ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Universal Phenomena of CO Adsorption on Gold Surfaces with Low-Coordinated Sites

View Author Information
Institut für Reine und Angewandte Chemie, Theoretische Chemie, Universität Oldenburg, D-26111 Oldenburg, Germany, Institut für Angewandte und Physikalische Chemie, Universität Bremen, Postfach 330440, D-28334 Bremen, Germany, Institut für Reine und Angewandte Chemie, Physikalische Chemie, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany, and Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550
Cite this: J. Phys. Chem. C 2007, 111, 1, 445–451
Publication Date (Web):November 30, 2006
https://doi.org/10.1021/jp0665729
Copyright © 2007 American Chemical Society

    Article Views

    1793

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Since Au turned out to be an active catalyst for CO oxidation at low temperatures, CO adsorption on various Au surfaces has been in the scope of numerous surface science studies. Interestingly, supported particles as well as stepped and rough single-crystal surfaces exhibit very similar adsorption behavior. To elucidate the origin of these similarities, we have performed temperature-programmed desorption and infrared absorption spectroscopy for a whole range of Au surfaces from nanoparticles grown on HOPG to Au(111) surfaces roughened by argon ion bombardment. In line with previous results, we have observed two desorption states at ∼130−145 and ∼170−185 K, respectively, and one infrared peak at around 2120 cm-1 in all cases. In addition to the experiments, we have carried out theoretical studies of CO adsorption on Au(332). The calculations show that CO desorption states above 100 K may be located at step-edges but not on terrace sites. Reducing the coordination of Au atoms further leads to successively higher binding energies with an unchanged anharmonic frequency. Therefore, we conclude that both desorption peaks belong to CO on low-coordinated Au atoms at steps and kinks. For the sputtered Au(111) surface, scanning tunneling microscopy reveals a rough pit-and-mound morphology with a large number of such sites. In annealing experiments we observe that the loss of these sites coincides with the loss of CO adsorption capacity, corroborating our conclusions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Institut für Reine und Angewandte Chemie, Theoretische Chemie, Universität Oldenburg.

     Institut für Angewandte und Physikalische Chemie, Universität Bremen.

    §

     Institut für Reine und Angewandte Chemie, Physikalische Chemie, Universität Oldenburg.

     Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory.

    *

     Address correspondence to these authors. E-mail:  mbaeumer@ uni-bremen.de; [email protected].

    Cited By

    This article is cited by 109 publications.

    1. Abhishek Kumar, Johann Lüder, Mauro Bertotti, Koiti Araki, Fabiano Montoro, Frederic Herbst, Rita Meunier-Prest, Lucio Angnes, Marcel Bouvet, Jefferson Bettini, Josue M. Gonçalves. Deciphering the Atomic Scale Electrocatalytic Sites in Hierarchically Porous Gold Nanostructures: Implications for Ascorbic Acid Electrooxidation. ACS Applied Nano Materials 2024, 7 (7) , 7213-7225. https://doi.org/10.1021/acsanm.3c06226
    2. Rishi Verma, Ritaj Tyagi, Vamsee K. Voora, Vivek Polshettiwar. Black Gold-Based “Antenna–Reactor” To Activate Non-Plasmonic Nickel: Photocatalytic Hydrodechlorination and Hydrogenation Reactions. ACS Catalysis 2023, 13 (11) , 7395-7406. https://doi.org/10.1021/acscatal.3c00568
    3. Gunther Wittstock, Marcus Bäumer, Wilke Dononelli, Thorsten Klüner, Lukas Lührs, Christoph Mahr, Lyudmila V. Moskaleva, Mehtap Oezaslan, Thomas Risse, Andreas Rosenauer, Anne Staubitz, Jörg Weissmüller, Arne Wittstock. Nanoporous Gold: From Structure Evolution to Functional Properties in Catalysis and Electrochemistry. Chemical Reviews 2023, 123 (10) , 6716-6792. https://doi.org/10.1021/acs.chemrev.2c00751
    4. Rishi Verma, Rajesh Belgamwar, Pratip Chatterjee, Robert Bericat-Vadell, Jacinto Sa, Vivek Polshettiwar. Nickel-Laden Dendritic Plasmonic Colloidosomes of Black Gold: Forced Plasmon Mediated Photocatalytic CO2 Hydrogenation. ACS Nano 2023, 17 (5) , 4526-4538. https://doi.org/10.1021/acsnano.2c10470
    5. Yu Han, Xiao-Yan Li, Beien Zhu, Yi Gao. Unveiling the Au Surface Reconstruction in a CO Environment by Surface Dynamics and Ab Initio Thermodynamics. The Journal of Physical Chemistry A 2022, 126 (37) , 6538-6547. https://doi.org/10.1021/acs.jpca.2c03124
    6. Chen Zhou, Hio Tong Ngan, Jin Soo Lim, Zubin Darbari, Adrian Lewandowski, Dario J. Stacchiola, Boris Kozinsky, Philippe Sautet, Jorge Anibal Boscoboinik. Dynamical Study of Adsorbate-Induced Restructuring Kinetics in Bimetallic Catalysts Using the PdAu(111) Model System. Journal of the American Chemical Society 2022, 144 (33) , 15132-15142. https://doi.org/10.1021/jacs.2c04871
    7. Quansong Zhu, Spencer K. Wallentine, Gang-Hua Deng, Jaclyn A. Rebstock, L. Robert Baker. The Solvation-Induced Onsager Reaction Field Rather than the Double-Layer Field Controls CO2 Reduction on Gold. JACS Au 2022, 2 (2) , 472-482. https://doi.org/10.1021/jacsau.1c00512
    8. Christoph D. Feldt, Jian L. Low, Paul A. Albrecht, Keyun Tang, Wiebke Riedel, Thomas Risse. Low-Temperature Oxidation of Methyl Formate on Au(332). The Journal of Physical Chemistry C 2021, 125 (48) , 26522-26529. https://doi.org/10.1021/acs.jpcc.1c08531
    9. Forrest H. Kaatz, Dmitry Yu. Murzin, Adhemar Bultheel. Coordination-Dependent Kinetics in the Catalysis of Gold Nanoclusters. ACS Catalysis 2021, 11 (15) , 9073-9085. https://doi.org/10.1021/acscatal.1c00892
    10. Yunxi Yao, Long Chen, Xinchun Mao, Yifei Yang, Jun Chen, Linsen Zhou. In Situ PM-IRRAS Study of CO Adsorption on Au Surfaces: Solving the Puzzle. The Journal of Physical Chemistry C 2021, 125 (16) , 8606-8619. https://doi.org/10.1021/acs.jpcc.1c01638
    11. Siqin Zhao, Le Lin, Wugen Huang, Rankun Zhang, Dongqing Wang, Rentao Mu, Qiang Fu, Xinhe Bao. Design of Lewis Pairs via Interface Engineering of Oxide–Metal Composite Catalyst for Water Activation. The Journal of Physical Chemistry Letters 2021, 12 (5) , 1443-1452. https://doi.org/10.1021/acs.jpclett.0c03760
    12. Mathilde Luneau, Tanya Shirman, Alexandre C. Foucher, Kaining Duanmu, David M.A. Verbart, Philippe Sautet, Eric A. Stach, Joanna Aizenberg, Robert J. Madix, Cynthia M. Friend. Achieving High Selectivity for Alkyne Hydrogenation at High Conversions with Compositionally Optimized PdAu Nanoparticle Catalysts in Raspberry Colloid-Templated SiO2. ACS Catalysis 2020, 10 (1) , 441-450. https://doi.org/10.1021/acscatal.9b04243
    13. Christopher C. Leon, Qing Liu, S. T. Ceyer. CO Adsorption on Gold Nickel Au–Ni(111) Surface Alloys. The Journal of Physical Chemistry C 2019, 123 (14) , 9041-9058. https://doi.org/10.1021/acs.jpcc.9b00379
    14. Ahmed Ghalgaoui, Nassar Doudin, Emil Kelderer, Martin Sterrer. 1,4-Phenylene Diisocyanide (PDI) Interaction with Low-Coordinated Gold Sites: Dissociation and Adsorbate-Induced Restructuring. The Journal of Physical Chemistry C 2019, 123 (13) , 7870-7878. https://doi.org/10.1021/acs.jpcc.8b07034
    15. Christoph D. Feldt, Raphaell Moreira, Eric Meyer, Peter Clawin, Wiebke Riedel, Thomas Risse, Lyudmila Moskaleva, Wilke Dononelli, Thorsten Klüner. CO Adsorption on Au(332): Combined Infrared Spectroscopy and Density Functional Theory Study. The Journal of Physical Chemistry C 2019, 123 (13) , 8187-8197. https://doi.org/10.1021/acs.jpcc.8b08406
    16. Jiali Wang, Fuyi Chen, Yachao Jin, and Yimin Lei . Dilute Au-Containing Ag Nanosponges as a Highly Active and Durable Electrocatalyst for Oxygen Reduction and Alcohol Oxidation Reactions. ACS Applied Materials & Interfaces 2018, 10 (7) , 6276-6287. https://doi.org/10.1021/acsami.7b17066
    17. Tingming Jiang, Walter Malone, Yongfeng Tong, Diana Dragoe, Azzedine Bendounan, Abdelkader Kara, and Vladimir A. Esaulov . Thiophene Derivatives on Gold and Molecular Dissociation Processes. The Journal of Physical Chemistry C 2017, 121 (50) , 27923-27935. https://doi.org/10.1021/acs.jpcc.7b08006
    18. David T. Boyle, Jeremy A. Wilke, Robert M. Palomino, Vivian H. Lam, Daniel A. Schlosser, Wil J. Andahazy, Cameron Z. Stopak, Dario J. Stacchiola, Jose A. Rodriguez, and Ashleigh E. Baber . Elucidation of Active Sites for the Reaction of Ethanol on TiO2/Au(111). The Journal of Physical Chemistry C 2017, 121 (14) , 7794-7802. https://doi.org/10.1021/acs.jpcc.6b11764
    19. W. C. McKee, M. C. Patterson, D. Huang, J. R. Frick, R. L. Kurtz, P. T. Sprunger, L. Liu, and Y. Xu . CO Adsorption on Au Nanoparticles Grown on Hexagonal Boron Nitride/Rh(111). The Journal of Physical Chemistry C 2016, 120 (20) , 10909-10918. https://doi.org/10.1021/acs.jpcc.6b01645
    20. Jun Wang, Monica McEntee, Wenjie Tang, Matthew Neurock, Arthur P. Baddorf, Petro Maksymovych, and John T. Yates, Jr. . Formation, Migration, and Reactivity of Au–CO Complexes on Gold Surfaces. Journal of the American Chemical Society 2016, 138 (5) , 1518-1526. https://doi.org/10.1021/jacs.5b09052
    21. Juergen Biener, Monika M. Biener, Robert J. Madix, and Cynthia M. Friend . Nanoporous Gold: Understanding the Origin of the Reactivity of a 21st Century Catalyst Made by Pre-Columbian Technology. ACS Catalysis 2015, 5 (11) , 6263-6270. https://doi.org/10.1021/acscatal.5b01586
    22. Jan Pischel and Annemarie Pucci . Low-Temperature Adsorption of Carbon Monoxide on Gold Surfaces: IR Spectroscopy Uncovers Different Adsorption States on Pristine and Rough Au(111). The Journal of Physical Chemistry C 2015, 119 (32) , 18340-18351. https://doi.org/10.1021/acs.jpcc.5b05051
    23. Jie Shen, Juanjuan Jia, Kirill Bobrov, Laurent Guillemot, and Vladimir A. Esaulov . Electron Transfer Processes on Supported Au Nanoclusters and Nanowires and Substrate Effects. The Journal of Physical Chemistry C 2015, 119 (27) , 15168-15176. https://doi.org/10.1021/acs.jpcc.5b02525
    24. Qingfeng Zhang and Hui Wang . Facet-Dependent Catalytic Activities of Au Nanoparticles Enclosed by High-Index Facets. ACS Catalysis 2014, 4 (11) , 4027-4033. https://doi.org/10.1021/cs501445h
    25. Qingfeng Zhang, Douglas A. Blom, and Hui Wang . Nanoporosity-Enhanced Catalysis on Subwavelength Au Nanoparticles: a Plasmon-Enhanced Spectroscopic Study. Chemistry of Materials 2014, 26 (17) , 5131-5142. https://doi.org/10.1021/cm502508d
    26. Zongfang Wu, Yuekang Jin, Lingshun Xu, Qing Yuan, Feng Xiong, Zhiquan Jiang, and Weixin Huang . Reactivity of Oxygen Adatoms on Stepped Au(997) Surface toward NO and NO2. The Journal of Physical Chemistry C 2014, 118 (16) , 8397-8405. https://doi.org/10.1021/jp500058c
    27. Arne Wittstock and Marcus Bäumer . Catalysis by Unsupported Skeletal Gold Catalysts. Accounts of Chemical Research 2014, 47 (3) , 731-739. https://doi.org/10.1021/ar400202p
    28. Magdalena Bachmann, Djuro Bikaljevic, Norbert Memmel, and Erminald Bertel . Adsorption and Reactions of Carbon Monoxide and Oxygen on Bare and Au-Decorated Carburized W(110). The Journal of Physical Chemistry C 2013, 117 (33) , 17024-17032. https://doi.org/10.1021/jp404528p
    29. Bun Chan and Wai-Leung Yim . Accurate Computation of Cohesive Energies for Small to Medium-Sized Gold Clusters. Journal of Chemical Theory and Computation 2013, 9 (4) , 1964-1970. https://doi.org/10.1021/ct400047y
    30. Shirly Borukhin, Cecile Saguy, Maria Koifman, and Boaz Pokroy . Self-Ordered Vicinal-Surface-Like Nanosteps at the Thin Metal-Film/Substrate Interface. The Journal of Physical Chemistry C 2012, 116 (22) , 12149-12155. https://doi.org/10.1021/jp303205n
    31. Christopher J. Pursell, Bert D. Chandler, Maela Manzoli, and Flora Boccuzzi . CO Adsorption on Supported Gold Nanoparticle Catalysts: Application of the Temkin Model. The Journal of Physical Chemistry C 2012, 116 (20) , 11117-11125. https://doi.org/10.1021/jp3022826
    32. M. Eyrich, T. Diemant, H. Hartmann, J. Bansmann, and R. J. Behm . Interaction of CO with Structurally Well-Defined Monolayer PtAu/Pt(111) Surface Alloys. The Journal of Physical Chemistry C 2012, 116 (20) , 11154-11165. https://doi.org/10.1021/jp302469c
    33. Christopher J. Pursell, Heather Hartshorn, Timothy Ward, Bert D. Chandler, and Flora Boccuzzi . Application of the Temkin Model to the Adsorption of CO on Gold. The Journal of Physical Chemistry C 2011, 115 (48) , 23880-23892. https://doi.org/10.1021/jp207103z
    34. Brian H. Morrow, Daniel E. Resasco, and Alberto Striolo , Marco Buongiorno Nardelli . CO Adsorption on Noble Metal Clusters: Local Environment Effects. The Journal of Physical Chemistry C 2011, 115 (13) , 5637-5647. https://doi.org/10.1021/jp108763f
    35. Zoltán Pászti, Orsolya Hakkel, Tamás Keszthelyi, András Berkó, Nándor Balázs, Imre Bakó, and László Guczi . Interaction of Carbon Monoxide with Au(111) Modified by Ion Bombardment: A Surface Spectroscopy Study under Elevated Pressure. Langmuir 2010, 26 (21) , 16312-16324. https://doi.org/10.1021/la1014913
    36. Wai-Leung Yim and Thorsten Klüner . Understanding of Adsorption and Catalytic Properties of Bimetallic Pt−Co Alloy Surfaces from First Principles: Insight from Disordered Alloy Surfaces. The Journal of Physical Chemistry C 2010, 114 (15) , 7141-7152. https://doi.org/10.1021/jp101602b
    37. Changjun Zhang, Angelos Michaelides, David A. King and Stephen J. Jenkins . Positive Charge States and Possible Polymorphism of Gold Nanoclusters on Reduced Ceria. Journal of the American Chemical Society 2010, 132 (7) , 2175-2182. https://doi.org/10.1021/ja906687f
    38. Tatyana Kravchuk, Vinay Venugopal, Luca Vattuone, Luke Burkholder, Wilfred T. Tysoe, Marco Smerieri and Mario Rocca. Ethene Adsorption and Decomposition on the Cu(410) Surface. The Journal of Physical Chemistry C 2009, 113 (49) , 20881-20889. https://doi.org/10.1021/jp904794n
    39. D. den Boer, M. J. J. Coenen, M. van der Maas, T. P. J. Peters, O. I. Shklyarevskii, J. A. A. W. Elemans, A. E. Rowan and S. Speller. Electron Transport through CO Studied by Gold Break-Junctions in Nonpolar Liquids. The Journal of Physical Chemistry C 2009, 113 (34) , 15412-15416. https://doi.org/10.1021/jp905171s
    40. Heather Hartshorn, Christopher J. Pursell and Bert D. Chandler. Adsorption of CO on Supported Gold Nanoparticle Catalysts: A Comparative Study. The Journal of Physical Chemistry C 2009, 113 (24) , 10718-10725. https://doi.org/10.1021/jp902553n
    41. Giannis Mpourmpakis and Dionisios G. Vlachos. The Effects of the MgO Support and Alkali Doping on the CO Interaction with Au. The Journal of Physical Chemistry C 2009, 113 (17) , 7329-7335. https://doi.org/10.1021/jp900198m
    42. Arne Wittstock, Björn Neumann, Andreas Schaefer, Karifala Dumbuya, Christian Kübel, Monika M. Biener, Volkmar Zielasek, Hans-Peter Steinrück, J. Michael Gottfried, Jürgen Biener, Alex Hamza and Marcus Bäumer. Nanoporous Au: An Unsupported Pure Gold Catalyst?. The Journal of Physical Chemistry C 2009, 113 (14) , 5593-5600. https://doi.org/10.1021/jp808185v
    43. Jan Hrbek, Friedrich M. Hoffmann, Joon B. Park, Ping Liu, Dario Stacchiola, Yong Soo Hoo, Shuguo Ma, Akira Nambu, Jose A. Rodriguez and Michael G. White. Adsorbate-Driven Morphological Changes of a Gold Surface at Low Temperatures. Journal of the American Chemical Society 2008, 130 (51) , 17272-17273. https://doi.org/10.1021/ja8081268
    44. M. S. Pierce,, K-C Chang,, D. C. Hennessy,, V. Komanicky,, A. Menzel, and, H. You. CO-Induced Lifting of Au(001) Surface Reconstruction. The Journal of Physical Chemistry C 2008, 112 (7) , 2231-2234. https://doi.org/10.1021/jp7105764
    45. Elad Gross and, Micha Asscher, , Matthew Lundwall and, D. Wayne Goodman. Gold Nanoclusters Deposited on SiO2 via Water as Buffer Layer:  CO-IRAS and TPD Characterization. The Journal of Physical Chemistry C 2007, 111 (44) , 16197-16201. https://doi.org/10.1021/jp0754031
    46. Luca Bernardini, Reiner Kleinrahm, Katharina Moritz, Mark O. McLinden, Markus Richter. The Four-Sinker Densimeter: A New Instrument for the Combined Investigation of Accurate Densities and Sorption Phenomena of Pure Gases and Gas Mixtures. International Journal of Thermophysics 2024, 45 (4) https://doi.org/10.1007/s10765-024-03336-0
    47. Jaclyn A. Rebstock, Quansong Zhu, L. Robert Baker. Exploring the influence of interfacial solvation on electrochemical CO 2 reduction using plasmon‐enhanced vibrational sum frequency generation spectroscopy. ChemCatChem 2024, https://doi.org/10.1002/cctc.202301301
    48. Stefan Wild, Christoph Mahr, Andreas Rosenauer, Thomas Risse, Sergey Vasenkov, Marcus Bäumer. New Perspectives for Evaluating the Mass Transport in Porous Catalysts and Unfolding Macro- and Microkinetics. Catalysis Letters 2023, 153 (11) , 3405-3422. https://doi.org/10.1007/s10562-022-04218-6
    49. Xiaoxia Chang, Sudarshan Vijay, Yaran Zhao, Nicholas J. Oliveira, Karen Chan, Bingjun Xu. Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30262-2
    50. Eric M. Maxwell, Lyssa A. Garber, Clayton J. Rogers, Ava J. Galgano, Jordon S. Baker, Hasan Kaleem, David T. Boyle, Jessica L. Berry, Ashleigh E. Baber. Desorption trends of small alcohols and the disruption of intermolecular interactions at defect sites on Au(111). Physical Chemistry Chemical Physics 2022, 24 (38) , 23884-23892. https://doi.org/10.1039/D1CP05509G
    51. Amineh Baniani, Stefan Wild, Evan M. Forman, Thomas Risse, Sergey Vasenkov, Marcus Bäumer. Disentangling catalysis and mass transport: Using diffusion measurements by pulsed field gradient NMR to reveal the microkinetics of CO oxidation over nanoporous gold. Journal of Catalysis 2022, 413 , 1123-1131. https://doi.org/10.1016/j.jcat.2022.08.020
    52. Yun Ji Lim, Dongho Seo, Syed Asad Abbas, Haeun Jung, Ahyeon Ma, Kug‐Seung Lee, Gaehang Lee, Hosik Lee, Ki Min Nam. Unraveling the Simultaneous Enhancement of Selectivity and Durability on Single‐Crystalline Gold Particles for Electrochemical CO 2 Reduction. Advanced Science 2022, 9 (20) https://doi.org/10.1002/advs.202201491
    53. Jaclyn A. Rebstock, Quansong Zhu, L. Robert Baker. Comparing interfacial cation hydration at catalytic active sites and spectator sites on gold electrodes: understanding structure sensitive CO 2 reduction kinetics. Chemical Science 2022, 13 (25) , 7634-7643. https://doi.org/10.1039/D2SC01878K
    54. Thi Kieu Ngan Pham, Geoffrey A. Garcia, Joseph J. Brown. Measurement of isosteric heat of gas adsorption and Brunauer–Emmett–Teller (BET) surface area using a quartz crystal microbalance. Review of Scientific Instruments 2022, 93 (6) https://doi.org/10.1063/5.0073233
    55. Qiman Liu, Manli Zhang, Dawen Zhang, Yunhu Hu, Qiyong Zhu, Longjiu Cheng. Adsorption properties of pyramidal superatomic molecules based on the structural framework of the Au 20 cluster. Physical Chemistry Chemical Physics 2022, 24 (20) , 12410-12418. https://doi.org/10.1039/D2CP01552H
    56. Christoph D. Feldt, Thorren Kirschbaum, Jian Liang Low, Wiebke Riedel, Thomas Risse. Methanol oxidation on Au(332): methyl formate selectivity and surface deactivation under isothermal conditions. Catalysis Science & Technology 2022, 12 (5) , 1418-1428. https://doi.org/10.1039/D1CY02034J
    57. Chunyang Wang, Hongyang Liu, Huichao Duan, Zhenwei Li, Panlin Zeng, Peichao Zou, Xuelu Wang, Hengqiang Ye, Huolin L. Xin, Kui Du. 3D atomic imaging of low-coordinated active sites in solid-state dealloyed hierarchical nanoporous gold. Journal of Materials Chemistry A 2021, 9 (45) , 25513-25521. https://doi.org/10.1039/D1TA05942D
    58. Christoph D. Feldt, Thorren Gimm, Raphaell Moreira, Wiebke Riedel, Thomas Risse. Methanol oxidation on Au(332): an isothermal pulsed molecular beam study. Physical Chemistry Chemical Physics 2021, 23 (38) , 21599-21605. https://doi.org/10.1039/D1CP03436G
    59. Chen Guo, Tian Zhang, Xiaoqing Lu, Chi‐Man Lawrence Wu. Rational Design and Effective Control of Gold‐Based Bimetallic Electrocatalyst for Boosting CO 2 Reduction Reaction: A First‐Principles Study. ChemSusChem 2021, 14 (13) , 2731-2739. https://doi.org/10.1002/cssc.202100785
    60. Forrest H. Kaatz, Adhemar Bultheel. Catalytic thermodynamic model for nanocluster adsorbates. Catalysis Today 2021, 360 , 157-164. https://doi.org/10.1016/j.cattod.2019.06.077
    61. Yanxiu Gao, Yi Ding. Nanoporous Metals for Heterogeneous Catalysis: Following the Success of Raney Nickel. Chemistry – A European Journal 2020, 26 (41) , 8845-8856. https://doi.org/10.1002/chem.202000471
    62. Michael Siemer, Lars Mohrhusen, Maximilian Grebien, Katharina Al-Shamery. Amine Capped Gold Colloids at Oxidic Supports: Their Electronic Interactions. Zeitschrift für Physikalische Chemie 2018, 233 (1) , 69-84. https://doi.org/10.1515/zpch-2018-0004
    63. Guangfang Grace Li, Hui Wang. Dealloyed Nanoporous Gold Catalysts: From Macroscopic Foams to Nanoparticulate Architectures. ChemNanoMat 2018, 4 (9) , 897-908. https://doi.org/10.1002/cnma.201800161
    64. Yafei Luo, Zhongzhu Chen, Zhigang Xu, Donglin Yang, Jin Zhang, Dianyong Tang. Theoretical insights into acetylene adsorption on nanoporous gold surfaces: Role of residual silver. Applied Surface Science 2018, 434 , 735-743. https://doi.org/10.1016/j.apsusc.2017.10.205
    65. Anna L. Gould, C. Richard A. Catlow, Andrew J. Logsdail. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1 − 5, 147) and monometallic Au and Ag low-energy surfaces. The European Physical Journal B 2018, 91 (2) https://doi.org/10.1140/epjb/e2017-80280-7
    66. L. Vattuone, L. Savio, M. Rocca. Influence of Defects on Adsorption—Model Studies With Stepped Surfaces. 2018, 138-165. https://doi.org/10.1016/B978-0-12-409547-2.11461-1
    67. L. Moskaleva, W. Dononelli, T. Klüner. Aerobic Alcohol Oxidation on Nanoporous Gold: Toward a Mechanistic Understanding of the Reactivity. 2018, 20-30. https://doi.org/10.1016/B978-0-12-409547-2.14152-6
    68. Hsuan Lee, Zhen-He Liao, Po-Wei Hsu, Yu-Cheng Wu, Meng-Chin Cheng, Jeng-Han Wang, Meng-Fan Luo. Decomposition of methanol-d 4 on Au–Rh bimetallic nanoclusters on a thin film of Al 2 O 3 /NiAl(100). Physical Chemistry Chemical Physics 2018, 20 (16) , 11260-11272. https://doi.org/10.1039/C8CP01714J
    69. Hsuan Lee, Zhen-He Liao, Po-Wei Hsu, Ting-Chieh Hung, Yu-Cheng Wu, Yuwei Lin, Jeng-Han Wang, Meng-Fan Luo. Surface structures and compositions of Au–Rh bimetallic nanoclusters supported on thin-film Al2O3/NiAl(100) probed with CO. The Journal of Chemical Physics 2017, 147 (4) https://doi.org/10.1063/1.4995598
    70. Larissa Thia, Mingshi Xie, Donghwan Kim, Xin Wang. Ag containing porous Au structures as highly selective catalysts for glycolate and formate. Catalysis Science & Technology 2017, 7 (4) , 874-881. https://doi.org/10.1039/C6CY02580C
    71. Lars Mohrhusen, Milena Osmić. Sterical ligand stabilization of nanocrystals versus electrostatic shielding by ionic compounds: a principle model study with TEM and XPS. RSC Advances 2017, 7 (21) , 12897-12907. https://doi.org/10.1039/C6RA27454D
    72. Po-Wei Hsu, Zhen-He Liao, Ting-Chieh Hung, Hsuan Lee, Yu-Cheng Wu, Yu-Ling Lai, Yao-Jane Hsu, Yuwei Lin, Jeng-Han Wang, Meng-Fan Luo. Formation and structures of Au–Rh bimetallic nanoclusters supported on a thin film of Al 2 O 3 /NiAl(100). Physical Chemistry Chemical Physics 2017, 19 (22) , 14566-14579. https://doi.org/10.1039/C7CP02524F
    73. Hsuan Lee, Zhen-He Liao, Po-Wei Hsu, Ting-Chieh Hung, Yu-Cheng Wu, Yuwei Lin, Jeng-Han Wang, Meng-Fan Luo. The interaction of CO molecules on Au–Rh bimetallic nanoclusters supported on a thin film of Al 2 O 3 /NiAl(100). RSC Advances 2017, 7 (22) , 13362-13371. https://doi.org/10.1039/C7RA00482F
    74. Anna Wuttig, Momo Yaguchi, Kenta Motobayashi, Masatoshi Osawa, Yogesh Surendranath. Inhibited proton transfer enhances Au-catalyzed CO 2 -to-fuels selectivity. Proceedings of the National Academy of Sciences 2016, 113 (32) https://doi.org/10.1073/pnas.1602984113
    75. F.M. Hoffmann, J. Hrbek, S. Ma, J.B. Park, J.A. Rodriguez, D.J. Stacchiola, S.D. Senanayake. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO. Surface Science 2016, 650 , 17-23. https://doi.org/10.1016/j.susc.2015.11.021
    76. Xiao-Qing Deng, Bin Zhu, Xiao-Song Li, Jing-Lin Liu, Xiaobing Zhu, Ai-Min Zhu. Visible-light photocatalytic oxidation of CO over plasmonic Au/TiO 2 : Unusual features of oxygen plasma activation. Applied Catalysis B: Environmental 2016, 188 , 48-55. https://doi.org/10.1016/j.apcatb.2016.01.055
    77. Zongfang Wu, Zhiquan Jiang, Yuekang Jin, Feng Xiong, Guanghui Sun, Weixin Huang. Reaction heat-driven CO2 desorption during CO oxidation on Au(997) at low temperatures. Science China Chemistry 2016, 59 (6) , 752-759. https://doi.org/10.1007/s11426-015-5510-y
    78. Xiang He, Zhao-Xu Chen. A study on the morphology and catalytic activity of gold nanoparticles by the kinetic Monte Carlo simulation. Applied Surface Science 2016, 370 , 433-436. https://doi.org/10.1016/j.apsusc.2016.01.265
    79. Li Wang, Qiwei Chen, Hong Shi, Huihui Liu, Xinguo Ren, Bing Wang, Kai Wu, Xiang Shao. Metal adatoms generated by the co-play of melamine assembly and subsequent CO adsorption. Physical Chemistry Chemical Physics 2016, 18 (4) , 2324-2329. https://doi.org/10.1039/C5CP05976C
    80. Yongfeng Tong, Tingming Jiang, Azzedine Bendounan, Makri Nimbegondi Kotresh Harish, Angelo Giglia, Stefan Kubsky, Fausto Sirotti, Luca Pasquali, Srinivasan Sampath, Vladimir A Esaulov. Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes. Beilstein Journal of Nanotechnology 2016, 7 , 263-277. https://doi.org/10.3762/bjnano.7.24
    81. Chen-Han Lin, Lan-Yi Wei, Jhao-Hong Lee, Chun-Lung Lien, Chung-Hsiang Lu, Chiun-Jye Yuan. Effect of anions on the oxidation and reduction of hydrogen peroxide on the gold nanoparticle-deposited carbon fiber paper electrode. Electrochimica Acta 2015, 180 , 64-70. https://doi.org/10.1016/j.electacta.2015.08.081
    82. Yohaselly Santiago-Rodríguez, Jeffrey A. Herron, María C. Curet-Arana, Manos Mavrikakis. Atomic and molecular adsorption on Au(111). Surface Science 2014, 627 , 57-69. https://doi.org/10.1016/j.susc.2014.04.012
    83. Zhenhua Zeng, Jeff Greeley. Theoretical study of CO adsorption on Au catalysts under environmental catalytic conditions. Catalysis Communications 2014, 52 , 78-83. https://doi.org/10.1016/j.catcom.2014.03.016
    84. Y.-D. Li, T.-W. Liao, C. X. Wang, C.-S. Chao, T.-C. Hung, C. Y. Ho, M.-F. Luo, Yu-Ling Lai, Yao-Jane Hsu. The decomposition of methanol on Au–Pt bimetallic clusters supported by a thin film of Al 2 O 3 /NiAl(100). RSC Adv. 2014, 4 (60) , 31602-31613. https://doi.org/10.1039/C4RA03406F
    85. Y.D. Li, T.C. Hong, T.W. Liao, M.F. Luo. Surface structures of Au–Pt bimetallic nanoclusters on thin film Al2O3/NiAl(100) probed with CO. Surface Science 2013, 618 , 132-139. https://doi.org/10.1016/j.susc.2013.09.013
    86. Uwe Burghaus. Applications of electron beam lithography in surface science and catalysis – model-nano-array catalysts. 2013, 141-171. https://doi.org/10.1039/9781849737203-00141
    87. W.G. Menezes, V. Zielasek, K. Thiel, A. Hartwig, M. Bäumer. Effects of particle size, composition, and support on catalytic activity of AuAg nanoparticles prepared in reverse block copolymer micelles as nanoreactors. Journal of Catalysis 2013, 299 , 222-231. https://doi.org/10.1016/j.jcat.2012.12.006
    88. S.M. Kozlov, H.A. Aleksandrov, L.V. Moskaleva, M. Bäumer, K.M. Neyman. From Static to Reacting Systems on Transition-Metal Surfaces. 2013, 475-503. https://doi.org/10.1016/B978-0-08-097774-4.00733-6
    89. Chiun-Yu Ho, Rahul B. Patil, Chao-Chuan Wang, Chen-Sheng Chao, Yu-Da Li, Hsing-Chung Hsu, Meng-Fan Luo, Yin-Chang Lin, Yu-Lin Lai, Yao-Jane Hsu. Methanol-driven structuring of Au–Pt bimetallic nanoclusters on a thin film of Al2O3/NiAl(100). Surface Science 2012, 606 (15-16) , 1173-1179. https://doi.org/10.1016/j.susc.2012.03.015
    90. A.P. Farkas, A. Berkó, F. Solymosi. Interaction of HNCO with Au(111) surfaces. Surface Science 2012, 606 (15-16) , 1345-1349. https://doi.org/10.1016/j.susc.2012.04.025
    91. Karin Föttinger, Christian Weilach, Günther Rupprechter. Sum Frequency Generation and Infrared Reflection Absorption Spectroscopy. 2012, 211-253. https://doi.org/10.1002/9783527645329.ch6
    92. L Vattuone, V Venugopal, T Kravchuk, M Smerieri, L Savio, M Rocca. Poisoning and non-poisoning oxygen on Cu(410). Journal of Physics: Condensed Matter 2011, 23 (48) , 484001. https://doi.org/10.1088/0953-8984/23/48/484001
    93. J. Shan, M. Komarneni, U. Burghaus. Adsorption dynamics of CO on copper and gold clusters supported on silica – How special is nanogold?. Chemical Physics Letters 2011, 517 (1-3) , 59-61. https://doi.org/10.1016/j.cplett.2011.09.076
    94. M.E. van Reijzen, M.A. van Spronsen, J.C. Docter, L.B.F. Juurlink. CO and H2O adsorption and reaction on Au(310). Surface Science 2011, 605 (17-18) , 1726-1731. https://doi.org/10.1016/j.susc.2011.06.006
    95. Guo-Rue Hu, Chen-Sheng Chao, Hong-Wan Shiu, Cheng-Ting Wang, Won-Ru Lin, Yao-Jane Hsu, Meng-Fan Luo. Low-temperature decomposition of methanol on Au nanoclusters supported on a thin film of Al2O3/NiAl(100). Physical Chemistry Chemical Physics 2011, 13 (8) , 3281. https://doi.org/10.1039/c0cp00526f
    96. Lyudmila V. Moskaleva, Sarah Röhe, Arne Wittstock, Volkmar Zielasek, Thorsten Klüner, Konstantin M. Neyman, Marcus Bäumer. Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Physical Chemistry Chemical Physics 2011, 13 (10) , 4529. https://doi.org/10.1039/c0cp02372h
    97. O. Hakkel, Z. Pászti, A. Berkó, K. Frey, L. Guczi. In situ sum frequency generation vibrational spectroscopy study of CO adsorption on Au surfaces promoted by Ar+ sputtering and FeOx additives. Catalysis Today 2010, 158 (1-2) , 63-68. https://doi.org/10.1016/j.cattod.2010.05.039
    98. R. M. Nielsen, S. Murphy, C. Strebel, M. Johansson, I. Chorkendorff, J. H. Nielsen. The morphology of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source. Journal of Nanoparticle Research 2010, 12 (4) , 1249-1262. https://doi.org/10.1007/s11051-009-9830-8
    99. E. Kadossov, U. Burghaus. Adsorption Dynamics of CO on Silica Supported Gold Clusters: Cluster Size Effects in Molecular Beam Scattering Experiments. Catalysis Letters 2010, 134 (3-4) , 228-232. https://doi.org/10.1007/s10562-009-0250-2
    100. Luca Artiglia, Thomas Diemant, Heinrich Hartmann, Joachim Bansmann, R. Jürgen Behm, Luca Gavioli, Emanuele Cavaliere, Gaetano Granozzi. Stability and chemisorption properties of ultrathin TiOx/Pt(111) films and Au/TiOx/Pt(111) model catalysts in reactive atmospheres. Physical Chemistry Chemical Physics 2010, 12 (25) , 6864. https://doi.org/10.1039/c000884b
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect