ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Structure and Dynamics of Water Confined in a Boron Nitride Nanotube

View Author Information
Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Cite this: J. Phys. Chem. C 2008, 112, 6, 1812–1818
Publication Date (Web):January 24, 2008
https://doi.org/10.1021/jp076747u
Copyright © 2008 American Chemical Society

    Article Views

    2797

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Recent molecular dynamics simulations have shown that a finite-length (5,5) boron nitride nanotube (BNNT) in contact with an aqueous reservoir has superior water permeation properties compared to a (5,5) carbon nanotube of similar diameter and length. In this work, by using density functional theory (DFT), we compute the electrostatic potential arising from the weak ionic and covalent bonding of B−N. Quantum partial charges of B and N atoms, determined by matching the electrostatic potential computed by the DFT, are then included in molecular dynamics simulations to investigate the structure and dynamics of water confined in BNNTs of sizes ranging from (5,5) to (10,10). When partial charges are included, we observe that the wetting behavior of the (5,5) BNNT has improved and the single-file water chain in both (5,5) and (6,6) BNNTs has an L-defect. Further, with partial charges, except for a (9,9) BNNT which exhibits anomalous behavior, the diffusion coefficient of confined water molecules in (5,5), (6,6), and (10,10) BNNTs is found to decrease due to the formation of a hydrogen bond between water and nitrogen atoms. For a (9,9) BNNT, in the absence of partial charges, an ice-shell structure was observed with a critical slowing in the diffusion coefficient. When partial charges are included, the diffusion coefficient is found to increase because of the presence of an additional single-file water chain inside the ice-shell structure.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 149 publications.

    1. Shiv Kumar, Ananth Govind Rajan. Predicting Quantum-Mechanical Partial Charges in Arbitrarily Long Boron Nitride Nanotubes to Accurately Simulate Nanoscale Water Transport. Journal of Chemical Theory and Computation 2024, 20 (8) , 3298-3307. https://doi.org/10.1021/acs.jctc.4c00080
    2. Virginie Marry, Sébastien Le Crom, Eric Ferrage, Laurent Michot, Bela Farago, Alfred Delville, Emmanuelle Dubois. Role of Cationic Organization on Water Dynamics in Saponite Clays. The Journal of Physical Chemistry C 2024, 128 (10) , 4233-4244. https://doi.org/10.1021/acs.jpcc.3c05150
    3. Pooja Sahu, Sk. Musharaf Ali. Uniqueness of Nanoscale Confinement for Fast Water Transport: Effect of Nanotube Diameter and Hydrophobicity. The Journal of Physical Chemistry B 2024, 128 (1) , 222-243. https://doi.org/10.1021/acs.jpcb.3c05979
    4. Haiqi Gao, Xin Hu, Xueyong Li, Deren Liu, Mingao Hu, Wenhai Zhang, Yuzhen Liu, Hong Meng. Exploring Water/Ion Transport through the Polarized Lamellar Channels. Industrial & Engineering Chemistry Research 2023, 62 (46) , 19987-19994. https://doi.org/10.1021/acs.iecr.3c02982
    5. Rituparna Roy, Sandip Paul. Exploring the Curvature-Dependence of Boron Nitride Nanoparticles on the Inhibition of hIAPP Aggregation. The Journal of Physical Chemistry B 2023, 127 (35) , 7558-7570. https://doi.org/10.1021/acs.jpcb.3c02689
    6. Bhargav Sai Chava, Ghansham Rajendrasingh Chandel, Siddhartha Das. Water-Structure-Specific Entropic Dominance in the Filling of Boron Nitride Nanotubes. The Journal of Physical Chemistry C 2023, 127 (14) , 7009-7018. https://doi.org/10.1021/acs.jpcc.3c01198
    7. Kangqiang Qiu, Weiwei Zou, Zhou Fang, Yuxin Wang, Sam Bell, Xiang Zhang, Zhiqi Tian, Xiuqiong Xu, Baohua Ji, Dechang Li, Taosheng Huang, Jiajie Diao. 2D MoS2 and BN Nanosheets Damage Mitochondria through Membrane Penetration. ACS Nano 2023, 17 (5) , 4716-4728. https://doi.org/10.1021/acsnano.2c11003
    8. Suchit Negi, Alexandra Carvalho, Maxim Trushin, A. H. Castro Neto. Edge-Driven Phase Transitions in 2D Ice. The Journal of Physical Chemistry C 2022, 126 (37) , 16006-16015. https://doi.org/10.1021/acs.jpcc.2c04492
    9. Sobin Alosious, Sridhar Kumar Kannam, Sarith P. Sathian, B. D. Todd. Effects of Electrostatic Interactions on Kapitza Resistance in Hexagonal Boron Nitride–Water Interfaces. Langmuir 2022, 38 (29) , 8783-8793. https://doi.org/10.1021/acs.langmuir.2c00637
    10. Fang Fang, Shan Fu, Jie Lin, Jia Zhu, Zhongyang Dai, Guobing Zhou, Zhen Yang. Molecular-Level Insights into Unique Behavior of Water Molecules Confined in the Heterojunction between One- and Two-Dimensional Nanochannels. Langmuir 2022, 38 (23) , 7300-7311. https://doi.org/10.1021/acs.langmuir.2c00825
    11. Parham Khoshbakht Marvi, Sepideh Amjad-Iranagh, Rouein Halladj. Molecular Dynamics Assessment of Doxorubicin Adsorption on Surface-Modified Boron Nitride Nanotubes (BNNTs). The Journal of Physical Chemistry B 2021, 125 (48) , 13168-13180. https://doi.org/10.1021/acs.jpcb.1c07052
    12. Vahid Vatanpour, Seyed Ali Naziri Mehrabani, Basak Keskin, Negar Arabi, Bihter Zeytuncu, Ismail Koyuncu. A Comprehensive Review on the Applications of Boron Nitride Nanomaterials in Membrane Fabrication and Modification. Industrial & Engineering Chemistry Research 2021, 60 (37) , 13391-13424. https://doi.org/10.1021/acs.iecr.1c02102
    13. Bhargav Sai Chava, Yanbin Wang, Siddhartha Das. Boron Nitride Nanotube–Salt–Water Hybrid: Toward Zero-Dimensional Liquid Water and Highly Trapped Immobile Single Anions Inside One-Dimensional Nanostructures. The Journal of Physical Chemistry C 2021, 125 (25) , 14006-14013. https://doi.org/10.1021/acs.jpcc.1c01683
    14. José Cobeña-Reyes, Muhammad Sahimi. Universal Intrinsic Dynamics and Freezing of Water in Small Nanotubes. The Journal of Physical Chemistry C 2021, 125 (1) , 946-956. https://doi.org/10.1021/acs.jpcc.0c08494
    15. Maryam Zarghami Dehaghani, Babak Bagheri, Abbasali Nasiriasayesh, Amin Hamed Mashhadzadeh, Payam Zarrintaj, Navid Rabiee, Mojtaba Bagherzadeh, Sajjad Habibzadeh, Otman Abida, Mohammad Reza Saeb, Ho Won Jang, Mohammadreza Shokouhimehr. Insight into the Self-Insertion of a Protein Inside the Boron Nitride Nanotube. ACS Omega 2020, 5 (49) , 32051-32058. https://doi.org/10.1021/acsomega.0c05080
    16. Nidhi Sorout, Amalendu Chandra. Effects of Boron Nitride Nanotube on the Secondary Structure of Aβ(1–42) Trimer: Possible Inhibitory Effect on Amyloid Formation. The Journal of Physical Chemistry B 2020, 124 (10) , 1928-1940. https://doi.org/10.1021/acs.jpcb.9b11986
    17. Zhao Wang. Chirality-Selective Transport of Benzene Molecules on Carbon Nanotubes. The Journal of Physical Chemistry C 2020, 124 (6) , 3851-3856. https://doi.org/10.1021/acs.jpcc.9b10706
    18. Akin Budi, Tiffany R. Walsh. A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface. Langmuir 2019, 35 (49) , 16234-16243. https://doi.org/10.1021/acs.langmuir.9b03121
    19. Tiffany R. Walsh, Marc R. Knecht. Biomolecular Material Recognition in Two Dimensions: Peptide Binding to Graphene, h-BN, and MoS2 Nanosheets as Unique Bioconjugates. Bioconjugate Chemistry 2019, 30 (11) , 2727-2750. https://doi.org/10.1021/acs.bioconjchem.9b00593
    20. Haiqi Gao, Qi Shi, Petr Král, Ruifeng Lu. Water Transport through Ultrathin Nanopores with Highly Polar Rims. The Journal of Physical Chemistry C 2019, 123 (45) , 27690-27696. https://doi.org/10.1021/acs.jpcc.9b09238
    21. Farhad Ghalami, Tahereh Sedghamiz, Elaheh Sedghamiz, Fatemeh Khashei, Ehsan Zahedi. Molecular Dynamics Simulation of Wetting and Interfacial Properties of Multicationic Ionic Liquid Nanodroplets on Boron Nitride Monolayers: A Comparative Approach. The Journal of Physical Chemistry C 2019, 123 (22) , 13551-13560. https://doi.org/10.1021/acs.jpcc.8b11987
    22. Mateus H. Köhler, Cristina Gavazzoni. Water Freezing in MoS2 Nanotubes. The Journal of Physical Chemistry C 2019, 123 (22) , 13968-13975. https://doi.org/10.1021/acs.jpcc.9b01464
    23. Yonghui Zhang, Chun Chan, Zhen Li, Jiale Ma, Qiangqiang Meng, Chunyi Zhi, Hongyan Sun, Jun Fan. Nanotoxicity of Boron Nitride Nanosheet to Bacterial Membranes. Langmuir 2019, 35 (18) , 6179-6187. https://doi.org/10.1021/acs.langmuir.9b00025
    24. Abhijit Kayal, Amalendu Chandra. Water in Confinement between Nanowalls: Results for Hexagonal Boron Nitride versus Graphene Sheets from Ab Initio Molecular Dynamics. The Journal of Physical Chemistry C 2019, 123 (10) , 6130-6140. https://doi.org/10.1021/acs.jpcc.9b01040
    25. Binquan Luan, Ruhong Zhou. Atomic-Scale Fluidic Diodes Based on Triangular Nanopores in Bilayer Hexagonal Boron Nitride. Nano Letters 2019, 19 (2) , 977-982. https://doi.org/10.1021/acs.nanolett.8b04208
    26. Wei Cao, Liangliang Huang, Ming Ma, Linghong Lu, Xiaohua Lu. Water in Narrow Carbon Nanotubes: Roughness Promoted Diffusion Transition. The Journal of Physical Chemistry C 2018, 122 (33) , 19124-19132. https://doi.org/10.1021/acs.jpcc.8b02929
    27. Jingyu Qin, Beien Zhu, Shanshan Liang, Pan Guo, Jian Liu. Impact of −C2H5 and −OH Functionalizations on the Water Flow Blockage in Carbon Nanotubes. The Journal of Physical Chemistry C 2018, 122 (22) , 11807-11813. https://doi.org/10.1021/acs.jpcc.8b01204
    28. Ananth Govind Rajan, Michael S. Strano, Daniel Blankschtein. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications. The Journal of Physical Chemistry Letters 2018, 9 (7) , 1584-1591. https://doi.org/10.1021/acs.jpclett.7b03443
    29. Zhen Li, Yonghui Zhang, Chun Chan, Chunyi Zhi, Xiaolin Cheng, Jun Fan. Temperature-Dependent Lipid Extraction from Membranes by Boron Nitride Nanosheets. ACS Nano 2018, 12 (3) , 2764-2772. https://doi.org/10.1021/acsnano.7b09095
    30. Xingfei Wei, Tengfei Luo. Effects of Electrostatic Interaction and Chirality on the Friction Coefficient of Water Flow Inside Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes. The Journal of Physical Chemistry C 2018, 122 (9) , 5131-5140. https://doi.org/10.1021/acs.jpcc.7b11657
    31. S. K. Mudedla, K. Balamurugan, and V. Subramanian . Unravelling the Structural Changes in α-Helical Peptides on Interaction with Convex, Concave, and Planar Surfaces of Boron-Nitride-Based Nanomaterials. The Journal of Physical Chemistry C 2016, 120 (49) , 28246-28260. https://doi.org/10.1021/acs.jpcc.6b08587
    32. Frédéric Leroy, Shengyuan Liu, and Jianguo Zhang . Parametrizing Nonbonded Interactions from Wetting Experiments via the Work of Adhesion: Example of Water on Graphene Surfaces. The Journal of Physical Chemistry C 2015, 119 (51) , 28470-28481. https://doi.org/10.1021/acs.jpcc.5b10267
    33. Michael Thomas, Marta Enciso, and Tamsyn A. Hilder . Insertion Mechanism and Stability of Boron Nitride Nanotubes in Lipid Bilayers. The Journal of Physical Chemistry B 2015, 119 (15) , 4929-4936. https://doi.org/10.1021/acs.jpcb.5b00102
    34. Zhongtao Zhang and C. Heath Turner . Water-Induced Interactions between Boron-Doped Carbon Nanotubes. The Journal of Physical Chemistry C 2014, 118 (31) , 17838-17846. https://doi.org/10.1021/jp505832s
    35. Lela Vuković, Elizabeth Vokac, and Petr Král . Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes. The Journal of Physical Chemistry Letters 2014, 5 (12) , 2131-2137. https://doi.org/10.1021/jz500761s
    36. Petr Král and Boyang Wang . Material Drag Phenomena in Nanotubes. Chemical Reviews 2013, 113 (5) , 3372-3390. https://doi.org/10.1021/cr200244h
    37. Natalia Pérez-Hernández, Trung Quan Luong, Martín Febles, Carlos Marco, Hans-Heinrich Limbach, Martina Havenith, Cirilo Pérez, María Victoria Roux, Ricardo Pérez, and Julio D. Martín . The Mobility of Water Molecules through Hydrated Pores. The Journal of Physical Chemistry C 2012, 116 (17) , 9616-9630. https://doi.org/10.1021/jp301323c
    38. Tamsyn A. Hilder, Rui Yang, Dan Gordon, Alistair P. Rendell, and Shin-Ho Chung . Silicon Carbide Nanotube as a Chloride-Selective Channel. The Journal of Physical Chemistry C 2012, 116 (7) , 4465-4470. https://doi.org/10.1021/jp2113335
    39. Matthew Melillo, Fangqiang Zhu, Mark A. Snyder, and Jeetain Mittal . Water Transport through Nanotubes with Varying Interaction Strength between Tube Wall and Water. The Journal of Physical Chemistry Letters 2011, 2 (23) , 2978-2983. https://doi.org/10.1021/jz2012319
    40. Rui Yang, Tamsyn A. Hilder, Shin-Ho Chung, and Alistair Rendell . First-Principles Study of Water Confined in Single-Walled Silicon Carbide Nanotubes. The Journal of Physical Chemistry C 2011, 115 (35) , 17255-17264. https://doi.org/10.1021/jp201882d
    41. Amir Taghavi Nasrabadi and Masumeh Foroutan. Interactions between Polymers and Single-Walled Boron Nitride Nanotubes: A Molecular Dynamics Simulation Approach. The Journal of Physical Chemistry B 2010, 114 (47) , 15429-15436. https://doi.org/10.1021/jp106330c
    42. Natalia Pérez-Hernández, Eduardo H. L. Falcao, Cirilo Pérez, Diego Fort, Julio D. Martín and Juergen Eckert . Temperature-Induced Water Release and Uptake in Organic Porous Networks. The Journal of Physical Chemistry B 2010, 114 (17) , 5694-5699. https://doi.org/10.1021/jp911930k
    43. Pierfranco Demontis, Hervé Jobic, Miguel A. Gonzalez and Giuseppe B. Suffritti. Diffusion of Water in Zeolites NaX and NaY Studied by Quasi-Elastic Neutron Scattering and Computer Simulation. The Journal of Physical Chemistry C 2009, 113 (28) , 12373-12379. https://doi.org/10.1021/jp901587a
    44. Chang Y. Won and N. R. Aluru. Water Phase Transition Induced by a Stone−Wales Defect in a Boron Nitride Nanotube. Journal of the American Chemical Society 2008, 130 (41) , 13649-13652. https://doi.org/10.1021/ja803245d
    45. Pierfranco Demontis, Jorge Gulín-González, Hervé Jobic, Marco Masia, Roberto Sale and Giuseppe B. Suffritti . Dynamical Properties of Confined Water Nanoclusters: Simulation Study of Hydrated Zeolite NaA: Structural and Vibrational Properties. ACS Nano 2008, 2 (8) , 1603-1614. https://doi.org/10.1021/nn800303r
    46. Tengfei Zhang, Yang Han, Chuan-fu Luo, Xiaochuang Liu, Xiaowei Zhang, Yuhan Song, Yi-Tung Chen, Shiyu Du. Ferroelectricity of ice nanotube forests grown in three-dimensional graphene: the electric field effect. Nanoscale 2024, 16 (3) , 1188-1196. https://doi.org/10.1039/D3NR03762B
    47. Ali Mohammad Yadollahi, Mohammad Reza Niazian, Abolfazl Khodadadi. Investigating the thermoelectric properties of the (6, 6) two sided-closed single-walled boron nitride nanotubes ((6, 6) TSC-SWBNNTs) due to the impurity of a single carbon atom and temperature changes. Journal of Molecular Graphics and Modelling 2023, 122 , 108499. https://doi.org/10.1016/j.jmgm.2023.108499
    48. Minggang Wang, Fazhan Wang, Jingcheng Zhang, Hongbo Wang, Yipan Wang, Hong Wu. Effects of h-BN additives on tensile mechanical behavior of Fe matrix: A molecular dynamics study. Computational Materials Science 2023, 223 , 112136. https://doi.org/10.1016/j.commatsci.2023.112136
    49. Zhenyu Liao, Xinyao Ma, Ji-Jung Kai, Jun Fan. Molecular mechanisms of integrin αvβ8 activation regulated by graphene, boron nitride and black phosphorus nanosheets. Colloids and Surfaces B: Biointerfaces 2023, 222 , 113139. https://doi.org/10.1016/j.colsurfb.2023.113139
    50. Harsh Sharma, Ayush Owhal, Diplesh Gautam, Sharad Shrivastava, Jitendra Singh Rathore, Sachin U. Belgamwar, Venkatesh K.P. Rao. Thermoatomic analysis of monovacancy defected single-walled boron nitride nanotube under quasi-static strain: Insights from molecular dynamics. Materials Chemistry and Physics 2023, 294 , 127020. https://doi.org/10.1016/j.matchemphys.2022.127020
    51. Mahdiye Poorsargol, Zahra Setayesh-Mehr. Betulinic acid and 3-o-acetyl-betulinic acid interactions with external and internal surface of boron-nitride nanotubes: A DFT and MD investigation. Computational and Theoretical Chemistry 2022, 1213 , 113738. https://doi.org/10.1016/j.comptc.2022.113738
    52. Emine Ayşe Turhan, Ahmet Engin Pazarçeviren, Zafer Evis, Ayşen Tezcaner. Properties and applications of boron nitride nanotubes. Nanotechnology 2022, 33 (24) , 242001. https://doi.org/10.1088/1361-6528/ac5839
    53. Halimeh Mirsalari, Afsaneh Maleki, Heidar Raissi, Azim Soltanabadi. The assessment of boron nitride nanotubes and functionalized carbon nanotubes as containers for anticancer drug delivery of dacarbazine and effect of urea on adsorption process by molecular dynamics. Structural Chemistry 2022, 33 (3) , 871-882. https://doi.org/10.1007/s11224-022-01900-8
    54. Claudio Natalio Lima, H.O. Frota, Puspitapallab Chaudhuri, Angsula Ghosh. Encapsulation of atomic hydrogen and gaseous molecules in single-walled boron–nitrogen nanotubes: A computational study. Applied Surface Science 2022, 579 , 152098. https://doi.org/10.1016/j.apsusc.2021.152098
    55. Huimin Zhu, Wei Zhang, Chao Ye, Jiaqi Shi, Wenxi Lu. Rotation induced symmetry change of friction coefficient of water on graphene/h-BN heterostructures. Applied Physics Letters 2022, 120 (8) https://doi.org/10.1063/5.0081423
    56. Alexey Tsukanov, Boris Turk, Olga Vasiljeva, Sergey Psakhie. Computational Indicator Approach for Assessment of Nanotoxicity of Two-Dimensional Nanomaterials. Nanomaterials 2022, 12 (4) , 650. https://doi.org/10.3390/nano12040650
    57. Ashok Keerthi, Solleti Goutham, Yi You, Pawin Iamprasertkun, Robert A. W. Dryfe, Andre K. Geim, Boya Radha. Water friction in nanofluidic channels made from two-dimensional crystals. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23325-3
    58. S. Mistry, R. Pillai, D. Mattia, M. K. Borg. Untangling the physics of water transport in boron nitride nanotubes. Nanoscale 2021, 13 (43) , 18096-18102. https://doi.org/10.1039/D1NR04794A
    59. Melahatsadat Rasoolidanesh, Mohammad Astaraki, Mina Mostafavi, Mahyar Rezvani, Masoud Darvish Ganji. Toward efficient enantioseparation of ibuprofen isomers using chiral BNNTs: Dispersion corrected DFT calculations and DFTB molecular dynamic simulations. Diamond and Related Materials 2021, 119 , 108561. https://doi.org/10.1016/j.diamond.2021.108561
    60. Majid Shahbabaei, Daejoong Kim. Advances in nanofluidics for water purification and filtration: molecular dynamics (MD) perspective. Environmental Science: Nano 2021, 8 (8) , 2120-2151. https://doi.org/10.1039/D1EN00269D
    61. Mohaddeseh Habibzadeh Mashatooki, Bahram Ghalami - Choobar. Characterization of self-aggregated mitomycin C onto the boron-nitride nanotube as a drug delivery carrier: A molecular dynamics investigation. Journal of Molecular Liquids 2021, 334 , 116065. https://doi.org/10.1016/j.molliq.2021.116065
    62. A. M. Rodrigues, A. R. Palheta-Júnior, M. S. S. Pinheiro, A. M. R. Marinho, A. M. J. Chaves-Neto, R. Gester, T. Andrade-Filho. Encapsulation ability of silicon carbide and boron nitride nanotubes for spilanthol molecule. Journal of Nanostructure in Chemistry 2021, 11 (2) , 203-213. https://doi.org/10.1007/s40097-020-00359-5
    63. Jafar Azamat, Farzaneh Ghasemi, Jaber Jahanbin Sardroodi, Darian Jahanshahi. Molecular dynamics simulation of separation of water/methanol and water/ethanol mixture using boron nitride nanotubes. Journal of Molecular Liquids 2021, 331 , 115774. https://doi.org/10.1016/j.molliq.2021.115774
    64. Jafar Azamat. Theoretical investigation of the removal of nitrate ions from contaminated aqueous solution using functionalized silicon carbide nanosheets. Computational Materials Science 2021, 187 , 110118. https://doi.org/10.1016/j.commatsci.2020.110118
    65. Maryam Zarghami Dehaghani, Babak Bagheri, Farrokh Yousefi, Abbasali Nasiriasayesh, Amin Hamed Mashhadzadeh, Payam Zarrintaj, Navid Rabiee, Mojtaba Bagherzadeh, Vanessa Fierro, Alain Celzard, Mohammad Reza Saeb, Ebrahim Mostafavi. Boron Nitride Nanotube as an Antimicrobial Peptide Carrier: A Theoretical Insight. International Journal of Nanomedicine 2021, Volume 16 , 1837-1847. https://doi.org/10.2147/IJN.S298699
    66. Alexey A. Tsukanov, Olga Vasiljeva. Nanomaterials Interaction with Cell Membranes: Computer Simulation Studies. 2021, 189-210. https://doi.org/10.1007/978-3-030-60124-9_9
    67. Bhargav Sai Chava, Yanbin Wang, Vishal Sankar Sivasankar, Siddhartha Das. Water-free Localization of Anion at Anode for Small-Concentration Water-in-Salt Electrolytes Confined in Boron-Nitride Nanotube. Cell Reports Physical Science 2020, 1 (11) , 100246. https://doi.org/10.1016/j.xcrp.2020.100246
    68. Jiabo Tao, Xianyu Song, Bo Bao, Shuangliang Zhao, Honglai Liu. The role of surface wettability on water transport through membranes. Chemical Engineering Science 2020, 219 , 115602. https://doi.org/10.1016/j.ces.2020.115602
    69. Yonghui Zhang, Yujia Zhou, Zhen Li, Huoji Chen, Li Zhang, Jun Fan. Computational investigation of geometrical effects in 2D boron nitride nanopores for DNA detection. Nanoscale 2020, 12 (18) , 10026-10034. https://doi.org/10.1039/C9NR10172A
    70. Tiago da Silva Arouche, Rosely Maria dos Santos Cavaleiro, Phelipe Seiichi Martins Tanoue, Tais Sousa de Sa Pereira, Tarciso Andrade Filho, Antonio Maia de Jesus Chaves Neto. Heavy Metals Nanofiltration Using Nanotube and Electric Field by Molecular Dynamics. Journal of Nanomaterials 2020, 2020 , 1-12. https://doi.org/10.1155/2020/4063201
    71. Jiachen Li, Chen Chen, Jin Zhang, Li Zhang, Lijun Liang, Zhe Kong, Shen Jia-Wei, Yunxia Xu, Xinping Wang, Wei Zhang. Molecular dynamics study on loading mechanism of chitosan into boron nitride nanotubes. Journal of Molecular Liquids 2020, 297 , 111753. https://doi.org/10.1016/j.molliq.2019.111753
    72. Masumeh Foroutan, Vahid Fadaei Naeini, Mina Ebrahimi. Enhanced wettability of long narrow carbon nanotubes in a double-walled hetero-structure: unraveling the effects of a boron nitride nanotube as the exterior. Physical Chemistry Chemical Physics 2020, 22 (1) , 391-401. https://doi.org/10.1039/C9CP04977K
    73. Mehrangiz Torkzadeh, Majid Moosavi. A computational study of the ion gels formed by biodegradable aliphatic CBNAILs and BN nanostructures. Journal of Molecular Liquids 2020, 298 , 112037. https://doi.org/10.1016/j.molliq.2019.112037
    74. Abhishek Tyagi, Kelvin Chu, Md Delowar Hossain, Irfan Haider Abidi, Weiyuan Lin, Yuwei Yan, Kai Zhang, Zhengtang Luo. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores. Nanoscale 2019, 11 (48) , 23438-23448. https://doi.org/10.1039/C9NR07651D
    75. Yuki Maekawa, Kenji Sasaoka, Takahiro Yamamoto. Comparison between microscopic structures of surficial water on hexagonal boron nitride and graphene. Applied Physics Express 2019, 12 (11) , 115001. https://doi.org/10.7567/1882-0786/ab49b7
    76. Mateus H. Köhler, José R. Bordin, Carolina F. de Matos, Marcia C. Barbosa. Water in nanotubes: The surface effect. Chemical Engineering Science 2019, 203 , 54-67. https://doi.org/10.1016/j.ces.2019.03.062
    77. Jafar Zahirifar, Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Influence of hexagonal boron nitride nanosheets as the additives on the characteristics and performance of PVDF for air gap membrane distillation. Desalination 2019, 460 , 81-91. https://doi.org/10.1016/j.desal.2019.03.004
    78. Behnaz Bazaziyan, Mohammad Reza Bozorgmehr, Mohammad Momen-Heravi, S. Ali Beyramabadi. Reverse Micelle Surfactant System Comprising the 1-decanoyl-rac-glycerol and the Lauryldimethylamine-N-oxide: Structure and Dynamics of Confined Water. Russian Journal of Physical Chemistry A 2019, 93 (6) , 1122-1127. https://doi.org/10.1134/S0036024419060050
    79. Preeya F. Achari, Karteek K. Bejagam, Samrendra Singh, Sanket A. Deshmukh. Development of non-bonded interaction parameters between hexagonal boron-nitride and water. Computational Materials Science 2019, 161 , 339-345. https://doi.org/10.1016/j.commatsci.2019.02.011
    80. G C Loh. Fast water desalination by carbon-doped boron nitride monolayer: transport assisted by water clustering at pores. Nanotechnology 2019, 30 (5) , 055401. https://doi.org/10.1088/1361-6528/aaf063
    81. Krzysztof Górny, Violetta Raczyńska, Przemysław Raczyński, Zbigniew Dendzik, Szymon Starzonek. Impact of polarized nanotube surface on ultrathin mesogen film properties: Computer simulation study. Physical Review E 2019, 99 (2) https://doi.org/10.1103/PhysRevE.99.022701
    82. Przemyslaw Raczynski. Properties of Ultrathin Lipid Layers Surrounding Boron Nitride Nanotube: Computer Simulation Study. 2019, 399-408. https://doi.org/10.1007/978-3-030-17755-3_26
    83. Mateusz Pabiszczak, Krzysztof Górny, Przemysław Raczyński, Zygmunt Gburski. Impact of Carbon Nanotubes on HDL-Like Structures: Computer Simulations. 2019, 481-487. https://doi.org/10.1007/978-3-030-17759-1_32
    84. Jianzhuo Zhu, Erkuang Zhu, Jing Gao, Xingyuan Li, Jiguo Su. Structural and dynamic properties of water molecules in a uniformly charged nanopore. The Journal of Chemical Physics 2018, 149 (7) https://doi.org/10.1063/1.5042107
    85. Mehrangiz Torkzadeh, Majid Moosavi. A combined molecular dynamics simulation and quantum mechanics study on the physisorption of biodegradable CBNAILs on h -BN nanosheets. The Journal of Chemical Physics 2018, 149 (7) https://doi.org/10.1063/1.5039476
    86. Yonghui Zhang, Zhen Li, Chun Chan, Jiale Ma, Chunyi Zhi, Xiaolin Cheng, Jun Fan. Ordering of lipid membranes altered by boron nitride nanosheets. Physical Chemistry Chemical Physics 2018, 20 (6) , 3903-3910. https://doi.org/10.1039/C7CP07136A
    87. Thomas Humplik, Jongho Lee, Sean O’Hern, Tahar Laoui, Rohit Karnik, Evelyn N Wang. Enhanced water transport and salt rejection through hydrophobic zeolite pores. Nanotechnology 2017, 28 (50) , 505703. https://doi.org/10.1088/1361-6528/aa9773
    88. Abhijit Kayal, Amalendu Chandra. Orientational order and dynamics of interfacial water near a hexagonal boron-nitride sheet: An ab initio molecular dynamics study. The Journal of Chemical Physics 2017, 147 (16) https://doi.org/10.1063/1.4991594
    89. Shangchao Lin, Chih-Jen Shih, Vishnu Sresht, Ananth Govind Rajan, Michael S. Strano, Daniel Blankschtein. Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling. Advances in Colloid and Interface Science 2017, 244 , 36-53. https://doi.org/10.1016/j.cis.2016.07.007
    90. Jafar Azamat, Alireza Khataee. Molecular dynamics simulations of removal of cyanide from aqueous solution using boron nitride nanotubes. Computational Materials Science 2017, 128 , 8-14. https://doi.org/10.1016/j.commatsci.2016.10.040
    91. Masumeh Foroutan, S. Mahmood Fatemi, Farshad Esmaeilian. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. The European Physical Journal E 2017, 40 (2) https://doi.org/10.1140/epje/i2017-11507-7
    92. Yamina Belmiloud, Wassila Djitli, Hasnia Abdeldjebar, Mohamed Lamine Abdelatif, Bahoueddine Tangour, Meziane Brahimi. First principles calculations of a H 2 molecule inside boron-nitrogen nanotubes. Superlattices and Microstructures 2017, 101 , 547-558. https://doi.org/10.1016/j.spmi.2016.10.081
    93. A. A. Tsukanov, S. G. Psakhie. Nanopore wall-liquid interaction under scope of molecular dynamics study: Review. 2017, 020222. https://doi.org/10.1063/1.5013903
    94. Jafar Azamat, Jaber Jahanbin Sardroodi, Kalleh Mansouri, Leila Poursoltani. Molecular dynamics simulation of transport of water/DMSO and water/acetone mixtures through boron nitride nanotube. Fluid Phase Equilibria 2016, 425 , 230-236. https://doi.org/10.1016/j.fluid.2016.06.010
    95. Jyotirmoy Deb, Barnali Bhattacharya, Debolina Paul, Utpal Sarkar. Interaction of nitrogen molecule with pristine and doped graphyne nanotube. Physica E: Low-dimensional Systems and Nanostructures 2016, 84 , 330-339. https://doi.org/10.1016/j.physe.2016.08.006
    96. Jyotirmoy Deb, Barnali Bhattacharya, Ngangbam Bedamani Singh, Utpal Sarkar. First principle study of adsorption of boron-halogenated system on pristine graphyne. Structural Chemistry 2016, 27 (4) , 1221-1227. https://doi.org/10.1007/s11224-016-0747-4
    97. Tamsyn A Hilder, Nicola Gaston. Interaction of Boron Nitride Nanosheets with Model Cell Membranes. ChemPhysChem 2016, 17 (11) , 1573-1578. https://doi.org/10.1002/cphc.201600165
    98. Alireza Khataee, Jafar Azamat, Golchehreh Bayat. Separation of nitrate ion from water using silicon carbide nanotubes as a membrane: Insights from molecular dynamics simulation. Computational Materials Science 2016, 119 , 74-81. https://doi.org/10.1016/j.commatsci.2016.03.046
    99. Zahra Khatti, Seyed Majid Hashemianzadeh. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction. European Journal of Pharmaceutical Sciences 2016, 88 , 291-297. https://doi.org/10.1016/j.ejps.2016.04.011
    100. Liuyang Zhang, Xianqiao Wang. DNA Sequencing by Hexagonal Boron Nitride Nanopore: A Computational Study. Nanomaterials 2016, 6 (6) , 111. https://doi.org/10.3390/nano6060111
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect