ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Catalytic Oxidation Activity of Pt3O4 Surfaces and Thin Films

View Author Information
Institut für Werkstoffwissenschaft, Technische Universität Dresden, Hallwachsstrasse 3, 01069 Dresden, Germany, Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom, and Fraunhofer Institut für Werkstoffmechanik, Wöhlerstrasse 11, 79108 Freiburg, Germany
Cite this: J. Phys. Chem. B 2006, 110, 30, 14860–14869
Publication Date (Web):July 6, 2006
https://doi.org/10.1021/jp063281r
Copyright © 2006 American Chemical Society

    Article Views

    2167

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (361 KB)
    Supporting Info (1)»

    Abstract

    The catalytic oxidation activity of platinum particles in automobile catalysts is thought to originate from the presence of highly reactive superficial oxide phases which form under oxygen-rich reaction conditions. Here we study the thermodynamic stability of platinum oxide surfaces and thin films and their reactivities toward oxidation of carbon compounds by means of first-principles atomistic thermodynamics calculations and molecular dynamics simulations based on density functional theory. On the Pt(111) surface the most stable superficial oxide phase is found to be a thin layer of α-PtO2, which appears not to be reactive toward either methane dissociation or carbon monoxide oxidation. A PtO-like structure is most stable on the Pt(100) surface at oxygen coverages of one monolayer, while the formation of a coherent and stress-free Pt3O4 film is favored at higher coverages. Bulk Pt3O4 is found to be thermodynamically stable in a region around 900 K at atmospheric pressure. The computed net driving force for the dissociation of methane on the Pt3O4(100) surface is much larger than that on all other metallic and oxide surfaces investigated. Moreover, the enthalpy barrier for the adsorption of CO molecules on oxygen atoms of this surface is as low as 0.34 eV, and desorption of CO2 is observed to occur without any appreciable energy barrier in molecular dynamics simulations. These results, combined, indicate a high catalytic oxidation activity of Pt3O4 phases that can be relevant in the contexts of Pt-based automobile catalysts and gas sensors.

    *

     Address correspondence to this author. E-mail:  nicola.seriani@ univie.ac.at.

     Technische Universität Dresden.

     Present address:  Institut für Materialphysik, Universität Wien, Sensengasse 8, A-1090 Wien, Austria.

     University of Cambridge.

    §

     Fraunhofer Institut für Werkstoffmechanik.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Complete ref 39. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 128 publications.

    1. Yuto Nakajima, M. Abdul Latif, Toshiaki Nagata, Keijiro Ohshimo, Fuminori Misaizu. Size-Dependent Geometrical Structures of Platinum Oxide Cluster Cations Studied by Ion Mobility–Mass Spectrometry. The Journal of Physical Chemistry A 2023, 127 (16) , 3570-3576. https://doi.org/10.1021/acs.jpca.2c09017
    2. Haefa Mansour, Enrique Iglesia. Theoretical and Experimental Assessments of Elementary Steps and Bound Intermediates in Catalytic H2–O2 Reactions on Dispersed Pt Nanoparticles. The Journal of Physical Chemistry C 2023, 127 (9) , 4553-4569. https://doi.org/10.1021/acs.jpcc.2c08826
    3. Jiayan Xu, Wenbo Xie, Yulan Han, P. Hu. Atomistic Insights into the Oxidation of Flat and Stepped Platinum Surfaces Using Large-Scale Machine Learning Potential-Based Grand-Canonical Monte Carlo. ACS Catalysis 2022, 12 (24) , 14812-14824. https://doi.org/10.1021/acscatal.2c03976
    4. Amirreza Valizadeh, Pavlo Aleshkevych, Mohammad Mahdi Najafpour. Role of Pt and PtO2 in the Oxygen-Evolution Reaction in the Presence of Iron under Alkaline Conditions. Inorganic Chemistry 2022, 61 (1) , 613-621. https://doi.org/10.1021/acs.inorgchem.1c03331
    5. Zhiyun Tan, Zhenxing Fang, Baihai Li, Youchang Yang. First-Principles Study of the Ferromagnetic Properties of Cr2CO2 and Cr2NO2 MXenes. ACS Omega 2020, 5 (40) , 25848-25853. https://doi.org/10.1021/acsomega.0c03176
    6. Elizaveta A. Derevyannikova, Tatyana Yu Kardash, Andrey I. Stadnichenko, Olga A. Stonkus, Elena M. Slavinskaya, Valery A. Svetlichnyi, Andrei I. Boronin. Structural Insight into Strong Pt–CeO2 Interaction: From Single Pt Atoms to PtOx Clusters. The Journal of Physical Chemistry C 2019, 123 (2) , 1320-1334. https://doi.org/10.1021/acs.jpcc.8b11009
    7. Konstantin Klyukin, Alexandra Zagalskaya, Vitaly Alexandrov. Ab Initio Thermodynamics of Iridium Surface Oxidation and Oxygen Evolution Reaction. The Journal of Physical Chemistry C 2018, 122 (51) , 29350-29358. https://doi.org/10.1021/acs.jpcc.8b09868
    8. Ritubarna Banerjee, Donna A. Chen, Stavros Karakalos, Marie-Laure C. Piedboeuf, Nathalie Job, John R. Regalbuto. Ambient Oxidation of Ultrasmall Platinum Nanoparticles on Microporous Carbon Catalyst Supports. ACS Applied Nano Materials 2018, 1 (10) , 5876-5884. https://doi.org/10.1021/acsanm.8b01548
    9. Victor Meng’wa, Nicholas Makau, George Amolo, Sandro Scandolo, Nicola Seriani. Density Functional Theory Study of Water Photo-Oxidation at Copper Oxide Nanostructures on the Anatase (101) Surface. The Journal of Physical Chemistry C 2018, 122 (29) , 16765-16771. https://doi.org/10.1021/acs.jpcc.8b03671
    10. A. S. M. Jonayat, Adri C. T. van Duin, and Michael J. Janik . Ab Initio Thermodynamic Investigation of Monolayer Stability of Multicomponent Metal Oxides: MxOy/ZnO(0001) and MxOy/TiO2(110) (M = Pd, Ru, Ni, Pt, Au, Zn). The Journal of Physical Chemistry C 2017, 121 (39) , 21439-21448. https://doi.org/10.1021/acs.jpcc.7b06521
    11. Victor Meng’wa, Nicholas Makau, George Amolo, Sandro Scandolo, and Nicola Seriani . Ab Initio Simulations of Copper Oxide Nanowires and Clusters on TiO2 (101) Anatase Surface. The Journal of Physical Chemistry C 2017, 121 (37) , 20359-20365. https://doi.org/10.1021/acs.jpcc.7b06681
    12. Ian T. McCrum, Michael A. Hickner, and Michael J. Janik . First-Principles Calculation of Pt Surface Energies in an Electrochemical Environment: Thermodynamic Driving Forces for Surface Faceting and Nanoparticle Reconstruction. Langmuir 2017, 33 (28) , 7043-7052. https://doi.org/10.1021/acs.langmuir.7b01530
    13. Jun Yamagishi, Ken Miyajima, Satoshi Kudoh, and Fumitaka Mafuné . Catalytic Decomposition of NO by Cationic Platinum Oxide Cluster Pt3O4+. The Journal of Physical Chemistry Letters 2017, 8 (10) , 2143-2147. https://doi.org/10.1021/acs.jpclett.7b00591
    14. Bai-Hai Li, Yun Lin, Jian-Lin Wang, Xue Zhang, Yun-Rui Wang, Yu Jiang, Ting-Shuai Li, Li-Min Liu, Liang Chen, Wan-Li Zhang, and Yan-Rong Li . Formation of New Phases to Improve the Visible-Light Photocatalytic Activity of Tio2 (B) Via Introducing Alien Elements. The Journal of Physical Chemistry C 2017, 121 (1) , 52-59. https://doi.org/10.1021/acs.jpcc.6b07509
    15. Viktoriia A. Saveleva, Vasiliki Papaefthimiou, Maria K. Daletou, Won H. Doh, Corinne Ulhaq-Bouillet, Morgane Diebold, Spyridon Zafeiratos, and Elena R. Savinova . Operando Near Ambient Pressure XPS (NAP-XPS) Study of the Pt Electrochemical Oxidation in H2O and H2O/O2 Ambients. The Journal of Physical Chemistry C 2016, 120 (29) , 15930-15940. https://doi.org/10.1021/acs.jpcc.5b12410
    16. Lili Gai, Yun Kyung Shin, Muralikrishna Raju, Adri C. T. van Duin, and Sumathy Raman . Atomistic Adsorption of Oxygen and Hydrogen on Platinum Catalysts by Hybrid Grand Canonical Monte Carlo/Reactive Molecular Dynamics. The Journal of Physical Chemistry C 2016, 120 (18) , 9780-9793. https://doi.org/10.1021/acs.jpcc.6b01064
    17. S. Samaneh Ataei, M. Reza Mohammadizadeh, Nicola Seriani. Ab Initio Simulation of the Effects of Hydrogen Concentration on Anatase TiO2. The Journal of Physical Chemistry C 2016, 120 (16) , 8421-8427. https://doi.org/10.1021/acs.jpcc.6b00019
    18. Uta Hejral, Alina Vlad, Philipp Nolte, and Andreas Stierle . In Situ Oxidation Study of Pt Nanoparticles on MgO(001). The Journal of Physical Chemistry C 2013, 117 (39) , 19955-19966. https://doi.org/10.1021/jp404698k
    19. Lindsay R. Merte, Mahdi Ahmadi, Farzad Behafarid, Luis K. Ono, Estephania Lira, Jeronimo Matos, Long Li, Judith C. Yang, and Beatriz Roldan Cuenya . Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt Nanoparticles. ACS Catalysis 2013, 3 (7) , 1460-1468. https://doi.org/10.1021/cs400234h
    20. Jason F. Weaver . Surface Chemistry of Late Transition Metal Oxides. Chemical Reviews 2013, 113 (6) , 4164-4215. https://doi.org/10.1021/cr300323w
    21. A. Farkas, K. Zalewska-Wierzbicka, C. Bachmann, J. Goritzka, D. Langsdorf, O. Balmes, J. Janek, and H. Over . High Pressure Carbon Monoxide Oxidation over Platinum (111). The Journal of Physical Chemistry C 2013, 117 (19) , 9932-9942. https://doi.org/10.1021/jp401867g
    22. Soeren Porsgaard, Lindsay R. Merte, Luis K. Ono, Farzad Behafarid, Jeronimo Matos, Stig Helveg, Miquel Salmeron, Beatriz Roldan Cuenya, and Flemming Besenbacher . Stability of Platinum Nanoparticles Supported on SiO2/Si(111): A High-Pressure X-ray Photoelectron Spectroscopy Study. ACS Nano 2012, 6 (12) , 10743-10749. https://doi.org/10.1021/nn3040167
    23. Nicola Seriani . Sodium Promoter Inducing a Phase Change in a Palladium Catalyst. The Journal of Physical Chemistry C 2012, 116 (43) , 22974-22979. https://doi.org/10.1021/jp308051v
    24. David Horwat, Moukrane Dehmas, Alejandro Gutiérrez, Jean-François Pierson, André Anders, Flavio Soldera, and José-Luis Endrino . Efficient, Low Cost Synthesis of Sodium Platinum Bronze NaxPt3O4. Chemistry of Materials 2012, 24 (13) , 2429-2432. https://doi.org/10.1021/cm301179x
    25. Herbert Over. Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews 2012, 112 (6) , 3356-3426. https://doi.org/10.1021/cr200247n
    26. Zhongwei Zhu, Franklin (Feng) Tao, Fan Zheng, Rui Chang, Yimin Li, Lars Heinke, Zhi Liu, Miquel Salmeron, and Gabor A. Somorjai . Formation of Nanometer-Sized Surface Platinum Oxide Clusters on a Stepped Pt(557) Single Crystal Surface Induced by Oxygen: A High-Pressure STM and Ambient-Pressure XPS Study. Nano Letters 2012, 12 (3) , 1491-1497. https://doi.org/10.1021/nl204242s
    27. H. Pöpke, E. Mutoro, B. Luerssen, and J. Janek . Oxidation of Platinum in the Epitaxial Model System Pt(111)/YSZ(111): Quantitative Analysis of an Electrochemically Driven PtOx Formation. The Journal of Physical Chemistry C 2012, 116 (2) , 1912-1920. https://doi.org/10.1021/jp209645t
    28. Luis K. Ono, Jason R. Croy, Helge Heinrich, and Beatriz Roldan Cuenya . Oxygen Chemisorption, Formation, and Thermal Stability of Pt Oxides on Pt Nanoparticles Supported on SiO2/Si(001): Size Effects. The Journal of Physical Chemistry C 2011, 115 (34) , 16856-16866. https://doi.org/10.1021/jp204743q
    29. Kristof Paredis, Luis K. Ono, Simon Mostafa, Long Li, Zhongfan Zhang, Judith C. Yang, Laura Barrio, Anatoly I. Frenkel, and Beatriz Roldan Cuenya . Structure, Chemical Composition, And Reactivity Correlations during the In Situ Oxidation of 2-Propanol. Journal of the American Chemical Society 2011, 133 (17) , 6728-6735. https://doi.org/10.1021/ja200178f
    30. L. K. Ono, B. Yuan, H. Heinrich, and B. Roldan Cuenya . Formation and Thermal Stability of Platinum Oxides on Size-Selected Platinum Nanoparticles: Support Effects. The Journal of Physical Chemistry C 2010, 114 (50) , 22119-22133. https://doi.org/10.1021/jp1086703
    31. Lei Tang, Xiaoqian Li, Robert C. Cammarata, Cody Friesen and Karl Sieradzki . Electrochemical Stability of Elemental Metal Nanoparticles. Journal of the American Chemical Society 2010, 132 (33) , 11722-11726. https://doi.org/10.1021/ja104421t
    32. Arezoo Dianat, Nicola Seriani, Lucio Colombi Ciacchi, Wolfgang Pompe, Gianaurelio Cuniberti and Manfred Bobeth . Dissociative Adsorption of Methane on Surface Oxide Structures of Pd−Pt Alloys. The Journal of Physical Chemistry C 2009, 113 (50) , 21097-21105. https://doi.org/10.1021/jp905689t
    33. Hai-Feng Wang, Yang-Long Guo, Guanzhong Lu and P. Hu . NO Oxidation on Platinum Group Metals Oxides: First Principles Calculations Combined with Microkinetic Analysis. The Journal of Physical Chemistry C 2009, 113 (43) , 18746-18752. https://doi.org/10.1021/jp904371f
    34. Florian Klasovsky, Jens Hohmeyer, Angelika Brückner, Marcus Bonifer, Jürgen Arras, Martin Steffan, Martin Lucas, Jörg Radnik, Christina Roth and Peter Claus. Catalytic and Mechanistic Investigation of Polyaniline Supported PtO2 Nanoparticles: A Combined in situ/operando EPR, DRIFTS, and EXAFS Study. The Journal of Physical Chemistry C 2008, 112 (49) , 19555-19559. https://doi.org/10.1021/jp805970e
    35. Jani Hämäläinen, Frans Munnik, Mikko Ritala and Markku Leskelä . Atomic Layer Deposition of Platinum Oxide and Metallic Platinum Thin Films from Pt(acac)2 and Ozone. Chemistry of Materials 2008, 20 (21) , 6840-6846. https://doi.org/10.1021/cm801187t
    36. Arezoo Dianat, Nicola Seriani, Manfred Bobeth, Wolfgang Pompe and Lucio Colombi Ciacchi. DFT Study of the Thermodynamic Stability of Pd−Pt Bulk Oxide Phases. The Journal of Physical Chemistry C 2008, 112 (35) , 13623-13628. https://doi.org/10.1021/jp8035742
    37. Rachel B. Getman, Ye Xu and William F. Schneider . Thermodynamics of Environment-Dependent Oxygen Chemisorption on Pt(111). The Journal of Physical Chemistry C 2008, 112 (26) , 9559-9572. https://doi.org/10.1021/jp800905a
    38. Hakim Iddir,, Vladimir Komanicky,, Serdar Öǧüt,, Hoydoo You, and, Peter Zapol. Shape of Platinum Nanoparticles Supported on SrTiO3:  Experiment and Theory. The Journal of Physical Chemistry C 2007, 111 (40) , 14782-14789. https://doi.org/10.1021/jp073041r
    39. Hamid Sharifi, Prabhu U. Arumugam, Collin D. Wick. The effect of Pt and IrO2 interlayers on enhancing the adhesion of Ti/SnO2 interface: A first principles density functional theory study. Applied Surface Science 2023, 639 , 158248. https://doi.org/10.1016/j.apsusc.2023.158248
    40. Jin Goo Lee. NaNO3-mediated synthesis of Pt-doped titanate perovskites for oxygen-reduction reactions in acidic media. Journal of Sol-Gel Science and Technology 2023, 108 (1) , 120-126. https://doi.org/10.1007/s10971-023-06188-6
    41. Nair Afijith Ravindranath, Edward Prabu Amaladass, Sourav Pan, Ramanathaswamy Pandian, S. Ganesamoorthy, K. I. Gnanasekar. Structural, Raman, four probe conductivity, Hall and magnetoresistance studies on phase pure tetragonal PtO stabilized as thin films. Applied Physics A 2023, 129 (9) https://doi.org/10.1007/s00339-023-06884-8
    42. Timo Fuchs, Valentín Briega‐Martos, Jakub Drnec, Natalie Stubb, Isaac Martens, Federico Calle‐Vallejo, David A. Harrington, Serhiy Cherevko, Olaf M. Magnussen. Anodic and Cathodic Platinum Dissolution Processes Involve Different Oxide Species. Angewandte Chemie 2023, 135 (34) https://doi.org/10.1002/ange.202304293
    43. Timo Fuchs, Valentín Briega‐Martos, Jakub Drnec, Natalie Stubb, Isaac Martens, Federico Calle‐Vallejo, David A. Harrington, Serhiy Cherevko, Olaf M. Magnussen. Anodic and Cathodic Platinum Dissolution Processes Involve Different Oxide Species. Angewandte Chemie International Edition 2023, 62 (34) https://doi.org/10.1002/anie.202304293
    44. Maria C. Vlachou, Huw R. Marchbank, Emily Brooke, Amy Kolpin. Challenges and Opportunities for Platinum in the Modern Three-Way Catalyst : Flexibility and performance in gasoline emissions control. Johnson Matthey Technology Review 2023, 67 (2) , 219-229. https://doi.org/10.1595/205651323X16759335257118
    45. Srabanti Ghosh, Neha Verma, Rajakumar Ananthakrishnan. Efficacy of Bismuth Oxyhalides (BiOX-based) Materials for Enhanced Photocatalysis. 2023, 103-119. https://doi.org/10.1039/9781839167768-00103
    46. Atsushi Takagaki, Yuta Tsuji, Tatsuya Yamasaki, Sun Kim, Tetsuya Shishido, Tatsumi Ishihara, Kazunari Yoshizawa. Low-temperature selective oxidation of methane to methanol over a platinum oxide. Chemical Communications 2023, 59 (3) , 286-289. https://doi.org/10.1039/D2CC05351A
    47. Leon Jacobse, Vedran Vonk, Ian T. McCrum, Christoph Seitz, Marc T.M. Koper, Marcel J. Rost, Andreas Stierle. Electrochemical oxidation of Pt(111) beyond the place-exchange model. Electrochimica Acta 2022, 407 , 139881. https://doi.org/10.1016/j.electacta.2022.139881
    48. Shoji Iguchi, Masashi Kataoka, Ryosuke Hoshino, Ichiro Yamanaka. Direct epoxidation of propylene with water at a PtO x anode using a solid-polymer-electrolyte electrolysis cell. Catalysis Science & Technology 2022, 12 (2) , 469-473. https://doi.org/10.1039/D1CY01888D
    49. P. A. Delcompare-Rodriguez, N. Seriani. Ultrathin space charge layer in hematite photoelectrodes: A theoretical investigation. The Journal of Chemical Physics 2021, 155 (11) https://doi.org/10.1063/5.0060417
    50. Aleksandar Kondinski. Metal–metal bonds in polyoxometalate chemistry. Nanoscale 2021, 13 (32) , 13574-13592. https://doi.org/10.1039/D1NR02357H
    51. Stephan Steinhauer, Eva Lackner, Florentyna Sosada-Ludwikowska, Vidyadhar Singh, Johanna Krainer, Robert Wimmer-Teubenbacher, Panagiotis Grammatikopoulos, Anton Köck, Mukhles Sowwan. Atomic-scale structure and chemical sensing application of ultrasmall size-selected Pt nanoparticles supported on SnO 2. Materials Advances 2020, 1 (9) , 3200-3207. https://doi.org/10.1039/D0MA00244E
    52. Yunjin Ao, Salah Laghrouche, Daniel Depernet, Kui Chen. Lifetime prediction for proton exchange membrane fuel cell under real driving cycles based on platinum particle dissolve model. International Journal of Hydrogen Energy 2020, 45 (56) , 32388-32401. https://doi.org/10.1016/j.ijhydene.2020.08.188
    53. Asiye Shokri, Ahmad Yazdani, Kourosh Rahimi. Tunable electronic and optical properties of g-ZnO/α-PtO2 van der Waals heterostructure: A density functional theory study. Materials Chemistry and Physics 2020, 255 , 123617. https://doi.org/10.1016/j.matchemphys.2020.123617
    54. Tao Yan, Pratap M. Rao, N. Aaron Deskins. Stability and electronic properties of edges of SnS 2 . Physical Review B 2020, 102 (15) https://doi.org/10.1103/PhysRevB.102.155306
    55. Sihang Liu, Jie Zong, Zhi-Jian Zhao, Jinlong Gong. Exploring the initial oxidation of Pt, Pt3Ni, Pt3Au (111) surfaces: a genetic algorithm based global optimization with density functional theory. Green Chemical Engineering 2020, 1 (1) , 56-62. https://doi.org/10.1016/j.gce.2020.09.006
    56. Jianping Sun, Ting Li, Xu Li, Jiang Pan, Xiaopeng Hao, Tianmeng Zhu. Investigation of the thermal stability of PtO2 and dislocations in Pt wire. Journal of Alloys and Compounds 2020, 831 , 154871. https://doi.org/10.1016/j.jallcom.2020.154871
    57. Quan Chen, Yong Yang. Ab initio thermodynamics studies on the phase stability of PtO2 under ambient and high-pressure conditions. Computational Materials Science 2020, 180 , 109708. https://doi.org/10.1016/j.commatsci.2020.109708
    58. Andrey Stadnichenko, Dmitry Svintsitskiy, Lidiya Kibis, Elizaveta Fedorova, Olga Stonkus, Elena Slavinskaya, Ivan Lapin, Elena Fakhrutdinova, Valery Svetlichnyi, Anatoly Romanenko, Dmitry Doronkin, Vasyl Marchuk, Jan-Dierk Grunwaldt, Andrei Boronin. Influence of Titania Synthesized by Pulsed Laser Ablation on the State of Platinum during Ammonia Oxidation. Applied Sciences 2020, 10 (14) , 4699. https://doi.org/10.3390/app10144699
    59. Priyamvada Jadaun, Leonard F. Register, Sanjay K. Banerjee. Rational design principles for giant spin Hall effect in 5d -transition metal oxides. Proceedings of the National Academy of Sciences 2020, 117 (22) , 11878-11886. https://doi.org/10.1073/pnas.1922556117
    60. Jaekyoung Lee, Eun Jeong Jang, Dong Gun Oh, János Szanyi, Ja Hun Kwak. Morphology and size of Pt on Al2O3: The role of specific metal-support interactions between Pt and Al2O3. Journal of Catalysis 2020, 385 , 204-212. https://doi.org/10.1016/j.jcat.2020.03.019
    61. Björn Kirchhoff, Laura Braunwarth, Christoph Jung, Hannes Jónsson, Donato Fantauzzi, Timo Jacob. Simulations of the Oxidation and Degradation of Platinum Electrocatalysts. Small 2020, 16 (5) https://doi.org/10.1002/smll.201905159
    62. Jing Zhu, Sulei Hu, Zhenhua Zeng, Wei-Xue Li. First-principles investigation of electrochemical dissolution of Pt nanoparticles and kinetic simulation. The Journal of Chemical Physics 2019, 151 (23) https://doi.org/10.1063/1.5129631
    63. Hideaki Sasaki, Haruka Matsushita, Keisuke Sakamoto, Tatsuaki Sakamoto, Masafumi Maeda. Formation of Pt3O4 particles on PtO2–CeO2 solid solution. Journal of Physics and Chemistry of Solids 2019, 135 , 109097. https://doi.org/10.1016/j.jpcs.2019.109097
    64. Baihai Li, Haoran Guo, Yunrui Wang, Wenxu Zhang, Qiuju Zhang, Liang Chen, Xiaoli Fan, Wanli Zhang, Yanrong Li, Woon-Ming Lau. Asymmetric MXene/monolayer transition metal dichalcogenide heterostructures for functional applications. npj Computational Materials 2019, 5 (1) https://doi.org/10.1038/s41524-019-0155-6
    65. Jian Zheng, Michael Busch, Luca Artiglia, Tomáš Skála, Jan Rossmeisl, Stefano Agnoli. Multiple Reaction Paths for CO Oxidation on a 2D SnO x Nano‐Oxide on the Pt(110) Surface: Intrinsic Reactivity and Spillover. Advanced Materials Interfaces 2019, 6 (6) https://doi.org/10.1002/admi.201801874
    66. Alexandr Yu. Stakheev, Dmitry A. Bokarev, Igor P. Prosvirin, Valerii I. Bukhtiyarov. Particle-Size Effect in Catalytic Oxidation Over Pt Nanoparticles. 2019, 295-320. https://doi.org/10.1016/B978-0-12-814807-5.00008-5
    67. Andrey I. Stadnichenko, Valerii V. Muravev, Sergey V. Koscheev, Vladimir I. Zaikovskii, Hristiyan A. Aleksandrov, Konstantin M. Neyman, Andrei I. Boronin. Study of active surface centers of Pt/CeO2 catalysts prepared using radio-frequency plasma sputtering technique. Surface Science 2019, 679 , 273-283. https://doi.org/10.1016/j.susc.2018.10.002
    68. Sara A. H. Abass, Nicola Seriani. Structural and Electronic Properties of Na 2 Ti 3 O 7 and H 2 Ti 3 O 7. physica status solidi (b) 2018, 255 (8) https://doi.org/10.1002/pssb.201700612
    69. Sylwia Owczarek, Sten V. Lambeets, Cédric Barroo, Robert Bryl, Leszek Markowski, Thierry Visart de Bocarmé. Oxygen Assisted Morphological Changes of Pt Nanosized Crystals. Topics in Catalysis 2018, 61 (12-13) , 1313-1322. https://doi.org/10.1007/s11244-018-0984-4
    70. Baihai Li, Jianlin Wang, Haoran Guo, Lei Li, Qiuju Zhang. Theoretical study of the rutile based semiconductor with visible-light responsive photocatalytic activity for water splitting. International Journal of Hydrogen Energy 2018, 43 (12) , 6131-6137. https://doi.org/10.1016/j.ijhydene.2018.01.196
    71. Shivam Kansara, Sanjeev K. Gupta, Yogesh Sonvane, Kirill A. Nekrasov, Natalia V. Kichigina. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory. Journal of Electronic Materials 2018, 47 (2) , 1293-1301. https://doi.org/10.1007/s11664-017-5912-z
    72. Matthijs A. van Spronsen, Joost W. M. Frenken, Irene M. N. Groot. Observing the oxidation of platinum. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00643-z
    73. Attila Farkas, Donato Fantauzzi, Jonathan E. Mueller, Tianwei Zhu, Christian Papp, Hans-Peter Steinrück, Timo Jacob. On the platinum-oxide formation under gas-phase and electrochemical conditions. Journal of Electron Spectroscopy and Related Phenomena 2017, 221 , 44-57. https://doi.org/10.1016/j.elspec.2017.06.005
    74. Chun Tang, Zhi Liang Zhao, Jie Chen, Bo Li, Liang Chen, Chang Ming Li. Se-Ni(OH)2-shelled vertically oriented NiSe nanowires as a superior electrocatalyst toward urea oxidation reaction of fuel cells. Electrochimica Acta 2017, 248 , 243-249. https://doi.org/10.1016/j.electacta.2017.06.159
    75. Changwei Pan, Ruolan Cheng, Adrian Birzu, Jiaping Yang, Lin Ren, Hamilton Varela, Qingyu Gao. Periodic Transition between Breathing Spots and Synchronous Sulfur Deposition/Dissolution in Transpassive Region of the Electro‐Oxidation of Sulfide on Platinum. ChemElectroChem 2017, 4 (8) , 2075-2078. https://doi.org/10.1002/celc.201700279
    76. Rushap Khazanchi, Divakar Reddy, Divesh Bhatia. Kinetic model for the reversible deactivation of a Pt/Al2O3 catalyst during NO oxidation. Chemical Engineering Journal 2017, 314 , 139-151. https://doi.org/10.1016/j.cej.2016.12.042
    77. Donato Fantauzzi, Sandra Krick Calderón, Jonathan E. Mueller, Mathias Grabau, Christian Papp, Hans‐Peter Steinrück, Thomas P. Senftle, Adri C. T. van Duin, Timo Jacob. Growth of Stable Surface Oxides on Pt(111) at Near‐Ambient Pressures. Angewandte Chemie 2017, 129 (10) , 2638-2642. https://doi.org/10.1002/ange.201609317
    78. Donato Fantauzzi, Sandra Krick Calderón, Jonathan E. Mueller, Mathias Grabau, Christian Papp, Hans‐Peter Steinrück, Thomas P. Senftle, Adri C. T. van Duin, Timo Jacob. Growth of Stable Surface Oxides on Pt(111) at Near‐Ambient Pressures. Angewandte Chemie International Edition 2017, 56 (10) , 2594-2598. https://doi.org/10.1002/anie.201609317
    79. Fiseha Tesfaye, Dmitry Sukhomlinov, Daniel Lindberg, Pekka Taskinen, Guven Akdogan. Thermal stabilities and properties of equilibrium phases in the Pt-Te-O system. The Journal of Chemical Thermodynamics 2017, 106 , 47-58. https://doi.org/10.1016/j.jct.2016.11.016
    80. Eduardo Solano, Jolien Dendooven, Ranjith K. Ramachandran, Kevin Van de Kerckhove, Thomas Dobbelaere, Daniel Hermida-Merino, Christophe Detavernier. Key role of surface oxidation and reduction processes in the coarsening of Pt nanoparticles. Nanoscale 2017, 9 (35) , 13159-13170. https://doi.org/10.1039/C7NR04278G
    81. A. V. Kalinkin, M. Yu. Smirnov, V. I. Bukhtiyarov. Oxidation of a platinum foil with nitrogen dioxide. Kinetics and Catalysis 2016, 57 (6) , 826-830. https://doi.org/10.1134/S0023158416060069
    82. Casey P. O’Brien, Glen R. Jenness, Hong Dong, Dionisios G. Vlachos, Ivan C. Lee. Deactivation of Pt/Al2O3 during propane oxidation at low temperatures: Kinetic regimes and platinum oxide formation. Journal of Catalysis 2016, 337 , 122-132. https://doi.org/10.1016/j.jcat.2016.02.012
    83. Wenjie Qi, Jingyu Ran, Ruirui Wang, Xuesen Du, Jun Shi, Juntian Niu, Peng Zhang, Mingchu Ran. Kinetic consequences of methane combustion on Pd, Pt and Pd–Pt catalysts. RSC Advances 2016, 6 (111) , 109834-109845. https://doi.org/10.1039/C6RA21150J
    84. Dmitry A. Svintsitskiy, Lidiya S. Kibis, Andrey I. Stadnichenko, Sergei V. Koscheev, Vladimir I. Zaikovskii, Andrei I. Boronin. Highly Oxidized Platinum Nanoparticles Prepared through Radio‐Frequency Sputtering: Thermal Stability and Reaction Probability towards CO. ChemPhysChem 2015, 16 (15) , 3318-3324. https://doi.org/10.1002/cphc.201500546
    85. Rutger A. van Santen, Ionut Tranca, Emiel J.M. Hensen. Theory of surface chemistry and reactivity of reducible oxides. Catalysis Today 2015, 244 , 63-84. https://doi.org/10.1016/j.cattod.2014.07.009
    86. K. V. Tatarenko, A. V. Suzdaltsev, A. P. Khramov, Yu. P. Zaikov. Anode process on platinum in CaCl 2 -CaO-based melt. Chimica Techno Acta 2014, 1 (3) , 87-92. https://doi.org/10.15826/chimtech.2014.1.3.717
    87. I. Jursic, S. Rudtsch. Thermal Stability of $$\beta $$ β -PtO $$_2$$ 2 Investigated by Simultaneous Thermal Analysis and Its Influence on Platinum Resistance Thermometry. International Journal of Thermophysics 2014, 35 (6-7) , 1055-1066. https://doi.org/10.1007/s10765-014-1695-0
    88. Donato Fantauzzi, Jochen Bandlow, Lehel Sabo, Jonathan E. Mueller, Adri C. T. van Duin, Timo Jacob. Development of a ReaxFF potential for Pt–O systems describing the energetics and dynamics of Pt-oxide formation. Phys. Chem. Chem. Phys. 2014, 16 (42) , 23118-23133. https://doi.org/10.1039/C4CP03111C
    89. Xue Zhang, Baihai Li, Jianlin Wang, Yu Yuan, Qiujie Zhang, Zhanzhong Gao, Li-Min Liu, Liang Chen. The stabilities and electronic structures of single-layer bismuth oxyhalides for photocatalytic water splitting. Phys. Chem. Chem. Phys. 2014, 16 (47) , 25854-25861. https://doi.org/10.1039/C4CP03166K
    90. T. Kaewmaraya, M. Ramzan, W. Sun, M. Sagynbaeva, Rajeev Ahuja. Atomistic study of promising catalyst and electrode material for memory capacitors: Platinum oxides. Computational Materials Science 2013, 79 , 804-810. https://doi.org/10.1016/j.commatsci.2013.07.021
    91. H. Pöpke, E. Mutoro, B. Luerßen, J. Janek. Oxygen reduction and oxidation at epitaxial model-type Pt(O2)/YSZ electrodes – On the role of PtOx formation on activation, passivation, and charge transfer. Catalysis Today 2013, 202 , 12-19. https://doi.org/10.1016/j.cattod.2012.02.058
    92. Vladimir Tripković, Isotta Cerri, Tetsuo Nagami, Thomas Bligaard, Jan Rossmeisl. Platinum redispersion on metal oxides in low temperature fuel cells. Physical Chemistry Chemical Physics 2013, 15 (9) , 3279. https://doi.org/10.1039/c2cp43248j
    93. Arezoo Dianat, Nicola Seriani, Manfred Bobeth, Gianaurelio Cuniberti. Effects of Al-doping on the properties of Li–Mn–Ni–O cathode materials for Li-ion batteries: an ab initio study. Journal of Materials Chemistry A 2013, 1 (32) , 9273. https://doi.org/10.1039/c3ta11598d
    94. Daniel Hennessy, Vladimir Komanicky, Hakim Iddir, Michael S. Pierce, Andreas Menzel, Kee-Chul Chang, Andi Barbour, Peter Zapol, Hoydoo You. Epitaxial oxide bilayer on Pt (001) nanofacets. The Journal of Chemical Physics 2012, 136 (4) https://doi.org/10.1063/1.3678858
    95. H. Pöpke, E. Mutoro, C. Raiß, B. Luerßen, M. Amati, M.K. Abyaneh, L. Gregoratti, J. Janek. The role of platinum oxide in the electrode system Pt(O2)/yttria-stabilized zirconia. Electrochimica Acta 2011, 56 (28) , 10668-10675. https://doi.org/10.1016/j.electacta.2011.04.057
    96. Ricardo K. Nomiyama, Maurício J. Piotrowski, Juarez L. F. Da Silva. Bulk structures of PtO and PtO 2 from density functional calculations. Physical Review B 2011, 84 (10) https://doi.org/10.1103/PhysRevB.84.100101
    97. Søren Bredmose Simonsen, Ib Chorkendorff, Søren Dahl, Magnus Skoglundh, Jens Sehested, Stig Helveg. Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM. Journal of Catalysis 2011, 281 (1) , 147-155. https://doi.org/10.1016/j.jcat.2011.04.011
    98. . Computational Investigations of Metal Oxide Surfaces. 2011https://doi.org/10.1201/b10835-8
    99. Steven G. Rinaldo, Wendy Lee, Jürgen Stumper, Michael Eikerling. Model- and Theory-Based Evaluation of Pt Dissolution for Supported Pt Nanoparticle Distributions under Potential Cycling. Electrochemical and Solid-State Letters 2011, 14 (5) , B47. https://doi.org/10.1149/1.3548504
    100. Ajay S. Karakoti, Jessica E.S. King, Abhilash Vincent, Sudipta Seal. Synthesis dependent core level binding energy shift in the oxidation state of platinum coated on ceria–titania and its effect on catalytic decomposition of methanol. Applied Catalysis A: General 2010, 388 (1-2) , 262-271. https://doi.org/10.1016/j.apcata.2010.08.060
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect