ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Figure 1Loading Img

Separation of Geometric and Electronic Effects of the Support on the CO and H2 Chemisorption Properties of Supported Pt Particles:  The Effect of Ionicity in Modified Alumina Supports

View Author Information
Zelinsky Institute of Organic Chemistry, 119991, Leninsky Prosp. 47, Moscow, Russia, Group of Inorganic Chemistry and Catalysis, Department of Chemistry, Utrecht University, Sorbonnelaan 16,3584 CA Utrecht, The Netherlands, and Department of Chemistry and Material Science Institute, George Washington University, Washington, DC
Cite this: J. Phys. Chem. C 2007, 111, 10, 3938–3948
Publication Date (Web):February 15, 2007
Copyright © 2007 American Chemical Society

    Article Views





    Read OnlinePDF (327 KB)


    The geometric and electronic properties of supported Pt particles have been altered by modifying the ionicity (acid base properties) of the Al2O3 support via the sol−gel method. The Si modifier resulted in the most acidic and Cs in the most basic Al2O3 support. Application of the new Delta XANES technique shows that, above 373K in vacuum, the Pt surface is covered with hydrogen chemisorbed in an atop site for Pt particles dispersed on an acidic Cl−Al2O3 and mostly in the n-fold sites on Pt particles dispersed on a basic Rb−Al2O3. Further, FTIR data shows a significant bridged CO coverage in the Rb−Al2O3 case but not in the Cl−Al2O3. At low temperatures, when the coverage of both CO and H should be nearly complete, the Delta XANES results show that the coverage of H on Pt/Cl−Al2O3 is about twice that of Pt/Rb−Al2O3, consistent with the FTIR data which shows a similar reduction of linear CO adsorption on Pt/Rb−Al2O3. This is attributed to the different dispersions of the particles. EXAFS analysis makes clear that this difference in dispersion is mostly due to different particle morphologies, almost flat (for Pt/Cl−Al2O3) versus (hemi)spherical (for Pt/Rb−Al2O3), although the sizes are also different. The observed changes in CO and H2 chemisorption properties at high temperature and in Pt particle morphology are due to a shift of the Pt valence band to higher binding energy with decreasing ionicity (increasing acidity) of the support, as indicated by the atomic XAFS results. These atomic XAFS results can be directly correlated, assuming the oxygen Madelung potential model, with the XPS shift of the O 1s BE of about 2 eV, showing a decrease of the net electron charge on the support oxygen atoms with decreasing ionicity of the support. The hydrogen Delta XANES results are combined with a three-site (atop, 2- or 3-fold, and ontop H, in order of decreasing bond strength) Langmuir adsorption model for hydrogen chemisorption. This combination accounts for the variation in hydrogen coverage with change in T, P, and support ionicity as described above. The consequences of these results for Pt-catalyzed CO oxidation and hydrogenolysis/hydrogenation reactions are discussed.

     Zelinsky Institute of Organic Chemistry.

     Utrecht University.


     Present address:  Department of Chemical Engineering, University of California, Berkeley, CA 94720-1462.

     George Washington University.


     Corresponding author. Address:  Group of Inorganic Chemistry and Catalysis, Department of Chemistry, Utrecht University, PO Box 80083, 3508 TB Utrecht, The Netherlands. Tel:  +(31) 30 2537400. Fax:  +(31) 30 2511027. E-mail:  [email protected].

    Cited By

    This article is cited by 65 publications.

    1. Junming Zhang, Hong Bin Yang, Daojin Zhou, Bin Liu. Adsorption Energy in Oxygen Electrocatalysis. Chemical Reviews 2022, 122 (23) , 17028-17072.
    2. Marta Arroyo, Laura Briones, Héctor Hernando, José M. Escola, David P. Serrano. Selective Decarboxylation of Fatty Acids Catalyzed by Pd-Supported Hierarchical ZSM-5 Zeolite. Energy & Fuels 2021, 35 (21) , 17167-17181.
    3. Yu Wang. Measurements and Modeling of Water Adsorption Isotherms of Zeolite Linde-Type A Crystals. Industrial & Engineering Chemistry Research 2020, 59 (17) , 8304-8314.
    4. Ghazal S. Erfani, Sampyo Hong, Talat S. Rahman. Effects of γ-Al2O3 Support on the Morphology and Electronic Structure of Pt Nanoparticles. The Journal of Physical Chemistry C 2019, 123 (27) , 16893-16901.
    5. Jong-Won Lee, Seo Hee Lee, Sang Jun Yoon, Ji-Ho Yoon. Spectroscopic Studies on the Formation and Guest Behaviors of Hydroquinone Clathrate with Binary CO and H2 Gas Mixtures. Energy & Fuels 2018, 32 (6) , 6863-6868.
    6. Suresh Gatla, Daniel Aubert, Giovanni Agostini, Olivier Mathon, Sakura Pascarelli, Thomas Lunkenbein, Marc Georg Willinger, and Helena Kaper . Room-Temperature CO Oxidation Catalyst: Low-Temperature Metal–Support Interaction between Platinum Nanoparticles and Nanosized Ceria. ACS Catalysis 2016, 6 (9) , 6151-6155.
    7. Kyung Duk Kim, Suman Pokhrel, Zichun Wang, Huajuan Ling, Cuifeng Zhou, Zongwen Liu, Michael Hunger, Lutz Mädler, and Jun Huang . Tailoring High-Performance Pd Catalysts for Chemoselective Hydrogenation Reactions via Optimizing the Parameters of the Double-Flame Spray Pyrolysis. ACS Catalysis 2016, 6 (4) , 2372-2381.
    8. Annika Elsen, Ulrich Jung, Fernando Vila, Yuanyuan Li, Olga V. Safonova, Rowena Thomas, Moniek Tromp, John J. Rehr, Ralph G. Nuzzo, and Anatoly I. Frenkel . Intracluster Atomic and Electronic Structural Heterogeneities in Supported Nanoscale Metal Catalysts. The Journal of Physical Chemistry C 2015, 119 (45) , 25615-25627.
    9. Fernando D. Vila, John J. Rehr, Shelly D. Kelly, and Simon R. Bare . Operando Effects on the Structure and Dynamics of PtnSnm/γ-Al2O3 from Ab Initio Molecular Dynamics and X-ray Absorption Spectra. The Journal of Physical Chemistry C 2013, 117 (24) , 12446-12457.
    10. Silvia Bordiga, Elena Groppo, Giovanni Agostini, Jeroen A. van Bokhoven, and Carlo Lamberti . Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chemical Reviews 2013, 113 (3) , 1736-1850.
    11. Tianpin Wu, David J. Childers, Carolina Gomez, Ayman M. Karim, Neil M. Schweitzer, A. Jeremy Kropf, Hui Wang, Trudy B. Bolin, Yongfeng Hu, Libor Kovarik, Randall J. Meyer, and Jeffrey T. Miller . General Method for Determination of the Surface Composition in Bimetallic Nanoparticle Catalysts from the L Edge X-ray Absorption Near-Edge Spectra. ACS Catalysis 2012, 2 (11) , 2433-2443.
    12. C. Mager-Maury, C. Chizallet, P. Sautet, and P. Raybaud . Platinum Nanoclusters Stabilized on γ-Alumina by Chlorine Used As a Capping Surface Ligand: A Density Functional Theory Study. ACS Catalysis 2012, 2 (7) , 1346-1357.
    13. Matthew W. Small, Sergio I. Sanchez, Nebojsa S. Marinkovic, Anatoly I. Frenkel, and Ralph G. Nuzzo . Influence of Adsorbates on the Electronic Structure, Bond Strain, and Thermal Properties of an Alumina-Supported Pt Catalyst. ACS Nano 2012, 6 (6) , 5583-5595.
    14. Ali Nazir Jahel, Virginie Moizan-Baslé, Céline Chizallet, Pascal Raybaud, Josette Olivier-Fourcade, Jean-Claude Jumas, Priscilla Avenier, and Sylvie Lacombe . Effect of Indium Doping of γ-Alumina on the Stabilization of PtSn Alloyed Clusters Prepared by Surface Organostannic Chemistry. The Journal of Physical Chemistry C 2012, 116 (18) , 10073-10083.
    15. Linmin Ye, Haiqiang Lin, Hancheng Zhou, and Youzhu Yuan. Support and Size Effects of Ruthenium Catalysts with a Chiral Modifier for Asymmetric Hydrogenation of Aromatic Ketones. The Journal of Physical Chemistry C 2010, 114 (46) , 19752-19760.
    16. Juan J. Musci, Maia Montaña, Andrea B. Merlo, Elena Rodríguez-Aguado, Juan A. Cecilia, Enrique Rodríguez-Castellón, Ileana D. Lick, Mónica L. Casella. Supported ruthenium catalysts for the aqueous-phase selective hydrogenation of furfural to furfuryl alcohol. Catalysis Today 2022, 394-396 , 81-93.
    17. Kyung Duk Kim, Zichun Wang, Yongwen Tao, Huajuan Ling, Yuan Yuan, Cuifeng Zhou, Zongwen Liu, Marianne Gaborieau, Jun Huang, Aibing Yu. The Comparative Effect of Particle Size and Support Acidity on Hydrogenation of Aromatic Ketones. ChemCatChem 2019, 11 (19) , 4810-4817.
    18. Lais R. Borges, Alejandro Lopez‐Castillo, Debora M. Meira, Jean Marcel R. Gallo, Daniela Zanchet, José Maria C. Bueno. Effect of the Pt Precursor and Loading on the Structural Parameters and Catalytic Properties of Pt/Al 2 O 3. ChemCatChem 2019, 11 (13) , 3064-3074.
    19. D.P. Serrano, J.M. Escola, L. Briones, M. Arroyo. Selective hydrodecarboxylation of fatty acids into long-chain hydrocarbons catalyzed by Pd/Al-SBA-15. Microporous and Mesoporous Materials 2019, 280 , 88-96.
    20. Cong Mao, Jie Zhang, Meitian Xiao, Yongjun Liu, Xueqin Zhang. Carbon-silica composites supported Pt as catalyst for asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate. Current Applied Physics 2018, 18 (12) , 1480-1485.
    21. Takashi Kamachi, S.M.A. Hakim Siddiki, Yoshitsugu Morita, Md. Nurnobi Rashed, Kenichi Kon, Takashi Toyao, Ken-ichi Shimizu, Kazunari Yoshizawa. Combined theoretical and experimental study on alcoholysis of amides on CeO2 surface: A catalytic interplay between Lewis acid and base sites. Catalysis Today 2018, 303 , 256-262.
    22. S. M. A. Hakim Siddiki, Takashi Toyao, Ken-ichi Shimizu. Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chemistry 2018, 20 (13) , 2933-2952.
    23. D.S. Paz, S. Damyanova, L.R. Borges, J.B.O Santos, J.M.C. Bueno. Identifying the adsorbed active intermediates on Pt surface and promotion of activity through the redox CeO 2 in preferential oxidation of CO in H 2. Applied Catalysis A: General 2017, 548 , 164-178.
    24. Chao Dong, Xiang Li, Anjie Wang, Yongying Chen. Influences of sodium and potassium cations on the hydrodesulfurization performances of Pd and Pt catalysts supported on siliceous MCM-41. Catalysis Today 2017, 297 , 124-130.
    25. A. V. Marikutsa, M. N. Rumyantseva, A. M. Gaskov, A. M. Samoylov. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena part II. Active centers and sensor behavior. Inorganic Materials 2016, 52 (13) , 1311-1338.
    26. Xiaotong Li, Hongjiu Su, Gaoyuan Ren, Shudong Wang. The role of MgO in the performance of Pd/SiO2/cordierite monolith catalyst for the hydrogenation of 2-ethyl-anthraquinone. Applied Catalysis A: General 2016, 517 , 168-175.
    27. José A. Toledo-Antonio, Carlos Angeles-Chávez, Ma. Antonia Cortés-Jácome, I. Cuauhtémoc-López, E. López-Salinas, Ma. Lourdes Mosqueira, G. Ferrat. Metal Support Interaction Effects on the Reducibility of Ir Nanoparticles on Titania Nanotubes. Topics in Catalysis 2016, 59 (2-4) , 366-377.
    28. David E. Ramaker, Christina Roth. Nature of the Intermediate Binding Sites in Hydrogen Oxidation/Evolution over Pt in Alkaline and Acidic Media. ChemElectroChem 2015, 2 (10) , 1582-1594.
    29. Zichun Wang, Kyung-Duk Kim, Cuifeng Zhou, Mengmeng Chen, Nobutaka Maeda, Zongwen Liu, Jeffrey Shi, Alfons Baiker, Michael Hunger, Jun Huang. Influence of support acidity on the performance of size-confined Pt nanoparticles in the chemoselective hydrogenation of acetophenone. Catalysis Science & Technology 2015, 5 (5) , 2788-2797.
    30. Xiaohong Li, Haihong Wang, Huiyan Pan, Yi Meng Wang, Peng Wu. Pt nanoparticles entrapped in Al2O3@SBA-15 composites: Effective and recyclable catalysts for enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate. Applied Catalysis A: General 2014, 488 , 48-57.
    31. Paul J. Dietrich, Fred G. Sollberger, M. Cem Akatay, Eric A. Stach, W. Nicholas Delgass, Jeffrey T. Miller, Fabio H. Ribeiro. Structural and catalytic differences in the effect of Co and Mo as promoters for Pt-based aqueous phase reforming catalysts. Applied Catalysis B: Environmental 2014, 156-157 , 236-248.
    32. Hemma Mistry, Farzad Behafarid, Simon R. Bare, B. Roldan Cuenya. Pressure-Dependent Effect of Hydrogen Adsorption on Structural and Electronic Properties of Pt/γ-Al 2 O 3 Nanoparticles. ChemCatChem 2014, 6 (1) , 348-352.
    33. Chandan Chaudhari, S. M. A. Hakim Siddiki, Masazumi Tamura, Ken-ichi Shimizu. Acceptorless dehydrogenative synthesis of 2-substituted quinazolines from 2-aminobenzylamine with primary alcohols or aldehydes by heterogeneous Pt catalysts. RSC Adv. 2014, 4 (95) , 53374-53379.
    34. Paul J. Dietrich, Tianpin Wu, Aslihan Sumer, James A. Dumesic, Julius Jellinek, W. Nicholas Delgass, Fabio H. Ribeiro, Jeffrey T. Miller. Aqueous Phase Glycerol Reforming with Pt and PtMo Bimetallic Nanoparticle Catalysts: The Role of the Mo Promoter. Topics in Catalysis 2013, 56 (18-20) , 1814-1828.
    35. Zichun Wang, Suman Pokhrel, Mengmeng Chen, Michael Hunger, Lutz Mädler, Jun Huang. Palladium-doped silica–alumina catalysts obtained from double-flame FSP for chemoselective hydrogenation of the model aromatic ketone acetophenone. Journal of Catalysis 2013, 302 , 10-19.
    36. Sumanta Kumar Meher, Matteo Cargnello, Horacio Troiani, T. Montini, G. Ranga Rao, Paolo Fornasiero. Alcohol induced ultra-fine dispersion of Pt on tuned morphologies of CeO2 for CO oxidation. Applied Catalysis B: Environmental 2013, 130-131 , 121-131.
    37. L. Guczi, Á. Molnár, D. Teschner. Hydrogenation Reactions: Concepts and Practice. 2013, 421-457.
    38. Masazumi Tamura, Ken-ichi Shimizu, Atsushi Satsuma. CeO 2 -catalyzed Transformations of Nitriles and Amides. Chemistry Letters 2012, 41 (11) , 1397-1405.
    39. Charles Sumner, William Burchett. Developments in the Pd Catalyzed Hydrogenation of Oxygenated Organic Compounds. Topics in Catalysis 2012, 55 (7-10) , 480-485.
    40. Ken-ichi Shimizu, Katsuya Shimura, Kazuo Kato, Naoko Tamagawa, Masazumi Tamura, Atsushi Satsuma. Electronic effect of Na promotion for selective mono-N-alkylation of aniline with di-iso-propylamine by Pt/SiO2 catalysts. Journal of Molecular Catalysis A: Chemical 2012, 353-354 , 171-177.
    41. Ken-ichi Shimizu, Tomonori Oda, Yoshinori Sakamoto, Yuichi Kamiya, Hisao Yoshida, Atsushi Satsuma. Quantitative determination of average rhodium oxidation state by a simple XANES analysis. Applied Catalysis B: Environmental 2012, 111-112 , 509-514.
    42. Jinzhao Duan, Junxing Han, Hui Sun, Ping Chen, Hui Lou, Xiaoming Zheng. Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catalysis Communications 2012, 17 , 76-80.
    43. Ken-ichi Shimizu, Keiichiro Ohshima, Yutaka Tai, Masazumi Tamura, Atsushi Satsuma. Size- and support-dependent selective amine cross-coupling with platinum nanocluster catalysts. Catalysis Science & Technology 2012, 2 (4) , 730.
    44. Masazumi Tamura, Takuya Tonomura, Ken-ichi Shimizu, Atsushi Satsuma. Transamidation of amides with amines under solvent-free conditions using a CeO2 catalyst. Green Chemistry 2012, 14 (3) , 717.
    45. Kenichi Shimizu, Katsuya Shimura, Masanari Nishimura, Atsushi Satsuma. Direct Synthesis of N-Substituted Anilines from Nitroaromatics and Alcohols under H2 by Alumina-Supported Silver Cluster Catalysts. ChemCatChem 2011, 3 (11) , 1755-1758.
    46. Davide Ferri, Mark A. Newton, Maarten Nachtegaal. Modulation Excitation X-Ray Absorption Spectroscopy to Probe Surface Species on Heterogeneous Catalysts. Topics in Catalysis 2011, 54 (16-18) , 1070-1078.
    47. Bjoern Schimmoeller, Sotiris E. Pratsinis, Alfons Baiker. Flame Aerosol Synthesis of Metal Oxide Catalysts with Unprecedented Structural and Catalytic Properties. ChemCatChem 2011, 3 (8) , 1234-1256.
    48. Soraya Handjani, Eric Marceau, Juliette Blanchard, Jean-Marc Krafft, Michel Che, Päivi Mäki-Arvela, Narendra Kumar, Johan Wärnå, Dmitry Yu. Murzin. Influence of the support composition and acidity on the catalytic properties of mesoporous SBA-15, Al-SBA-15, and Al2O3-supported Pt catalysts for cinnamaldehyde hydrogenation. Journal of Catalysis 2011, 282 (1) , 228-236.
    49. Jun Huang, Yijiao Jiang, Niels van Vegten, Michael Hunger, Alfons Baiker. Tuning the support acidity of flame-made Pd/SiO2–Al2O3 catalysts for chemoselective hydrogenation. Journal of Catalysis 2011, 281 (2) , 352-360.
    50. Gonzalo Prieto, Patricia Concepción, Agustín Martínez, Ernest Mendoza. New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas. Journal of Catalysis 2011, 280 (2) , 274-288.
    51. Yu Lei, Jelena Jelic, Ludwig C. Nitsche, Randall Meyer, Jeffrey Miller. Effect of Particle Size and Adsorbates on the L3, L2 and L1 X-ray Absorption Near Edge Structure of Supported Pt Nanoparticles. Topics in Catalysis 2011, 54 (5-7) , 334-348.
    52. Ken-ichi Shimizu, Katsuya Shimura, Keiichiro Ohshima, Masazumi Tamura, Atsushi Satsuma. Selective cross-coupling of amines by alumina-supported palladium nanocluster catalysts. Green Chemistry 2011, 13 (11) , 3096.
    53. A. Yu. Stakheev, I. S. Mashkovskii, G. N. Baeva, N. S. Telegina. Specific features of the catalytic behavior of supported palladium nanoparticles in heterogeneous catalytic reactions. Russian Journal of General Chemistry 2010, 80 (3) , 618-629.
    54. Bjoern Schimmoeller, Fatos Hoxha, Tamas Mallat, Frank Krumeich, Sotiris E. Pratsinis, Alfons Baiker. Fine tuning the surface acid/base properties of single step flame-made Pt/alumina. Applied Catalysis A: General 2010, 374 (1-2) , 48-57.
    55. Cecilia Mondelli, Jan-Dierk Grunwaldt, Davide Ferri, Alfons Baiker. Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy. Physical Chemistry Chemical Physics 2010, 12 (20) , 5307.
    56. D. E. Ramaker, D. C. Koningsberger. The atomic AXAFS and Δμ XANES techniques as applied to heterogeneous catalysis and electrocatalysis. Physical Chemistry Chemical Physics 2010, 12 (21) , 5514.
    57. Neng Guo, Bradley R. Fingland, W. Damion Williams, Vincent F. Kispersky, Jelena Jelic, W. Nicholas Delgass, Fabio H. Ribeiro, Randall J. Meyer, Jeffrey T. Miller. Determination of CO, H2O and H2 coverage by XANES and EXAFS on Pt and Au during water gas shift reaction. Physical Chemistry Chemical Physics 2010, 12 (21) , 5678.
    58. Barbara Louise Mojet, Sune Dalgaard Ebbesen, Leon Lefferts. Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chemical Society Reviews 2010, 39 (12) , 4643.
    59. Ingvar Kvande, De Chen, Tie-Jun Zhao, Inger Marie Skoe, John C. Walmsley, Magnus Rønning. Hydrogen Oxidation Catalyzed by Pt Supported on Carbon Nanofibers with Different Graphite Sheet Orientations. Topics in Catalysis 2009, 52 (6-7) , 664-674.
    60. Patrick O. Graf, Barbara L. Mojet, Leon Lefferts. The effect of potassium addition to Pt supported on YSZ on steam reforming of mixtures of methane and ethane. Applied Catalysis A: General 2009, 362 (1-2) , 88-94.
    61. R. Giulian, L. L. Araujo, P. Kluth, D. J. Sprouster, C. S. Schnohr, B. Johannessen, G. J. Foran, M. C. Ridgway. The influence of annealing conditions on the growth and structure of embedded Pt nanocrystals. Journal of Applied Physics 2009, 105 (4)
    62. Jeremy J. Pietron. Dual-Pathway Kinetics Assessment of Sulfur Poisoning of the Hydrogen Oxidation Reaction at High Surface-Area Platinum/Vulcan Carbon Electrodes. Journal of The Electrochemical Society 2009, 156 (11) , B1322.
    63. Muriel Lepage, Tom Visser, Ad M.J. van der Eerden, Fouad Soulimani, Bert M. Weckhuysen. Pore curvature and support composition effects on the electronic properties of supported Pt catalysts: An infrared spectroscopy study with CO as probe molecule. Vibrational Spectroscopy 2008, 48 (1) , 92-100.
    64. Diek C. Koningsberger, Dave E. Ramaker. Applications of X-ray Absorption Spectroscopy in Heterogeneous Catalysis: EXAFS, Atomic XAFS, and Delta XANES. 2008
    65. Daniel S. Gatewood, David E. Ramaker, Kotaro Sasaki, Karen E. Swider-Lyons. Support Effects on Water Activation and Oxygen Reduction over Au–SnO[sub x] Electrocatalysts Observed with X-Ray Absorption Spectroscopy. Journal of The Electrochemical Society 2008, 155 (8) , B834.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect