ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Simulating Water with the Self-Consistent-Charge Density Functional Tight Binding Method:  From Molecular Clusters to the Liquid State

View Author Information
Department of Chemistry, Duke University, Durham, North Carolina 27708, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, D-38106 Braunschweig, Germany
Cite this: J. Phys. Chem. A 2007, 111, 26, 5685–5691
Publication Date (Web):May 3, 2007
https://doi.org/10.1021/jp070308d
Copyright © 2007 American Chemical Society

    Article Views

    1126

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The recently developed self-consistent-charge density functional tight binding (SCCDFTB) method provides an accurate and inexpensive quantum mechanical solution to many molecular systems of interests. To examine the performance of the SCCDFTB method on (liquid) water, the most fundamental yet indispensable molecule in biological systems, we report here the simulation results of water in sizes ranging from molecular clusters to the liquid state. The latter simulation was achieved through the use of the linear scaling divide-and-conquer approach. The results of liquid water simulation indicate that the SCCDFTB method can describe the structural and energetics of liquid water in qualitative agreement with experiments, and the results for water clusters suggest potential future improvements of the SCCDFTB method.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Part of the “DFTB Special Section”.

    *

     Corresponding authors. E-mail:  H.H., [email protected]; J.H., [email protected]; W.Y., [email protected].

     Duke University.

    §

     University of North Carolina at Chapel Hill.

     Technische Universität Braunschweig.

    Cited By

    This article is cited by 77 publications.

    1. Hiromi Nakai, Masato Kobayashi, Takeshi Yoshikawa, Junji Seino, Yasuhiro Ikabata, Yoshifumi Nishimura. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations. The Journal of Physical Chemistry A 2023, 127 (3) , 589-618. https://doi.org/10.1021/acs.jpca.2c06965
    2. Paulo Siani, Stefano Motta, Lorenzo Ferraro, Asmus O. Dohn, Cristiana Di Valentin. Dopamine-Decorated TiO2 Nanoparticles in Water: A QM/MM vs an MM Description. Journal of Chemical Theory and Computation 2020, 16 (10) , 6560-6574. https://doi.org/10.1021/acs.jctc.0c00483
    3. Nana Komoto, Takeshi Yoshikawa, Yoshifumi Nishimura, Hiromi Nakai. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method. Journal of Chemical Theory and Computation 2020, 16 (4) , 2369-2378. https://doi.org/10.1021/acs.jctc.9b01268
    4. Van Quan Vuong, Yoshio Nishimoto, Dmitri G. Fedorov, Bobby G. Sumpter, Thomas A. Niehaus, Stephan Irle. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. Journal of Chemical Theory and Computation 2019, 15 (5) , 3008-3020. https://doi.org/10.1021/acs.jctc.9b00108
    5. Costanza Ronchi, Martina Datteo, Moloud Kaviani, Daniele Selli, Cristiana Di Valentin. Unraveling Dynamical and Light Effects on Functionalized Titanium Dioxide Nanoparticles for Bioconjugation. The Journal of Physical Chemistry C 2019, 123 (15) , 10130-10144. https://doi.org/10.1021/acs.jpcc.9b01385
    6. Costanza Ronchi, Daniele Selli, Waranyu Pipornpong, Cristiana Di Valentin. Proton Transfers at a Dopamine-Functionalized TiO2 Interface. The Journal of Physical Chemistry C 2019, 123 (13) , 7682-7695. https://doi.org/10.1021/acs.jpcc.8b04921
    7. Muhammad Saleh, Thomas S. Hofer. A DFTB/MM MD Approach for Solid-State Interfaces: Structural and Dynamical Properties of H2O and NH3 on R-TiO2 (001). The Journal of Physical Chemistry C 2019, 123 (12) , 7230-7245. https://doi.org/10.1021/acs.jpcc.9b00574
    8. Gianluca Fazio, Daniele Selli, Lorenzo Ferraro, Gotthard Seifert, Cristiana Di Valentin. Curved TiO2 Nanoparticles in Water: Short (Chemical) and Long (Physical) Range Interfacial Effects. ACS Applied Materials & Interfaces 2018, 10 (35) , 29943-29953. https://doi.org/10.1021/acsami.8b08172
    9. Ole Schütt, Joost VandeVondele. Machine Learning Adaptive Basis Sets for Efficient Large Scale Density Functional Theory Simulation. Journal of Chemical Theory and Computation 2018, 14 (8) , 4168-4175. https://doi.org/10.1021/acs.jctc.8b00378
    10. Aditya Wibawa Sakti, Yoshifumi Nishimura, Chien-Pin Chou, and Hiromi Nakai . Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice Ih, Ice Ic, Ice III, and Melted Ice VI Phases. The Journal of Physical Chemistry A 2018, 122 (1) , 33-40. https://doi.org/10.1021/acs.jpca.7b10664
    11. Daniele Selli, Gianluca Fazio, Gotthard Seifert, and Cristiana Di Valentin . Water Multilayers on TiO2 (101) Anatase Surface: Assessment of a DFTB-Based Method. Journal of Chemical Theory and Computation 2017, 13 (8) , 3862-3873. https://doi.org/10.1021/acs.jctc.7b00479
    12. Yoshio Nishimoto, Hiroya Nakata, Dmitri G. Fedorov, and Stephan Irle . Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. The Journal of Physical Chemistry Letters 2015, 6 (24) , 5034-5039. https://doi.org/10.1021/acs.jpclett.5b02490
    13. Yoshio Nishimoto, Dmitri G. Fedorov, and Stephan Irle . Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation 2014, 10 (11) , 4801-4812. https://doi.org/10.1021/ct500489d
    14. Puja Goyal, Hu-Jun Qian, Stephan Irle, Xiya Lu, Daniel Roston, Toshifumi Mori, Marcus Elstner, and Qiang Cui . Molecular Simulation of Water and Hydration Effects in Different Environments: Challenges and Developments for DFTB Based Models. The Journal of Physical Chemistry B 2014, 118 (38) , 11007-11027. https://doi.org/10.1021/jp503372v
    15. Robert E. Duke, Oleg N. Starovoytov, Jean-Philip Piquemal, and G. Andrés Cisneros . GEM*: A Molecular Electronic Density-Based Force Field for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2014, 10 (4) , 1361-1365. https://doi.org/10.1021/ct500050p
    16. Timothy J. Giese, Haoyuan Chen, Ming Huang, and Darrin M. York . Parametrization of an Orbital-Based Linear-Scaling Quantum Force Field for Noncovalent Interactions. Journal of Chemical Theory and Computation 2014, 10 (3) , 1086-1098. https://doi.org/10.1021/ct401035t
    17. Timothy J. Giese, Haoyuan Chen, Thakshila Dissanayake, George M. Giambaşu, Hugh Heldenbrand, Ming Huang, Erich R. Kuechler, Tai-Sung Lee, Maria T. Panteva, Brian K. Radak, and Darrin M. York . A Variational Linear-Scaling Framework to Build Practical, Efficient Next-Generation Orbital-Based Quantum Force Fields. Journal of Chemical Theory and Computation 2013, 9 (3) , 1417-1427. https://doi.org/10.1021/ct3010134
    18. Garold Murdachaew, Christopher J. Mundy, and Gregory K. Schenter , Teodoro Laino , Jürg Hutter . Semiempirical Self-Consistent Polarization Description of Bulk Water, the Liquid−Vapor Interface, and Cubic Ice. The Journal of Physical Chemistry A 2011, 115 (23) , 6046-6053. https://doi.org/10.1021/jp110481m
    19. Puja Goyal, Marcus Elstner, and Qiang Cui . Application of the SCC-DFTB Method to Neutral and Protonated Water Clusters and Bulk Water. The Journal of Physical Chemistry B 2011, 115 (20) , 6790-6805. https://doi.org/10.1021/jp202259c
    20. Y. Indra Neela, A. Subha Mahadevi, and G. Narahari Sastry. Hydrogen Bonding in Water Clusters and Their Ionized Counterparts. The Journal of Physical Chemistry B 2010, 114 (51) , 17162-17171. https://doi.org/10.1021/jp108634z
    21. C. Mark Maupin, Bálint Aradi and Gregory A. Voth. The Self-Consistent Charge Density Functional Tight Binding Method Applied to Liquid Water and the Hydrated Excess Proton: Benchmark Simulations. The Journal of Physical Chemistry B 2010, 114 (20) , 6922-6931. https://doi.org/10.1021/jp1010555
    22. Tae Hoon Choi and Kenneth D. Jordan. Application of the SCC-DFTB Method to H+(H2O)6, H+(H2O)21, and H+(H2O)22. The Journal of Physical Chemistry B 2010, 114 (20) , 6932-6936. https://doi.org/10.1021/jp912289e
    23. H. Fox, K. E. Newman, W. F. Schneider and S. A. Corcelli. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding. Journal of Chemical Theory and Computation 2010, 6 (2) , 499-507. https://doi.org/10.1021/ct900665a
    24. Adélia J. A. Aquino, Daniel Tunega, Gabriele E. Schaumann, Georg Haberhauer, Martin H. Gerzabek and Hans Lischka . Stabilizing Capacity of Water Bridges in Nanopore Segments of Humic Substances: A Theoretical Investigation. The Journal of Physical Chemistry C 2009, 113 (37) , 16468-16475. https://doi.org/10.1021/jp9054796
    25. B. S. González,, J. Hernández-Rojas,, J. Bretón, and, J. M. Gomez Llorente. Global Potential Energy Minima of (H2O)n Clusters on Graphite. The Journal of Physical Chemistry C 2007, 111 (40) , 14862-14869. https://doi.org/10.1021/jp074249f
    26. Diana Katherine Campoverde Santos, Mohammed Ahmed Mustafa, Pooja Bansal, Harpreet Kaur, Mahamedha Deorari, Farag M. A. Altalbawy, Dheyaa Yahaia Alhameedi, Mahmood Hasen shuhata Alubiady, Ahmed Muzahem Al-Ani, Sally Salih Jumaa, Munther Kadhim Abosaoda, Li Zhang. Investigation of ORR and OER Mechanisms by Co- and Fe-doped Silicon Nanocages (Si48 and Si60) and Co- and Fe-doped Silicon Nanotubes (SiNT(5, 0) and SiNT(6, 0)) as Acceptable Catalysts. Silicon 2024, 15 https://doi.org/10.1007/s12633-024-02915-y
    27. Binquan Luan, James L. McDonagh. Developing semi-empirical water model for efficiently simulating temperature-dependent chemisorption of CO 2 in amine solvents. Physical Chemistry Chemical Physics 2024, 26 (4) , 3540-3547. https://doi.org/10.1039/D3CP05874C
    28. Yoshifumi Nishimura, Hiromi Nakai. Enabling large-scale quantum path integral molecular dynamics simulations through the integration of D cdftbmd and i-PI codes. The Journal of Chemical Physics 2023, 158 (16) https://doi.org/10.1063/5.0147535
    29. Van-Quan Vuong, Caterina Cevallos, Ben Hourahine, Bálint Aradi, Jacek Jakowski, Stephan Irle, Cristopher Camacho. Accelerating the density-functional tight-binding method using graphical processing units. The Journal of Chemical Physics 2023, 158 (8) https://doi.org/10.1063/5.0130797
    30. Edoardo Donadoni, Paulo Siani, Giulia Frigerio, Cristiana Di Valentin. Multi-scale modeling of folic acid-functionalized TiO 2 nanoparticles for active targeting of tumor cells. Nanoscale 2022, 14 (33) , 12099-12116. https://doi.org/10.1039/D2NR02603A
    31. Michela Pauletti, Vladimir V Rybkin, Marcella Iannuzzi. Surface tension of liquids and binary mixtures from molecular dynamics simulations. Journal of Physics: Condensed Matter 2022, 34 (4) , 044003. https://doi.org/10.1088/1361-648X/ac2e8f
    32. Hongsheng Liu, Paulo Siani, Enrico Bianchetti, Jijun Zhao, Cristiana Di Valentin. Multiscale simulations of the hydration shells surrounding spherical Fe 3 O 4 nanoparticles and effect on magnetic properties. Nanoscale 2021, 13 (20) , 9293-9302. https://doi.org/10.1039/D1NR01014J
    33. Paulo Siani, Enrico Bianchetti, Hongsheng Liu, Cristiana Di Valentin. Parametrization of the Fe–Owater cross-interaction for a more accurate Fe3O4/water interface model and its application to a spherical Fe3O4 nanoparticle of realistic size. The Journal of Chemical Physics 2021, 154 (3) https://doi.org/10.1063/5.0035678
    34. Yoshio Nishimoto, Stephan Irle. The FMO-DFTB Method. 2021, 459-485. https://doi.org/10.1007/978-981-15-9235-5_23
    35. Martina Datteo, Lorenzo Ferraro, Gotthard Seifert, Cristiana Di Valentin. TETT-functionalized TiO 2 nanoparticles for DOX loading: a quantum mechanical study at the atomic scale. Nanoscale Advances 2020, 2 (7) , 2774-2784. https://doi.org/10.1039/D0NA00275E
    36. Mayu Inamori, Takeshi Yoshikawa, Yasuhiro Ikabata, Yoshifumi Nishimura, Hiromi Nakai. Spin‐flip approach within time‐dependent density functional tight‐binding method: Theory and applications. Journal of Computational Chemistry 2020, 41 (16) , 1538-1548. https://doi.org/10.1002/jcc.26197
    37. Hongsheng Liu, Enrico Bianchetti, Paulo Siani, Cristiana Di Valentin. Insight into the interface between Fe 3 O 4 (001) surface and water overlayers through multiscale molecular dynamics simulations. The Journal of Chemical Physics 2020, 152 (12) , 124711. https://doi.org/10.1063/1.5140268
    38. Aditya W. Sakti, Yoshifumi Nishimura, Hiromi Nakai. Recent advances in quantum‐mechanical molecular dynamics simulations of proton transfer mechanism in various water‐based environments. WIREs Computational Molecular Science 2020, 10 (1) https://doi.org/10.1002/wcms.1419
    39. Robert E. Duke, G. Andrés Cisneros. Ewald-based methods for Gaussian integral evaluation: application to a new parameterization of GEM*. Journal of Molecular Modeling 2019, 25 (10) https://doi.org/10.1007/s00894-019-4194-1
    40. Moloud Kaviani, Cristiana Di Valentin. Rational design of nanosystems for simultaneous drug delivery and photodynamic therapy by quantum mechanical modeling. Nanoscale 2019, 11 (33) , 15576-15588. https://doi.org/10.1039/C9NR03763B
    41. Yoshifumi Nishimura, Hiromi Nakai. D cdftbmd : Divide‐and‐Conquer Density Functional Tight‐Binding Program for Huge‐System Quantum Mechanical Molecular Dynamics Simulations. Journal of Computational Chemistry 2019, 40 (15) , 1538-1549. https://doi.org/10.1002/jcc.25804
    42. William Dawson, Takahito Nakajima. Massively parallel sparse matrix function calculations with NTPoly. Computer Physics Communications 2018, 225 , 154-165. https://doi.org/10.1016/j.cpc.2017.12.010
    43. Yoshio Nishimoto, Dmitri G. Fedorov. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding. The Journal of Chemical Physics 2018, 148 (6) https://doi.org/10.1063/1.5012935
    44. Daniele Selli, Gianluca Fazio, Cristiana Di Valentin. Using Density Functional Theory to Model Realistic TiO2 Nanoparticles, Their Photoactivation and Interaction with Water. Catalysts 2017, 7 (12) , 357. https://doi.org/10.3390/catal7120357
    45. Timothy J Giese, Darrin M York. Quantum mechanical force fields for condensed phase molecular simulations. Journal of Physics: Condensed Matter 2017, 29 (38) , 383002. https://doi.org/10.1088/1361-648X/aa7c5c
    46. Gotthard Seifert. Tight‐Binding Density Functional Theory: DFTB. 2017, 203-226. https://doi.org/10.1002/9783527691036.hsscvol5010
    47. Yoshio Nishimoto, Dmitri G. Fedorov. Three‐body expansion of the fragment molecular orbital method combined with density‐functional tight‐binding. Journal of Computational Chemistry 2017, 38 (7) , 406-418. https://doi.org/10.1002/jcc.24693
    48. Gerald Monard, Jean-Louis Rivail. Solvent Effects in Quantum Chemistry. 2017, 727-739. https://doi.org/10.1007/978-3-319-27282-5_15
    49. Hiroaki Nishizawa, Yoshifumi Nishimura, Masato Kobayashi, Stephan Irle, Hiromi Nakai. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide‐and‐conquer, density‐functional tight‐binding, and massively parallel computation. Journal of Computational Chemistry 2016, 37 (21) , 1983-1992. https://doi.org/10.1002/jcc.24419
    50. Min Zheng, Mark P. Waller. Adaptive quantum mechanics/molecular mechanics methods. WIREs Computational Molecular Science 2016, 6 (4) , 369-385. https://doi.org/10.1002/wcms.1255
    51. Christopher John, Thomas Spura, Scott Habershon, Thomas D. Kühne. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics. Physical Review E 2016, 93 (4) https://doi.org/10.1103/PhysRevE.93.043305
    52. Ondrej Marsalek, Thomas E. Markland. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory. The Journal of Chemical Physics 2016, 144 (5) https://doi.org/10.1063/1.4941093
    53. Hao Shen, Ting Hao, Jing Wen, Rong-Ri Tan, Feng-Shou Zhang. Properties of pure water and sodium chloride solutions at high temperatures and pressures: a simulation study. Molecular Simulation 2015, 41 (18) , 1488-1494. https://doi.org/10.1080/08927022.2014.992019
    54. Gerald Monard, Jean-Louis Rivail. Solvent Effects in Quantum Chemistry. 2015, 1-13. https://doi.org/10.1007/978-94-007-6169-8_15-2
    55. Yoshifumi Nishimura, Yuan-Pern Lee, Stephan Irle, Henryk A. Witek. Critical interpretation of CH– and OH– stretching regions for infrared spectra of methanol clusters (CH3OH) n ( n = 2–5) using self-consistent-charge density functional tight-binding molecular dynamics simulations. The Journal of Chemical Physics 2014, 141 (9) https://doi.org/10.1063/1.4893952
    56. Soran Jahangiri, Lemin Cai, Gilles H. Peslherbe. Performance of density‐functional tight‐binding models in describing hydrogen‐bonded anionic‐water clusters. Journal of Computational Chemistry 2014, 35 (23) , 1707-1715. https://doi.org/10.1002/jcc.23677
    57. M. Riad Manaa, Laurence E. Fried. The Reactivity of Energetic Materials Under High Pressure and Temperature. 2014, 221-252. https://doi.org/10.1016/B978-0-12-800345-9.00006-4
    58. Michael Gaus, Qiang Cui, Marcus Elstner. Density functional tight binding: application to organic and biological molecules. WIREs Computational Molecular Science 2014, 4 (1) , 49-61. https://doi.org/10.1002/wcms.1156
    59. Manuel Doemer, Elisa Liberatore, Jan M. Knaup, Ivano Tavernelli, Ursula Rothlisberger. In situ parameterisation of SCC-DFTB repulsive potentials by iterative Boltzmann inversion. Molecular Physics 2013, 111 (22-23) , 3595-3607. https://doi.org/10.1080/00268976.2013.842011
    60. Manuel Doemer, Matteo Guglielmi, Prashanth Athri, Natalia S. Nagornova, Thomas R. Rizzo, Oleg V. Boyarkin, Ivano Tavernelli, Ursula Rothlisberger. Assessing the performance of computational methods for the prediction of the ground state structure of a cyclic decapeptide. International Journal of Quantum Chemistry 2013, 113 (6) , 808-814. https://doi.org/10.1002/qua.24085
    61. Tae Hoon Choi. Simulation of the (H2O)8 cluster with the SCC-DFTB electronic structure method. Chemical Physics Letters 2012, 543 , 45-49. https://doi.org/10.1016/j.cplett.2012.06.046
    62. Pia Tölle, Christof Köhler. Water free proton transport in imidazole functionalised silicon dioxide material: Calculation of free energy barrier dependent on the mCEC proton coordinate. physica status solidi (b) 2012, 249 (2) , 376-383. https://doi.org/10.1002/pssb.201100464
    63. Gerald Monard, Jean-Louis Rivail. Solvent Effects in Quantum Chemistry. 2012, 561-571. https://doi.org/10.1007/978-94-007-0711-5_15
    64. Noam Bernstein, Csilla Várnai, Iván Solt, Steven A. Winfield, Mike C. Payne, István Simon, Mónika Fuxreiter, Gábor Csányi. QM/MM simulation of liquid water with an adaptive quantum region. Phys. Chem. Chem. Phys. 2012, 14 (2) , 646-656. https://doi.org/10.1039/C1CP22600B
    65. Hasan Pašalić, Daniel Tunega, Adélia J. A. Aquino, Georg Haberhauer, Martin H. Gerzabek, Hans Lischka. The stability of the acetic acid dimer in microhydrated environments and in aqueous solution. Physical Chemistry Chemical Physics 2012, 14 (12) , 4162. https://doi.org/10.1039/c2cp23015a
    66. Xiangqian Hu, Yingdi Jin, Xiancheng Zeng, Hao Hu, Weitao Yang. Liquid water simulations with the density fragment interaction approach. Physical Chemistry Chemical Physics 2012, 14 (21) , 7700. https://doi.org/10.1039/c2cp23714h
    67. Guishan Zheng, Anders M. N. Niklasson, Martin Karplus. Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method. The Journal of Chemical Physics 2011, 135 (4) https://doi.org/10.1063/1.3605303
    68. Timothy J. Giese, Darrin M. York. Density-functional expansion methods: Generalization of the auxiliary basis. The Journal of Chemical Physics 2011, 134 (19) , 194103. https://doi.org/10.1063/1.3587052
    69. Monir Sharifi, Christof Köhler, Pia Tölle, Thomas Frauenheim, Michael Wark. Proton Conductivity of SO 3 H‐Functionalized Benzene–Periodic Mesoporous Organosilica. Small 2011, 7 (8) , 1086-1097. https://doi.org/10.1002/smll.201001931
    70. Duan Chen, Guo-Wei Wei. Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices. Journal of Computational Physics 2010, 229 (12) , 4431-4460. https://doi.org/10.1016/j.jcp.2010.02.002
    71. Garold Murdachaew, Christopher J. Mundy, Gregory K. Schenter. Improving the density functional theory description of water with self-consistent polarization. The Journal of Chemical Physics 2010, 132 (16) https://doi.org/10.1063/1.3385797
    72. Sachin D. Yeole, Shridhar R. Gadre. On the applicability of fragmentation methods to conjugated π systems within density functional framework. The Journal of Chemical Physics 2010, 132 (9) https://doi.org/10.1063/1.3324702
    73. J. M. Knaup, P. Tölle, Ch. Köhler, Th. Frauenheim. Quantum mechanical and molecular mechanical simulation approaches bridging length and time scales for simulation of interface reactions in realistic environments. The European Physical Journal Special Topics 2009, 177 (1) , 59-81. https://doi.org/10.1140/epjst/e2009-01168-5
    74. Kazuhiro Fujimoto, Weitao Yang. Density-fragment interaction approach for quantum-mechanical/molecular-mechanical calculations with application to the excited states of a Mg2+-sensitive dye. The Journal of Chemical Physics 2008, 129 (5) https://doi.org/10.1063/1.2958257
    75. Steven K Burger, Weitao Yang. Linear-scaling quantum calculations using non-orthogonal localized molecular orbitals. Journal of Physics: Condensed Matter 2008, 20 (29) , 294209. https://doi.org/10.1088/0953-8984/20/29/294209
    76. Daan P. Geerke, Stephan Thiel, Walter Thiel, Wilfred F. van Gunsteren. QM–MM interactions in simulations of liquid water using combined semi-empirical/classical Hamiltonians. Phys. Chem. Chem. Phys. 2008, 10 (2) , 297-302. https://doi.org/10.1039/B713197F
    77. Gustavo de M. Seabra, Ross C. Walker, Marcus Elstner, David A. Case, Adrian E. Roitberg. Implementation of the SCC-DFTB Method for Hybrid QM/MM Simulations within the Amber Molecular Dynamics Package. The Journal of Physical Chemistry A 2007, 111 (26) , 5655-5664. https://doi.org/10.1021/jp070071l

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect