Quantification of the Binding Properties of Cu2+ to the Amyloid Beta Peptide: Coordination Spheres for Human and Rat Peptides and Implication on Cu2+-Induced Aggregation†Click to copy article linkArticle link copied!
Abstract

There is no consensus on the coordinating ligands for Cu2+ by Aβ. However, the differences in peptide sequence between human and rat have been hypothesized to alter metal ion binding in a manner that alters Cu2+-induced aggregation of Aβ. Herein, we employ isothermal titration calorimetry (ITC), circular dichroism (CD), and electron paramagnetic resonance (EPR) spectroscopy to examine the Cu2+ coordination spheres to human and rat Aβ and an extensive set of Aβ(16) mutants. EPR of the mutant peptides is consistent with a 3N1O binding geometry, like the native human peptide at pH 7.4. The thermodynamic data reveal an equilibrium between three coordination spheres, {NH2, O, NImHis6, N−}, {NH2, O, NImHis6, NImHis13}, and {NH2, O, NImHis6, NImHis14}, for human Aβ(16) but one dominant coordination for rat Aβ(16), {NH2, O, NImHis6, N−}, at pH 7.4−6.5. ITC and CD data establish that the mutation R5G is sufficient for reproducing this difference in Cu2+ binding properties at pH 7.4. The substitution of bulky and positively charged Arg by Gly is proposed to stabilize the coordination {NH2, O−, NImHis6, N−} that then results in one dominating coordination sphere for the case of the rat peptide. The differences in the coordination geometries for Cu2+ by the human and rat Aβ are proposed to contribute to the variation in the ability of Cu2+ to induce aggregation of Aβ peptides.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 63 publications.
- Axel Abelein, Simone Ciofi-Baffoni, Cecilia Mörman, Rakesh Kumar, Andrea Giachetti, Mario Piccioli, Henrik Biverstål. Molecular Structure of Cu(II)-Bound Amyloid-β Monomer Implicated in Inhibition of Peptide Self-Assembly in Alzheimer’s Disease. JACS Au 2022, 2
(11)
, 2571-2584. https://doi.org/10.1021/jacsau.2c00438
- Cheryle N. Beuning, Luca J. Zocchi, Kyangwi P. Malikidogo, Charlène Esmieu, Pierre Dorlet, Debbie C. Crans, Christelle Hureau. Measurement of Interpeptidic CuII Exchange Rate Constants of CuII-Amyloid-β Complexes to Small Peptide Motifs by Tryptophan Fluorescence Quenching. Inorganic Chemistry 2021, 60
(11)
, 7650-7659. https://doi.org/10.1021/acs.inorgchem.0c03555
- Molly
L. North, Dean E. Wilcox. Shift from Entropic Cu2+ Binding to Enthalpic Cu+ Binding Determines the Reduction Thermodynamics of Blue Copper Proteins. Journal of the American Chemical Society 2019, 141
(36)
, 14329-14339. https://doi.org/10.1021/jacs.9b06836
- Yating Wang, Cheuk-Kuen Lai, Justin Kai-Chi Lau, Alan C. Hopkinson, K. W. Michael Siu. Structures and Dissociation Products of Ce/Peptide Complexes: Competition between Coordination and Charge Delocalization. The Journal of Physical Chemistry B 2019, 123
(25)
, 5229-5237. https://doi.org/10.1021/acs.jpcb.9b03098
- Masha
G. Savelieff, Geewoo Nam, Juhye Kang, Hyuck Jin Lee, Misun Lee, Mi Hee Lim. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chemical Reviews 2019, 119
(2)
, 1221-1322. https://doi.org/10.1021/acs.chemrev.8b00138
- Amandine Conte-Daban, Valentina Borghesani, Stéphanie Sayen, Emmanuel Guillon, Yves Journaux, Geoffrey Gontard, Laurent Lisnard, and Christelle Hureau . Link between Affinity and Cu(II) Binding Sites to Amyloid-β Peptides Evaluated by a New Water-Soluble UV–Visible Ratiometric Dye with a Moderate Cu(II) Affinity. Analytical Chemistry 2017, 89
(3)
, 2155-2162. https://doi.org/10.1021/acs.analchem.6b04979
- Mingyan Dong, Haoyue Li, Dingkun Hu, Wei Zhao, Xueying Zhu, and Hongqi Ai . Molecular Dynamics Study on the Inhibition Mechanisms of Drugs CQ1–3 for Alzheimer Amyloid-β40 Aggregation Induced by Cu2+. ACS Chemical Neuroscience 2016, 7
(5)
, 599-614. https://doi.org/10.1021/acschemneuro.5b00343
- Xiao Cong, Matthew F. Poyton, Alexis J. Baxter, Saranya Pullanchery, and Paul S. Cremer . Unquenchable Surface Potential Dramatically Enhances Cu2+ Binding to Phosphatidylserine Lipids. Journal of the American Chemical Society 2015, 137
(24)
, 7785-7792. https://doi.org/10.1021/jacs.5b03313
- Whitnee L. Nettles, He Song, Erik R. Farquhar, Nicholas C. Fitzkee, and Joseph P. Emerson . Characterization of the Copper(II) Binding Sites in Human Carbonic Anhydrase II. Inorganic Chemistry 2015, 54
(12)
, 5671-5680. https://doi.org/10.1021/acs.inorgchem.5b00057
- Devi Praneetha Gogineni, Anne M. Spuches, and Colin S. Burns . Calorimetric Investigation of Copper Binding in the N-Terminal Region of the Prion Protein at Low Copper Loading: Evidence for an Entropically Favorable First Binding Event. Inorganic Chemistry 2015, 54
(2)
, 441-447. https://doi.org/10.1021/ic502014x
- Irina Schiopu, Sorana Iftemi, and Tudor Luchian . Nanopore Investigation of the Stereoselective Interactions between Cu2+ and d,l-Histidine Amino Acids Engineered into an Amyloidic Fragment Analogue. Langmuir 2015, 31
(1)
, 387-396. https://doi.org/10.1021/la504243r
- Alina Asandei, Irina Schiopu, Sorana Iftemi, Loredana Mereuta, and Tudor Luchian . Investigation of Cu2+ Binding to Human and Rat Amyloid Fragments Aβ (1–16) with a Protein Nanopore. Langmuir 2013, 29
(50)
, 15634-15642. https://doi.org/10.1021/la403915t
- Bruno Alies, Emelyne Renaglia, Malgorzata Rózga, Wojciech Bal, Peter Faller, and Christelle Hureau . Cu(II) Affinity for the Alzheimer’s Peptide: Tyrosine Fluorescence Studies Revisited. Analytical Chemistry 2013, 85
(3)
, 1501-1508. https://doi.org/10.1021/ac302629u
- Bruno Alies, Christian Bijani, Stéphanie Sayen, Emmanuel Guillon, Peter Faller, and Christelle Hureau . Copper Coordination to Native N-Terminally Modified versus Full-Length Amyloid-β: Second-Sphere Effects Determine the Species Present at Physiological pH. Inorganic Chemistry 2012, 51
(23)
, 12988-13000. https://doi.org/10.1021/ic302097d
- Kasper P. Kepp . Bioinorganic Chemistry of Alzheimer’s Disease. Chemical Reviews 2012, 112
(10)
, 5193-5239. https://doi.org/10.1021/cr300009x
- Gözde Eskici and Paul H. Axelsen . Copper and Oxidative Stress in the Pathogenesis of Alzheimer’s Disease. Biochemistry 2012, 51
(32)
, 6289-6311. https://doi.org/10.1021/bi3006169
- Yamini P. Ginotra, Shefali N. Ramteke, Rapole Srikanth, and Prasad P. Kulkarni . Mass Spectral Studies Reveal the Structure of Aβ1–16–Cu2+ Complex Resembling ATCUN Motif. Inorganic Chemistry 2012, 51
(15)
, 7960-7962. https://doi.org/10.1021/ic301244x
- Byong-kyu Shin and Sunil Saxena . Substantial Contribution of the Two Imidazole Rings of the His13−His14 Dyad to Cu(II) Binding in Amyloid-β(1−16) at Physiological pH and Its Significance. The Journal of Physical Chemistry A 2011, 115
(34)
, 9590-9602. https://doi.org/10.1021/jp200379m
- Lena Zeroug-Metz, Mohamed A. M. Kamal, Justine Bassil, Kalanika Elamaldeniya, Bo Hyun Ryu, Eric Buhler, Sangeun Lee. Fluorescent histidine-derived biodynamers as biocompatible and highly water-soluble copper(
ii
)-sensors. RSC Applied Polymers 2024, 2
(6)
, 1124-1138. https://doi.org/10.1039/D4LP00126E
- Jong-Min Suh, Mingeun Kim, Jeasang Yoo, Jiyeon Han, Cinthya Paulina, Mi Hee Lim. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coordination Chemistry Reviews 2023, 478 , 214978. https://doi.org/10.1016/j.ccr.2022.214978
- Yelim Yi, Mi Hee Lim. Current understanding of metal-dependent amyloid-β aggregation and toxicity. RSC Chemical Biology 2023, 4
(2)
, 121-131. https://doi.org/10.1039/D2CB00208F
- Jiqian Wang, Chengdong Wang, Yanqing Ge, Yawei Sun, Dong Wang, Hai Xu. Self‐assembly
of hairpin peptides mediated by Cu(
II
) ion: Effect of amino acid sequence. Peptide Science 2021, 113
(2)
https://doi.org/10.1002/pep2.24208
- Anshua Ghosh, Keiko Mizuno, Sachin S. Tiwari, Petroula Proitsi, Beatriz Gomez Perez-Nievas, Elizabeth Glennon, Rocio T. Martinez-Nunez, K. Peter Giese. Alzheimer’s disease-related dysregulation of mRNA translation causes key pathological features with ageing. Translational Psychiatry 2020, 10
(1)
https://doi.org/10.1038/s41398-020-00882-7
- P. Dorlet, C. Hureau. Copper Complexation by Peptides Implicated in Neurodegenerative Diseases. 2020, 83-108. https://doi.org/10.1007/978-3-030-39668-8_4
- Jürgen Arnhold. Cell and Tissue Destruction in Selected Disorders. 2020, 249-287. https://doi.org/10.1016/B978-0-12-816388-7.00009-7
- Anshua Ghosh, Keiko Mizuno, Sachin S. Tiwari, Petroula Proitsi, Beatriz Gomez Perez-Nievas, Elizabeth Glennon, Rocio T. Martinez-Nunez, K. Peter Giese. Alzheimer’s disease-related dysregulation of protein synthesis causes key pathological features with ageing. 2019https://doi.org/10.1101/2019.12.20.884783
- Atul K. Srivastava, Jay M. Pittman, Jonathan Zerweck, Bharat S. Venkata, Patrick C. Moore, Joseph R. Sachleben, Stephen C. Meredith. β‐Amyloid aggregation and heterogeneous nucleation. Protein Science 2019, 28
(9)
, 1567-1581. https://doi.org/10.1002/pro.3674
- Andrea Renee Kelley, Stephan B.H. Bach, George Perry. Analysis of post-translational modifications in Alzheimer's disease by mass spectrometry. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2019, 1865
(8)
, 2040-2047. https://doi.org/10.1016/j.bbadis.2018.11.002
- Jared Houghtaling, Jonathan List, Michael Mayer. Nanopore‐Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects. Small 2018, 14
(46)
https://doi.org/10.1002/smll.201802412
- Bruno Aliès, Valentina Borghesani, Sabrina Noël, Stephanie Sayen, Emmanuel Guillon, Denis Testemale, Peter Faller, Christelle Hureau. Mutations of Histidine 13 to Arginine and Arginine 5 to Glycine Are Responsible for Different Coordination Sites of Zinc(II) to Human and Murine Peptides. Chemistry – A European Journal 2018, 24
(53)
, 14233-14241. https://doi.org/10.1002/chem.201802759
- Elena Atrián-Blasco, Paulina Gonzalez, Alice Santoro, Bruno Alies, Peter Faller, Christelle Hureau. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coordination Chemistry Reviews 2018, 371 , 38-55. https://doi.org/10.1016/j.ccr.2018.04.007
- Hyuck Jin Lee, Masha G. Savelieff, Juhye Kang, Megan Brunjes Brophy, Toshiki G. Nakashige, Shin Jung C. Lee, Elizabeth M. Nolan, Mi Hee Lim. Calprotectin influences the aggregation of metal-free and metal-bound amyloid-β by direct interaction. Metallomics 2018, 10
(8)
, 1116-1127. https://doi.org/10.1039/C8MT00091C
- Eszter N. Tóth, Nóra V. May, Antal Rockenbauer, Gábor Peintler, Béla Gyurcsik. Exploring the boundaries of direct detection and characterization of labile isomers – a case study of copper(
ii
)–dipeptide systems. Dalton Transactions 2017, 46
(25)
, 8157-8166. https://doi.org/10.1039/C7DT00884H
- Karat Petcharoen, Anuvat Sirivat. Dual responses of magnetite-graphene hybrid in polyurethane under magnetic and electric stimuli. Sensors and Actuators A: Physical 2016, 251 , 26-34. https://doi.org/10.1016/j.sna.2016.09.041
- Ran Zhang, Hongqi Ai, Xueying Zhu, Qiang Li. Molecular Simulations of Human and Mouse Aβ
1–16
at Different pH Values: Structural Characteristics toward Understanding Cu
2+
‐Coordinated Amyloid Beta Spheres. ChemPhysChem 2016, 17
(11)
, 1656-1668. https://doi.org/10.1002/cphc.201600004
- Rachel A. Johnson, Olivia M. Manley, Anne M. Spuches, Nicholas E. Grossoehme. Dissecting ITC data of metal ions binding to ligands and proteins. Biochimica et Biophysica Acta (BBA) - General Subjects 2016, 1860
(5)
, 892-901. https://doi.org/10.1016/j.bbagen.2015.08.018
- Clémence Cheignon, Peter Faller, Denis Testemale, Christelle Hureau, Fabrice Collin. Metal-catalyzed oxidation of Aβ and the resulting reorganization of Cu binding sites promote ROS production. Metallomics 2016, 8
(10)
, 1081-1089. https://doi.org/10.1039/C6MT00150E
- Avijit Banik, Richard E. Brown, James Bamburg, Debomoy K. Lahiri, Dheeraj Khurana, Robert P. Friedland, Wei Chen, Ying Ding, Amritpal Mudher, Ante L. Padjen, Elizabeta Mukaetova-Ladinska, Masafumi Ihara, Sudhir Srivastava, M.V. Padma Srivastava, Colin L. Masters, Raj N. Kalaria, Akshay Anand. Translation of Pre-Clinical Studies into Successful Clinical Trials for Alzheimer’s Disease: What are the Roadblocks and How Can They Be Overcome?1. Journal of Alzheimer's Disease 2015, 47
(4)
, 815-843. https://doi.org/10.3233/JAD-150136
- Maria G. del Rosso, Artur Ciesielski, Silvia Colella, Jack M. Harrowfield, Paolo Samorì. Isothermal Titration Calorimetry Study of a Bistable Supramolecular System: Reversible Complexation of Cryptand[2.2.2] with Potassium Ions. ChemPhysChem 2014, 15
(13)
, 2743-2748. https://doi.org/10.1002/cphc.201402296
- Salla Keskitalo, Melinda Farkas, Michael Hanenberg, Anita Szodorai, Luka Kulic, Alexander Semmler, Michael Weller, Roger M. Nitsch, Michael Linnebank. Reciprocal modulation of Aβ42 aggregation by copper and homocysteine. Frontiers in Aging Neuroscience 2014, 6 https://doi.org/10.3389/fnagi.2014.00237
- Alina Asandei, Sorana Iftemi, Loredana Mereuta, Irina Schiopu, Tudor Luchian. Probing of Various Physiologically Relevant Metals: Amyloid-β Peptide Interactions with a Lipid Membrane-Immobilized Protein Nanopore. The Journal of Membrane Biology 2014, 247
(6)
, 523-530. https://doi.org/10.1007/s00232-014-9662-z
- Jianqiang Chen, Jiří Spěváček, Lenka Hanyková. NMR Methods to Study Effects of Additives on Phase Separation of Thermoresponsive Polymer. Macromolecular Symposia 2014, 339
(1)
, 24-32. https://doi.org/10.1002/masy.201300130
- Sebastian Wärmländer, Ann Tiiman, Axel Abelein, Jinghui Luo, Jyri Jarvet, Kajsa L. Söderberg, Jens Danielsson, Astrid Gräslund. Biophysical Studies of the Amyloid β‐Peptide: Interactions with Metal Ions and Small Molecules. ChemBioChem 2013, 14
(14)
, 1692-1704. https://doi.org/10.1002/cbic.201300262
- Natalia N. Nalivaeva, Anthony J. Turner. The amyloid precursor protein: A biochemical enigma in brain development, function and disease. FEBS Letters 2013, 587
(13)
, 2046-2054. https://doi.org/10.1016/j.febslet.2013.05.010
- Jessica Sarver, K. Ishara Silva, Sunil Saxena. Measuring Cu2+-Nitroxide Distances Using Double Electron–Electron Resonance and Saturation Recovery. Applied Magnetic Resonance 2013, 44
(5)
, 583-594. https://doi.org/10.1007/s00723-012-0422-x
- Zhengjian Lv, Margaret M. Condron, David B. Teplow, Yuri L. Lyubchenko. Nanoprobing of the Effect of Cu2+ Cations on Misfolding, Interaction and Aggregation of Amyloid β Peptide. Journal of Neuroimmune Pharmacology 2013, 8
(1)
, 262-273. https://doi.org/10.1007/s11481-012-9416-6
- Henryk Kozlowski, Marek Luczkowski, Maurizio Remelli, Daniela Valensin. Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases). Coordination Chemistry Reviews 2012, 256
(19-20)
, 2129-2141. https://doi.org/10.1016/j.ccr.2012.03.013
- Peter Faller, Christelle Hureau, Pierre Dorlet, Petra Hellwig, Yannick Coppel, Fabrice Collin, Bruno Alies. Methods and techniques to study the bioinorganic chemistry of metal–peptide complexes linked to neurodegenerative diseases. Coordination Chemistry Reviews 2012, 256
(19-20)
, 2381-2396. https://doi.org/10.1016/j.ccr.2012.03.015
- Christelle Hureau, Pierre Dorlet. Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 2: Dependence of Cu(II) binding sites with Aβ sequences. Coordination Chemistry Reviews 2012, 256
(19-20)
, 2175-2187. https://doi.org/10.1016/j.ccr.2012.03.034
- Christelle Hureau. Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 1: An overview. Coordination Chemistry Reviews 2012, 256
(19-20)
, 2164-2174. https://doi.org/10.1016/j.ccr.2012.03.037
- Cristina Sacco, Rachel A. Skowronsky, Sunitha Gade, John M. Kenney, Anne M. Spuches. Calorimetric investigation of copper(II) binding to Aβ peptides: thermodynamics of coordination plasticity. JBIC Journal of Biological Inorganic Chemistry 2012, 17
(4)
, 531-541. https://doi.org/10.1007/s00775-012-0874-3
- Bruno Alies, Bertrand Badei, Peter Faller, Christelle Hureau. Reevaluation of Copper(I) Affinity for Amyloid‐β Peptides by Competition with Ferrozine—An Unusual Copper(I) Indicator. Chemistry – A European Journal 2012, 18
(4)
, 1161-1167. https://doi.org/10.1002/chem.201102746
- Rajesh Ghai, Robert J. Falconer, Brett M. Collins. Applications of isothermal titration calorimetry in pure and applied research—survey of the literature from 2010. Journal of Molecular Recognition 2012, 25
(1)
, 32-52. https://doi.org/10.1002/jmr.1167
- Alberto Granzotto, Paolo Zatta. Metal ions and beta amyloid: conformational modifications and biological aspects. 2012, 77-83. https://doi.org/10.1007/978-3-7091-1001-0_7
- Caterina Migliorini, Elena Porciatti, Marek Luczkowski, Daniela Valensin. Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases. Coordination Chemistry Reviews 2012, 256
(1-2)
, 352-368. https://doi.org/10.1016/j.ccr.2011.07.004
- Giuseppe Arena, Giuseppe Pappalardo, Imre Sovago, Enrico Rizzarelli. Copper(II) interaction with amyloid-β: Affinity and speciation. Coordination Chemistry Reviews 2012, 256
(1-2)
, 3-12. https://doi.org/10.1016/j.ccr.2011.07.012
- Andrea Lakatos, Béla Gyurcsik, Nóra V. Nagy, Zita Csendes, Edit Wéber, Lívia Fülöp, Tamás Kiss. Histidine-rich branched peptides as Cu(
ii
) and Zn(
ii
) chelators with potential therapeutic application in Alzheimer's disease. Dalton Trans. 2012, 41
(6)
, 1713-1726. https://doi.org/10.1039/C1DT10989H
- Michael H. Benn, Arvi Rauk, Thomas W. Swaddle. Measurement of the interaction of aqueous copper(II) with a model amyloid-β protein fragment — Interference from buffers. Canadian Journal of Chemistry 2011, 89
(12)
, 1429-1444. https://doi.org/10.1139/v11-101
- Tianfang Wang, Hayley J. Andreazza, Tara L. Pukala, Patrick J. Sherman, Antonio N. Calabrese, John H. Bowie. Histidine‐containing host‐defence skin peptides of anurans bind Cu
2+
. An electrospray ionisation mass spectrometry and computational modelling study. Rapid Communications in Mass Spectrometry 2011, 25
(9)
, 1209-1221. https://doi.org/10.1002/rcm.4981
- Hélène Eury, Christian Bijani, Peter Faller, Christelle Hureau. Copper(II) Coordination to Amyloid β: Murine versus Human Peptide. Angewandte Chemie 2011, 123
(4)
, 931-935. https://doi.org/10.1002/ange.201005838
- Hélène Eury, Christian Bijani, Peter Faller, Christelle Hureau. Copper(II) Coordination to Amyloid β: Murine versus Human Peptide. Angewandte Chemie International Edition 2011, 50
(4)
, 901-905. https://doi.org/10.1002/anie.201005838
- Lian Hong, John D. Simon. Insights into the thermodynamics of copper association with amyloid-β, α-synuclein and prion proteins. Metallomics 2011, 3
(3)
, 262-266. https://doi.org/10.1039/C0MT00052C
- Vello Tõugu, Ann Tiiman, Peep Palumaa. Interactions of Zn(ii) and Cu(ii) ions with Alzheimer's amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 2011, 3
(3)
, 250. https://doi.org/10.1039/c0mt00073f
- Samira Azimi, Arvi Rauk, . On the Involvement of Copper Binding to the N‐Terminus of the Amyloid Beta Peptide of Alzheimer′s Disease: A Computational Study on Model Systems. International Journal of Alzheimer’s Disease 2011, 2011
(1)
https://doi.org/10.4061/2011/539762
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.