Yentekakis. An investigation of the role of Zr and La dopants into Ce1−−Zr La O enriched γ-Al2O3 TWC washcoats. Applied Catalysis A: General 2010, 382 (1) , 73-84. https://doi.org/10.1016/j.apcata.2010.04.025
    56. Małgorzata A. Małecka, Ulrich Burkhardt, Dariusz Kaczorowski, Marcus P. Schmidt, Daniel Goran, Leszek Kępiński. Structure and phase stability of nanocrystalline Ce1−x Ln x O2−x/2−δ (Ln = Yb, Lu) in oxidizing and reducing atmosphere. Journal of Nanoparticle Research 2009, 11 (8) , 2113-2124. https://doi.org/10.1007/s11051-008-9577-7
    57. Włodzimierz Miśta, Małgorzata A. Małecka, Leszek Kępiński. Redox behavior of nanocrystalline Ce1−xLuxO2−x/2 mixed oxide obtained by microemulsion method. Applied Catalysis A: General 2009, 368 (1-2) , 71-78. https://doi.org/10.1016/j.apcata.2009.08.011
    58. Małgorzata A. Małecka, Leszek Kępiński, Mirosław Mączka. Structure and phase composition of nanocrystalline Ce1−xLuxO2−y. Journal of Solid State Chemistry 2008, 181 (9) , 2306-2312. https://doi.org/10.1016/j.jssc.2008.05.033

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect