ACS Publications. Most Trusted. Most Cited. Most Read
Influence of Cation Na/Ca Ratio on Adsorption in LTA 5A:  A Systematic Molecular Simulation Study of Alkane Chain Length
My Activity

Figure 1Loading Img
    Article

    Influence of Cation Na/Ca Ratio on Adsorption in LTA 5A:  A Systematic Molecular Simulation Study of Alkane Chain Length
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physical, Chemical, and Natural Systems, University Pablo de Olavide, Ctra. Utrera km 1, 41013 Sevilla, Spain, Chemical and Biological Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, Chevron, Energy Technology Center, Chevron Way 100, Richmond, California 94802-0627
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2006, 110, 47, 23968–23976
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp064971y
    Published November 8, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Recent adsorption isotherms of n-alkanes on Ca,Na-LTA-type zeolite afford development of a force field describing the interactions between calcium and n-alkanes in configurational-bias Monte Carlo simulations. The force field of Calero et al. (J. Am. Chem. Soc.2004, 126, 11377−11386) is able to accurately describe the adsorption properties of linear alkanes in the sodium form of FAU-type zeolites. Here, we extend upon this type of force field by including calcium-type ions. The force field was fitted to reproduce the calcium and sodium cations positions on LTA 5A and the experimental adsorption properties of n-alkanes over all range of temperatures and pressures. This opens up a vast amount of experimental data on LTA 5A, both on adsorption and diffusion. Furthermore, evaluation of half a century of reported n-alkane adsorption data on LTA-type zeolites indicates that there are many inconsistencies between the various data sets, possibly as a result of (i) undisclosed calcium and sodium contents, (ii) less than perfect drying of the hygroscopic zeolite, and (iii) coadsorption of contaminants such as vacuum grease. Having obtained our force field, and confirmed its reliability on predictions outside the calibration set, we apply the force field on two “open” problems:  (a) the heats of adsorption and Henry coefficient as a function of chain length and (b) the effect of cations in LTA-type zeolites. The molecular simulations shed new light on previous experimental findings, and we provide rationalizations on the molecular level that can be generalized to the class of cage/window-type nanoporous materials.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     University Pablo de Olavide.

     Northwestern University.

    §

     Chevron, Energy Technology Center.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 70 publications.

    1. Hanjun Fang, Alan S.S. Daou, Salah Eddine Boulfelfel, John M. Findley, Peter I. Ravikovitch, David S. Sholl. Computational Screening of Cationic Zeolites for n-Butane/Methane Separations Using Quantitatively Accurate First-Principles-Derived Force Fields. The Journal of Physical Chemistry C 2023, 127 (49) , 23941-23955. https://doi.org/10.1021/acs.jpcc.3c06115
    2. Zhuoya Dong, Enci Zhang, Yilan Jiang, Qing Zhang, Alvaro Mayoral, Huaidong Jiang, Yanhang Ma. Atomic-Level Imaging of Zeolite Local Structures Using Electron Ptychography. Journal of the American Chemical Society 2023, 145 (12) , 6628-6632. https://doi.org/10.1021/jacs.2c12673
    3. Jifeng Sun, Hanjun Fang, Peter I. Ravikovitch, David S. Sholl. Understanding Dealumination Mechanisms in Protonic and Cationic Zeolites. The Journal of Physical Chemistry C 2020, 124 (1) , 668-676. https://doi.org/10.1021/acs.jpcc.9b09693
    4. Andrzej Sławek, José Manuel Vicent-Luna, Karolina Ogorzały, Susana Valencia, Fernando Rey, Wacław Makowski, Sofía Calero. Adsorption of Alkanes in Zeolites LTA and FAU: Quasi-Equilibrated Thermodesorption Supported by Molecular Simulations. The Journal of Physical Chemistry C 2019, 123 (49) , 29665-29678. https://doi.org/10.1021/acs.jpcc.9b07907
    5. J. Perez-Carbajo, D. Dubbeldam, S. Calero, P. J. Merkling. Diffusion Patterns in Zeolite MFI: The Cation Effect. The Journal of Physical Chemistry C 2018, 122 (51) , 29274-29284. https://doi.org/10.1021/acs.jpcc.8b08963
    6. Honghong Yi, Yundong Li, Xiaolong Tang, Fenrong Li, Kai Li, Qin Yuan, and Xin Sun . Effect of the Adsorbent Pore Structure on the Separation of Carbon Dioxide and Methane Gas Mixtures. Journal of Chemical & Engineering Data 2015, 60 (5) , 1388-1395. https://doi.org/10.1021/je501109q
    7. A. Martin-Calvo, J. B. Parra, C. O. Ania, and S. Calero . Insights on the Anomalous Adsorption of Carbon Dioxide in LTA Zeolites. The Journal of Physical Chemistry C 2014, 118 (44) , 25460-25467. https://doi.org/10.1021/jp507431c
    8. S. Calero and P. Gómez-Álvarez . Effect of the Confinement and Presence of Cations on Hydrogen Bonding of Water in LTA-Type Zeolite. The Journal of Physical Chemistry C 2014, 118 (17) , 9056-9065. https://doi.org/10.1021/jp5014847
    9. Cristian C. Brunchi, Juan Manuel Castillo Sanchez, Andrzej I. Stankiewicz, Herman J. M. Kramer, and Thijs J. H. Vlugt . Adsorption of Volatile Organic Compounds. Experimental and Theoretical Study. Industrial & Engineering Chemistry Research 2012, 51 (51) , 16697-16708. https://doi.org/10.1021/ie302394d
    10. Junfang Zhang, Nick Burke, and Yunxia Yang . Molecular Simulation of Propane Adsorption in FAU Zeolites. The Journal of Physical Chemistry C 2012, 116 (17) , 9666-9674. https://doi.org/10.1021/jp301780z
    11. Haohan Wu, Qihan Gong, David H. Olson, and Jing Li . Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chemical Reviews 2012, 112 (2) , 836-868. https://doi.org/10.1021/cr200216x
    12. Almudena García-Sánchez, Emma Eggink, Erin S. McGarrity, Sofía Calero, and Thijs J. H. Vlugt . Predictive Model for Optimizing Guest–Host Lennard–Jones Interactions in Zeolites. The Journal of Physical Chemistry C 2011, 115 (20) , 10187-10195. https://doi.org/10.1021/jp2021984
    13. Juan José Gutiérrez-Sevillano, David Dubbeldam, Fernando Rey, Susana Valencia, Miguel Palomino, Ana Martín-Calvo and Sofía Calero . Analysis of the ITQ-12 Zeolite Performance in Propane−Propylene Separations Using a Combination of Experiments and Molecular Simulations. The Journal of Physical Chemistry C 2010, 114 (35) , 14907-14914. https://doi.org/10.1021/jp101744k
    14. A. García-Sánchez, D. Dubbeldam and S. Calero. Modeling Adsorption and Self-Diffusion of Methane in LTA Zeolites: The Influence of Framework Flexibility. The Journal of Physical Chemistry C 2010, 114 (35) , 15068-15074. https://doi.org/10.1021/jp1059215
    15. Tom P. Caremans, Titus S. van Erp, David Dubbeldam, Juan Manuel Castillo, Johan A. Martens and Sofia Calero . Enantioselective Adsorption Characteristics of Aluminum-Substituted MFI Zeolites. Chemistry of Materials 2010, 22 (16) , 4591-4601. https://doi.org/10.1021/cm100672u
    16. Almudena García-Sánchez, Conchi O. Ania, José B. Parra, David Dubbeldam, Thijs J. H. Vlugt, Rajamani Krishna and Sofía Calero. Transferable Force Field for Carbon Dioxide Adsorption in Zeolites. The Journal of Physical Chemistry C 2009, 113 (20) , 8814-8820. https://doi.org/10.1021/jp810871f
    17. Berend Smit and , Theo L. M. Maesen. Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity. Chemical Reviews 2008, 108 (10) , 4125-4184. https://doi.org/10.1021/cr8002642
    18. T. J. H. Vlugt, E. García-Pérez, D. Dubbeldam, S. Ban and S. Calero . Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. Journal of Chemical Theory and Computation 2008, 4 (7) , 1107-1118. https://doi.org/10.1021/ct700342k
    19. Bei Liu,, Berend Smit,, Fernando Rey,, Susana Valencia, and, Sofía Calero. A New United Atom Force Field for Adsorption of Alkenes in Zeolites. The Journal of Physical Chemistry C 2008, 112 (7) , 2492-2498. https://doi.org/10.1021/jp075809d
    20. Bei Liu,, Elena García-Pérez,, David Dubbeldam,, Berend Smit, and, Sofía Calero. Understanding Aluminum Location and Non-framework Ions Effects on Alkane Adsorption in Aluminosilicates:  A Molecular Simulation Study. The Journal of Physical Chemistry C 2007, 111 (28) , 10419-10426. https://doi.org/10.1021/jp0683521
    21. Mohammad I. Hossain, Brooks D. Rabideau, T. Grant Glover. The impact of trace amounts of CO2 on the high-pressure adsorption of CH4 on 5A zeolite. Microporous and Mesoporous Materials 2024, 369 , 112948. https://doi.org/10.1016/j.micromeso.2023.112948
    22. Jiancheng Cheng, Xinlong Hua, Guihai Zhang, Mengqin Yu, Zhu Wang, Yalan Zhang, Wei Liu, Yuejin Chen, Huiming Wang, Yidan Luo, Xuechao Hou, Xianchuan Xie. Synthesis of high-crystallinity Zeolite A from rare earth tailings: Investigating adsorption performance on typical pollutants in rare earth mines. Journal of Hazardous Materials 2024, 468 , 133730. https://doi.org/10.1016/j.jhazmat.2024.133730
    23. Ravi Shanker Ahuja, A. Geetha Bhavani, Tanveer A. Wani, Tara Prasad, B. Prabhakar, Mohammad Aslam, Anas Shitu, Mohd Umair, , . Evaluation of CO 2 Adsorption Capacity of Crystalline, Microporous Zeolite-Y Structure. E3S Web of Conferences 2024, 511 , 01004. https://doi.org/10.1051/e3sconf/202451101004
    24. Hojatollah Moradi, Hedayat Azizpour, Hamed Hadizadeh Saroghi, Amin Esmaeili, Nariman Rezamandi. Prediction of water adsorption isotherm on 13X zeolite in different temperatures and investigating the effect of non-framework cations using dynamic simulation. Applied Surface Science Advances 2023, 18 , 100522. https://doi.org/10.1016/j.apsadv.2023.100522
    25. Abdeldjelil Habib Zahmani, Riad Mustapha Kerbadou, Aouicha Benmaati, Mohammed Hachemaoui, Ismail Issam, Jibran Iqbal, Salih Hacini, Bouhadjar Boukoussa, Hadjira Habib Zahmani. CuNPs loaded zeolite 3 Å as an efficient catalyst for the catalytic reduction of hazardous pollutants. Inorganic Chemistry Communications 2023, 156 , 111211. https://doi.org/10.1016/j.inoche.2023.111211
    26. Hojatollah Moradi, Hedayat Azizpour, Hossein Bahmanyar, Mohammad Emamian. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite. Chinese Journal of Chemical Engineering 2022, 43 , 70-76. https://doi.org/10.1016/j.cjche.2021.05.034
    27. Yuzong Liu, Ying Wu, Wanwen Liang, Junjie Peng, Zhong Li, Haihui Wang, Michael J. Janik, Jing Xiao. Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane. Chemical Engineering Science 2020, 220 , 115636. https://doi.org/10.1016/j.ces.2020.115636
    28. Kritika Narang, Farid Akhtar. Freeze Granulated Zeolites X and A for Biogas Upgrading. Molecules 2020, 25 (6) , 1378. https://doi.org/10.3390/molecules25061378
    29. Eun Hyun Cho, Qiang Lyu, Li-Chiang Lin. Computational discovery of nanoporous materials for energy- and environment-related applications. Molecular Simulation 2019, 45 (14-15) , 1122-1147. https://doi.org/10.1080/08927022.2019.1626990
    30. Yaoguo Fu, Yingshu Liu, Xiong Yang, Ziyi Li, Lijun Jiang, Chuanzhao Zhang, Haoyu Wang, Ralph T. Yang. Thermodynamic analysis of molecular simulations of N2 and O2 adsorption on zeolites under plateau special conditions. Applied Surface Science 2019, 480 , 868-875. https://doi.org/10.1016/j.apsusc.2019.03.011
    31. Anderson Joel Schwanke, Rosana Balzer, Sibele Pergher. Degradation of Volatile Organic Compounds with Catalysts-Containing Zeolite and Ordered Mesoporous Silica. 2019, 607-618. https://doi.org/10.1007/978-3-319-68255-6_71
    32. Wei Feng, Zhijian Wan, Jacqueline Daniels, Zhikao Li, Gongkui Xiao, Jialin Yu, Dong Xu, Hua Guo, Dongke Zhang, Eric F. May, Gang (Kevin) Li. Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications. Journal of Cleaner Production 2018, 202 , 390-400. https://doi.org/10.1016/j.jclepro.2018.08.140
    33. Xin Guo, Alexandra Navrotsky. Hydration dynamics in zeolite A – An X-ray diffraction and infrared spectroscopic study. Microporous and Mesoporous Materials 2018, 268 , 197-201. https://doi.org/10.1016/j.micromeso.2018.04.040
    34. Anderson Joel Schwanke, Rosana Balzer, Sibele Pergher. Degradation of Volatile Organic Compounds with Catalysts-Containing Zeolite and Ordered Mesoporous Silica. 2018, 1-12. https://doi.org/10.1007/978-3-319-48281-1_71-1
    35. Xin Guo, Lili Wu, Alexandra Navrotsky. Thermodynamic evidence of flexibility in H 2 O and CO 2 absorption of transition metal ion exchanged zeolite LTA. Physical Chemistry Chemical Physics 2018, 20 (6) , 3970-3978. https://doi.org/10.1039/C7CP08188J
    36. Abhishek Sharma, Runhong Huang, Ateeque Malani, Ravichandar Babarao. Computational materials chemistry for carbon capture using porous materials. Journal of Physics D: Applied Physics 2017, 50 (46) , 463002. https://doi.org/10.1088/1361-6463/aa87e9
    37. Pasquale F. Zito, Alessio Caravella, Adele Brunetti, Enrico Drioli, Giuseppe Barbieri. Light gases saturation loading dependence on temperature in LTA 4A zeolite. Microporous and Mesoporous Materials 2017, 249 , 67-77. https://doi.org/10.1016/j.micromeso.2017.04.021
    38. Andrzej Mianowski, Wojciech Urbańczyk. Enthalpy–entropy compensation for isosteric state adsorption at near ambient temperatures. Adsorption 2017, 23 (6) , 831-846. https://doi.org/10.1007/s10450-017-9900-7
    39. Amira Abdelrasoul, Hongyu Zhang, Chil-Hung Cheng, Huu Doan. Applications of molecular simulations for separation and adsorption in zeolites. Microporous and Mesoporous Materials 2017, 242 , 294-348. https://doi.org/10.1016/j.micromeso.2017.01.038
    40. Bjørnar Jensen, Bjørn Kvamme, Tatiana Kuznetsova. The effect of interfacial charge distributions and terminations in LTA zeolites. Microporous and Mesoporous Materials 2016, 224 , 135-142. https://doi.org/10.1016/j.micromeso.2015.11.031
    41. Fenglei Cao, Zhifeng Jing, Huai Sun. Predicting the adsorption of n -perfluorohexane ( n -C 6 F 14 ) on BAM-P109 activated carbon using an ab initio force field. Adsorption Science & Technology 2016, 34 (1) , 110-122. https://doi.org/10.1177/0263617415619532
    42. Amir H. Farmahini, Suresh K. Bhatia. Differences in the adsorption and diffusion behaviour of water and non-polar gases in nanoporous carbon: role of cooperative effects of pore confinement and hydrogen bonding. Molecular Simulation 2015, 41 (5-6) , 432-445. https://doi.org/10.1080/08927022.2014.976640
    43. Keyu Liu, Shuichang Zhang, Shaobo Liu, Hua Tian. Molecular Simulation of Gas Adsorption in Minerals and Coal. 2015, 325-339. https://doi.org/10.1002/9781119039228.ch15
    44. Bjørnar Jensen, Tatiana Kuznetsova, Bjørn Kvamme, Richard Olsen. The impact of electrostatics in bulk Linde Type A zeolites. Microporous and Mesoporous Materials 2015, 201 , 105-115. https://doi.org/10.1016/j.micromeso.2014.09.009
    45. Liang Zhao, Dong Zhai, Huimin Zheng, Jingjing Ji, Lei Wang, Shiyi Li, Qing Yang, Chunming Xu. Molecular Modeling for Petroleum-Related Applications. 2015, 121-177. https://doi.org/10.1007/430_2015_187
    46. Junfang Zhang, N. Burke, Shuichang Zhang, Keyu Liu, M. Pervukhina. Thermodynamic analysis of molecular simulations of CO2 and CH4 adsorption in FAU zeolites. Chemical Engineering Science 2014, 113 , 54-61. https://doi.org/10.1016/j.ces.2014.04.001
    47. Peng Bai, Pritha Ghosh, Jeffrey C. Sung, Daniela Kohen, J. Ilja Siepmann, Randall Q. Snurr. A computational study of the adsorption of n-perfluorohexane in zeolite BCR-704. Fluid Phase Equilibria 2014, 366 , 146-151. https://doi.org/10.1016/j.fluid.2013.07.018
    48. Lin Wang, Long Chen, Huai Sun. Predicting adsorption of n-perfluorohexane (n-C6F14) on BCR-704 zeolite using the first principle force field method. Fluid Phase Equilibria 2014, 366 , 159-164. https://doi.org/10.1016/j.fluid.2013.09.038
    49. Li Yang, Changjun Peng, Honglai Liu, Ying Hu, Stanley I. Sandler. Predicting adsorption of n-perfluorohexane in BCR-704 by molecular simulation. Fluid Phase Equilibria 2014, 366 , 165-170. https://doi.org/10.1016/j.fluid.2013.03.017
    50. Hanjun Fang, Hakan Demir, Preeti Kamakoti, David S. Sholl. Recent developments in first-principles force fields for molecules in nanoporous materials. J. Mater. Chem. A 2014, 2 (2) , 274-291. https://doi.org/10.1039/C3TA13073H
    51. Xuan Peng, Dapeng Cao. Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas. AIChE Journal 2013, 59 (8) , 2928-2942. https://doi.org/10.1002/aic.14046
    52. Hanjun Fang, Preeti Kamakoti, Peter I. Ravikovitch, Matthew Aronson, Charanjit Paur, David S. Sholl. First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites. Physical Chemistry Chemical Physics 2013, 15 (31) , 12882. https://doi.org/10.1039/c3cp52246f
    53. Almudena García-Sánchez, Johan van den Bergh, Juan M. Castillo, Sofía Calero, Freek Kapteijn, Thijs J.H. Vlugt. Influence of force field parameters on computed diffusion coefficients of CO2 in LTA-type zeolite. Microporous and Mesoporous Materials 2012, 158 , 64-76. https://doi.org/10.1016/j.micromeso.2012.03.018
    54. Elena García-Pérez, Patrick S. Barcia, José A. C. Silva, Alirio E. Rodrigues, Sofía Calero. Influence of the sodium and calcium non-framework cations on the adsorption of hexane isomers in zeolite BEA. Theoretical Chemistry Accounts 2011, 128 (4-6) , 695-703. https://doi.org/10.1007/s00214-010-0769-8
    55. Rajamani Krishna, Jasper M. van Baten. A molecular dynamics investigation of the diffusion characteristics of cavity-type zeolites with 8-ring windows. Microporous and Mesoporous Materials 2011, 137 (1-3) , 83-91. https://doi.org/10.1016/j.micromeso.2010.08.026
    56. Christopher J. Rhodes. Properties and applications of Zeolites. Science Progress 2010, 93 (3) , 223-284. https://doi.org/10.3184/003685010X12800828155007
    57. Sofía Calero Diaz. Modeling of Transport and Accessibility in Zeolites. 2010, 335-360. https://doi.org/10.1002/9783527630295.ch12
    58. Titus S. van Erp, Tom P. Caremans, David Dubbeldam, Ana Martin‐Calvo, Sofia Calero, Johan A. Martens. Enantioselective Adsorption in Achiral Zeolites. Angewandte Chemie International Edition 2010, 49 (17) , 3010-3013. https://doi.org/10.1002/anie.200906083
    59. Titus S. van Erp, Tom P. Caremans, David Dubbeldam, Ana Martin‐Calvo, Sofia Calero, Johan A. Martens. Enantioselective Adsorption in Achiral Zeolites. Angewandte Chemie 2010, 122 (17) , 3074-3077. https://doi.org/10.1002/ange.200906083
    60. Kourosh Malek, Thijs J. H. Vlugt, Berend Smit. Adsorption and Diffusion in Porous Systems. 2009, 295-320. https://doi.org/10.1002/9783527625482.ch14
    61. Jeroen A. van Bokhoven. Strong Brønsted Acidity in Alumina-Silicates. 2009, 651-668. https://doi.org/10.1016/B978-0-444-53189-6.00024-X
    62. Vincent Finsy, Sofia Calero, Elena García-Pérez, Patrick J. Merkling, Gill Vedts, Dirk E. De Vos, Gino V. Baron, Joeri F. M. Denayer. Low-coverage adsorption properties of the metal–organic framework MIL-47 studied by pulse chromatography and Monte Carlo simulations. Physical Chemistry Chemical Physics 2009, 11 (18) , 3515. https://doi.org/10.1039/b822247a
    63. Shang-Tien Tsai, Chien-Hao Chen, Tseng-Chang Tsai. Base treated H-mordenite as stable catalyst in alkylbenzene transalkylation. Green Chemistry 2009, 11 (9) , 1349. https://doi.org/10.1039/b905744g
    64. Ryo Nagumo, Hiromitsu Takaba, Shin-ichi Nakao. High-Accuracy Estimation of ‘Slow' Molecular Diffusion Rates in Zeolite Nanopores, Based on Free Energy Calculations at an Ultrahigh Temperature. The Journal of Physical Chemistry C 2008, 112 (8) , 2805-2811. https://doi.org/10.1021/jp073250b
    65. Wacław Makowski, Łukasz Ogorzałek. Determination of the adsorption heat of n-hexane and n-heptane on zeolites beta, L, 5A, 13X, Y and ZSM-5 by means of quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA). Thermochimica Acta 2007, 465 (1-2) , 30-39. https://doi.org/10.1016/j.tca.2007.09.002
    66. R. Krishna, J. M. van Baten. Loading Dependence of Self‐Diffusivities of Gases in Zeolites. Chemical Engineering & Technology 2007, 30 (9) , 1235-1241. https://doi.org/10.1002/ceat.200700127
    67. Almudena García-Sánchez, Elena García-Pérez, David Dubbeldam, Rajamani Krishna, Sofía Calero. A Simulation Study of Alkanes in Linde Type A Zeolites. Adsorption Science & Technology 2007, 25 (6) , 417-427. https://doi.org/10.1260/026361707783908274
    68. D. Dubbeldam, R. Q. Snurr. Recent developments in the molecular modeling of diffusion in nanoporous materials. Molecular Simulation 2007, 33 (4-5) , 305-325. https://doi.org/10.1080/08927020601156418
    69. Inge Daems, Gino V. Baron, Sudeep Punnathanam, Randall Q. Snurr, Joeri F. M. Denayer. Molecular Cage Nestling in the Liquid-Phase Adsorption of n -Alkanes in 5A Zeolite. The Journal of Physical Chemistry C 2007, 111 (5) , 2191-2197. https://doi.org/10.1021/jp0668145
    70. Christopher J. Rhodes. Zeolites: physical aspects and environmental applications. Annual Reports Section "C" (Physical Chemistry) 2007, 103 , 287. https://doi.org/10.1039/b605702k

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2006, 110, 47, 23968–23976
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp064971y
    Published November 8, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1647

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.