ACS Publications. Most Trusted. Most Cited. Most Read
Surface Hydration and Cationic Sites of Nanohydroxyapatites with Amorphous or Crystalline Surfaces: A Comparative Study
My Activity

Figure 1Loading Img
    Article

    Surface Hydration and Cationic Sites of Nanohydroxyapatites with Amorphous or Crystalline Surfaces: A Comparative Study
    Click to copy article linkArticle link copied!

    View Author Information
    Dipartimento di Chimica IFM & Centro di Eccellenza Interdipartimentale “NIS”, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy, Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, Dipartimento di Scienze Mediche, Università del Piemonte Orientale, Via Solaroli 4, 28100 Novara, Italy, and ISTEC−CNR, Via Granarolo 64, 48018 Faenza, Italy
    * To whom correspondence should be addressed. Fax: +39-011 670 7855. Tel: +39-011 670 7538. E-mail: [email protected]
    †Università di Torino.
    ‡Università di Bologna.
    §Università del Piemonte Orientale.
    ∥ISTEC−CNR.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2010, 114, 39, 16640–16648
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp105971s
    Published September 2, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    This paper is an extension of previous work devoted to the characterization of platelet-like hydroxyapatite (HA) nanoparticles constituted by a crystalline core coated by an amorphous surface layer 1−2 nm thick (Bertinetti et al. J. Phys. Chem. C. 2007, 111, 4027−4035). By increasing the preparation temperature, the platelet morphology was retained but HA nanoparticles exhibited a higher degree of crystallinity (evaluated by X-ray diffractometry). High-resolution transmission electron microscopy revealed that, in this case, the crystalline order was extended up to the particles’ surfaces, which were of the (010), (100), and (001) types. IR spectroscopy was used to investigate the surface hydration of both materials, in terms of adsorbed H2O molecules and surface hydroxy groups, as well as the Lewis acidity of surface cations, by removing water and adsorbing CO. For both features, strong similarities between amorphous and crystalline surfaces were found.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    (1) XRD patterns, (2) IR spectra of HA-am and HA-cry exchanged with D2O and then outgassed at b.t., (3) example of data elaboration for the extraction of the signals due to adsorbed H2O, (4) plot of the integrated intensity of νOH versus δH2O for HA-am and HA-cry, (5) IR spectra of HA-am in the νOH, δH2O, and carbonate νCO regions, (6) IR spectra, in the δH2O and carbonate νCO regions of HA-am outgassed at increasing temperature and then contacted with 20 mbar of H2O, (7) IR spectra of HA-am and HA-cry stepwise outgassed at increasing temperature and then contacted with 20 mbar of H2O, outgassed at b.t., exchanged with D2O, and outgassed at b.t. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 76 publications.

    1. Yuriy Sakhno, Chuanxin Ma, Jaya Borgatta, Yan Jin, Jason C. White, Deb P. Jaisi. Role of Cation Substitution and Synthesis Condition in a Calcium Phosphate-Based Novel Nanofertilizer on Lettuce (Lactuca sativa) Yield. ACS Sustainable Chemistry & Engineering 2022, 10 (47) , 15414-15422. https://doi.org/10.1021/acssuschemeng.2c04451
    2. Gulcin U. Tosun, Yuriy Sakhno, Deb P. Jaisi. Synthesis of Hydroxyapatite Nanoparticles from Phosphorus Recovered from Animal Wastes. ACS Sustainable Chemistry & Engineering 2021, 9 (45) , 15117-15126. https://doi.org/10.1021/acssuschemeng.1c01006
    3. Yuriy Sakhno, Deb P. Jaisi. Novel Route to Enhance the Solubility of Apatite, a Potential Nanofertilizer, through Structural Incorporation of Sodium and Potassium Ions. ACS Agricultural Science & Technology 2021, 1 (5) , 488-498. https://doi.org/10.1021/acsagscitech.1c00116
    4. Ho Young Yoon, Jeong Gu Lee, Lorenzo Degli Esposti, Michele Iafisco, Pil Joo Kim, Seung Gu Shin, Jong-Rok Jeon, Alessio Adamiano. Synergistic Release of Crop Nutrients and Stimulants from Hydroxyapatite Nanoparticles Functionalized with Humic Substances: Toward a Multifunctional Nanofertilizer. ACS Omega 2020, 5 (12) , 6598-6610. https://doi.org/10.1021/acsomega.9b04354
    5. Simone Sprio, Lorenzo Preti, Monica Montesi, Silvia Panseri, Alessio Adamiano, Alberta Vandini, Nicola M. Pugno, Anna Tampieri. Surface Phenomena Enhancing the Antibacterial and Osteogenic Ability of Nanocrystalline Hydroxyapatite, Activated by Multiple-Ion Doping. ACS Biomaterials Science & Engineering 2019, 5 (11) , 5947-5959. https://doi.org/10.1021/acsbiomaterials.9b00893
    6. Qing Xie, Zhiyu Xue, Haojie Gu, Cuifang Hu, Mingli Yang, Xin Wang, Dingguo Xu. Molecular Dynamics Exploration of Ordered-to-Disordered Surface Structures of Biomimetic Hydroxyapatite Nanoparticles. The Journal of Physical Chemistry C 2018, 122 (12) , 6691-6703. https://doi.org/10.1021/acs.jpcc.8b00178
    7. Yuriy Sakhno, Pavlo Ivanchenko, Michele Iafisco, Anna Tampieri, and Gianmario Martra . A Step toward Control of the Surface Structure of Biomimetic Hydroxyapatite Nanoparticles: Effect of Carboxylates on the {010} P-Rich/Ca-Rich Facets Ratio. The Journal of Physical Chemistry C 2015, 119 (11) , 5928-5937. https://doi.org/10.1021/jp510492m
    8. Fabio Chiatti, Marta Corno, Yuriy Sakhno, Gianmario Martra, and Piero Ugliengo . Revealing Hydroxyapatite Nanoparticle Surface Structure by CO Adsorption: A Combined B3LYP and Infrared Study. The Journal of Physical Chemistry C 2013, 117 (48) , 25526-25534. https://doi.org/10.1021/jp4086574
    9. Karima Achelhi, Sylvie Masse, Guillaume Laurent, Cécile Roux, Abdelaziz Laghzizil, Ahmed Saoiabi, and Thibaud Coradin . Ultrasound-Assisted Synthesis of Mesoporous Zirconia-Hydroxyapatite Nanocomposites and Their Dual Surface Affinity for Cr3+/Cr2O72– Ions. Langmuir 2011, 27 (24) , 15176-15184. https://doi.org/10.1021/la2029643
    10. Albert Rimola, Yuriy Sakhno, Luca Bertinetti, Marco Lelli, Gianmario Martra, and Piero Ugliengo . Toward a Surface Science Model for Biology: Glycine Adsorption on Nanohydroxyapatite with Well-Defined Surfaces. The Journal of Physical Chemistry Letters 2011, 2 (12) , 1390-1394. https://doi.org/10.1021/jz200457x
    11. Valentina Aina, Francesca Bonino, Claudio Morterra, Marta Miola, Claudia L. Bianchi, Gianluca Malavasi, Marco Marchetti, and Vera Bolis . Influence of the Chemical Composition on Nature and Activity of the Surface Layer of Zn-Substituted Sol−Gel (Bioactive) Glasses. The Journal of Physical Chemistry C 2011, 115 (5) , 2196-2210. https://doi.org/10.1021/jp1101708
    12. Yue Tang, Lei Lei, Hujun Wang, Haonan Qiu, Jing Zheng, Zhongrong Zhou. How surface electronegativity and calcium release of enamel mediate the adsorption and lubrication of salivary proteins: The role of interfacial water. Friction 2024, https://doi.org/10.26599/FRICT.2025.9440912
    13. Takuya Kataoka, Zizhen Liu, Iori Yamada, Tania Guadalupe Peñaflor Galindo, Motohiro Tagaya. Surface functionalization of hydroxyapatite nanoparticles for biomedical applications. Journal of Materials Chemistry B 2024, 12 (28) , 6805-6826. https://doi.org/10.1039/D4TB00551A
    14. Tian-Lan Zhang. Pseudo-equilibrium equations for calcium phosphate precipitation with multi-unit particles. Physical Chemistry Chemical Physics 2024, 3 https://doi.org/10.1039/D3CP03700B
    15. J.A. Castro-Pineda, Mavis L. Montero. From nano-hydroxyapatite to pakhomovskyite: A particular phase transformation. Journal of Crystal Growth 2023, 622 , 127388. https://doi.org/10.1016/j.jcrysgro.2023.127388
    16. Joelma R.C. Sousa, Juliana A. Torres, Amanda S. Giroto, Anna V.P.S. Oliveira, Pedro H.M. Silva, Fabiana L. Santos, Gustavo D. Iga, Caue Ribeiro, André E. Nogueira. Development of photocatalysts based on zeolite A with copper oxide (CuO) for application in the artificial photosynthesis process. Journal of Environmental Chemical Engineering 2023, 11 (5) , 110990. https://doi.org/10.1016/j.jece.2023.110990
    17. Duy‐Khoi Nguyen, Van‐Phuc Dinh, Hung Q. Nguyen, Nguyen T. Hung. Zeolite ZSM ‐5 synthesized from natural silica sources and its applications: a critical review. Journal of Chemical Technology & Biotechnology 2023, 98 (6) , 1339-1355. https://doi.org/10.1002/jctb.7380
    18. Joelma R. C. Souza, Juliana A. Torres, Lucas S. Ribeiro, Jose B. G. Filho, Fabiana L. Santos, Nicholas Malgioglio, Luiz Fernando Gorup, Alexandre H. Pinto, André E. Nogueira. The Facile Microwave-Assisted Coprecipitation Route to Obtain Polyoxoniobate (Na7(H3O)Nb6O19·14H2O) Nanorods Modified with Copper for CO2 Photoreduction. AppliedChem 2023, 3 (2) , 320-333. https://doi.org/10.3390/appliedchem3020020
    19. Jose D.C. Geovo, Juliana A. Torres, Amanda S. Giroto, Fernanda C.N. Rocha, Marília M. Garcia, Gelson T.S.T. Silva, Joelma R.C. Souza, Jéssica A. de Oliveira, Caue Ribeiro, André E. Nogueira. Evaluation of the activity and selectivity of mesoporous composites of MCM-41 and CuO in the CO2 photoreduction process. Journal of Photochemistry and Photobiology A: Chemistry 2023, 439 , 114631. https://doi.org/10.1016/j.jphotochem.2023.114631
    20. Dengxue Qin, Zhiyu Xue, Meng Du, Xin Wang, Ying Xue, Dingguo Xu. Molecular dynamics exploration of ion association mechanism of apatite controlled by a nanogrooved hydroxyapatite surface. Applied Surface Science 2023, 617 , 156580. https://doi.org/10.1016/j.apsusc.2023.156580
    21. Yuriy Sakhno, Ivana Miletto, Geo Paul, Deb P. Jaisi. A novel route to enhance the dissolution of apatite: Structural incorporation of hydrogen phosphate. NanoImpact 2022, 28 , 100422. https://doi.org/10.1016/j.impact.2022.100422
    22. Guylène Costentin, Christophe Drouet, Fabrice Salles, Stéphanie Sarda. Structure and Surface Study of Hydroxyapatite‐Based Materials. 2022, 73-140. https://doi.org/10.1002/9783527830190.ch3
    23. Guillermo Escolano Casado, Pavlo Ivanchenko, Geo Paul, Chiara Bisio, Leonardo Marchese, Amir M. Ashrafi, Vedran Milosavljevic, Lorenzo Degli Esposti, Michele Iafisco, Lorenzo Mino. Surface and structural characterization of Cu-exchanged hydroxyapatites and their application in H2O2 electrocatalytic reduction. Applied Surface Science 2022, 595 , 153495. https://doi.org/10.1016/j.apsusc.2022.153495
    24. Pavlo Ivanchenko, Guillermo Escolano-Casado, Lorenzo Mino, Luca Dassi, Jorge F. Fernández-Sánchez, Gianmario Martra, Jaime Gómez-Morales. Structural and surface studies of luminescent Ca/Eu phosphate nanomaterials: From the bulk to surface features. Colloids and Surfaces B: Biointerfaces 2022, 217 , 112620. https://doi.org/10.1016/j.colsurfb.2022.112620
    25. Zizhen Liu, Shota Yamada, Yuichi Otsuka, Tania Guadalupe Peñaflor Galindo, Motohiro Tagaya. Surface modification of hydroxyapatite nanoparticles for bone regeneration by controlling their surface hydration and protein adsorption states. Dalton Transactions 2022, 51 (25) , 9572-9583. https://doi.org/10.1039/D2DT00969B
    26. André E. Nogueira, Lucas S. Ribeiro, Jose D. C. Geovo, Francisco N. Souza Neto, Vanessa H. Fragal, Thiago Sequinel, Emerson R. Camargo, Luiz F. Gorup. The Chemistry of CO2 Reduction Processes: Mechanisms, Challenges, and Perspectives. 2022, 1-25. https://doi.org/10.1007/978-981-16-4480-1_47-1
    27. An-Ya Lo, Fariborz Taghipour. Ordered mesoporous photocatalysts for CO 2 photoreduction. Journal of Materials Chemistry A 2021, 9 (47) , 26430-26453. https://doi.org/10.1039/D1TA05643C
    28. Henrique Brasil, Albert F.B. Bittencourt, Kathlen C.E.S. Yokoo, Paulo C.D. Mendes, Lucas G. Verga, Karla F. Andriani, Richard Landers, Juarez L.F. Da Silva, Gustavo P. Valença. Synthesis modification of hydroxyapatite surface for ethanol conversion: The role of the acidic/basic sites ratio. Journal of Catalysis 2021, 404 , 802-813. https://doi.org/10.1016/j.jcat.2021.08.050
    29. Daniyal Kiani, Jonas Baltrusaitis. Surface chemistry of hydroxyapatite for sustainable n-butanol production from bio-ethanol. Chem Catalysis 2021, 1 (4) , 782-801. https://doi.org/10.1016/j.checat.2021.06.005
    30. Albert F. B. Bittencourt, Paulo C. D. Mendes, Gustavo P. Valença, Juarez L. F. Da Silva. Acid-base properties of hydroxyapatite(0001) by the adsorption of probe molecules: An ab initio investigation. Physical Review Materials 2021, 5 (7) https://doi.org/10.1103/PhysRevMaterials.5.075003
    31. Mattias Edén. Structure and formation of amorphous calcium phosphate and its role as surface layer of nanocrystalline apatite: Implications for bone mineralization. Materialia 2021, 17 , 101107. https://doi.org/10.1016/j.mtla.2021.101107
    32. An-Ya Lo, Fariborz Taghipour. Review and prospects of microporous zeolite catalysts for CO2 photoreduction. Applied Materials Today 2021, 23 , 101042. https://doi.org/10.1016/j.apmt.2021.101042
    33. Yuriy Sakhno, Michele Iafisco, Deb Jaisi. Role of Maturation Temperature on Structural Substitution of Carbonate in Hydroxyapatite Nanoparticles. JOM 2021, 73 (4) , 1044-1052. https://doi.org/10.1007/s11837-021-04587-0
    34. Melissa Greta Galloni, Sebastiano Campisi, Sergio Gustavo Marchetti, Antonella Gervasini. Environmental Reactions of Air-Quality Protection on Eco-Friendly Iron-Based Catalysts. Catalysts 2020, 10 (12) , 1415. https://doi.org/10.3390/catal10121415
    35. Masato Miyauchi, Takumi Watanabe, Daiki Hoshi, Tomonori Ohba. Irreversible adsorption of acidic, basic, and water gas molecules on calcium-deficient hydroxyapatite. Dalton Transactions 2019, 48 (47) , 17507-17515. https://doi.org/10.1039/C9DT03704G
    36. A. Rajesh, G. Mangamma, T.N. Sairam, S. Subramanian. Probing host-guest interactions in hydroxyapatite intercalated graphene oxide nanocomposite: NMR and scanning probe microscopy studies. Chemical Physics Letters 2019, 732 , 136636. https://doi.org/10.1016/j.cplett.2019.136636
    37. M. Frasnelli, A. Pedranz, M. Biesuz, S. Dirè, V.M. Sglavo. Flash sintering of Mg-doped tricalcium phosphate (TCP) nanopowders. Journal of the European Ceramic Society 2019, 39 (13) , 3883-3892. https://doi.org/10.1016/j.jeurceramsoc.2019.05.007
    38. Lorenzo Preti, Barbara Lambiase, Elisabetta Campodoni, Monica Sandri, Andrea Ruffini, Nicola Pugno, Anna Tampieri, Simone Sprio. Nature-Inspired Processes and Structures: New Paradigms to Develop Highly Bioactive Devices for Hard Tissue Regeneration. 2019https://doi.org/10.5772/intechopen.82740
    39. Ruifeng Chong, Yangyang Fan, Yuqing Du, Ling Liu, Zhixian Chang, Deliang Li. Hydroxyapatite decorated TiO2 as efficient photocatalyst for selective reduction of CO2 with H2O into CH4. International Journal of Hydrogen Energy 2018, 43 (49) , 22329-22339. https://doi.org/10.1016/j.ijhydene.2018.10.045
    40. Sergey V. Dorozhkin. Nanodimensional and Nanocrystalline Calcium Orthophosphates. 2018, 355-448. https://doi.org/10.1007/978-981-10-5975-9_9
    41. Pavlo Ivanchenko, José Manuel Delgado-López, Michele Iafisco, Jaime Gómez-Morales, Anna Tampieri, Gianmario Martra, Yuriy Sakhno. On the surface effects of citrates on nano-apatites: evidence of a decreased hydrophilicity. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-09376-x
    42. Muthuramalingam Prakash, Thibault Lemaire, Devis Di Tommaso, Nora de Leeuw, Marius Lewerenz, Matthieu Caruel, Salah Naili. Transport properties of water molecules confined between hydroxyapaptite surfaces: A Molecular dynamics simulation approach. Applied Surface Science 2017, 418 , 296-301. https://doi.org/10.1016/j.apsusc.2017.02.029
    43. Stanislas Von Euw, Widad Ajili, Tsou-Hsi-Camille Chan-Chang, Annette Delices, Guillaume Laurent, Florence Babonneau, Nadine Nassif, Thierry Azaïs. Amorphous surface layer versus transient amorphous precursor phase in bone – A case study investigated by solid-state NMR spectroscopy. Acta Biomaterialia 2017, 59 , 351-360. https://doi.org/10.1016/j.actbio.2017.06.040
    44. Linda Pastero, Marco Bruno, Dino Aquilano. About the Genetic Mechanisms of Apatites: A Survey on the Methodological Approaches. Minerals 2017, 7 (8) , 139. https://doi.org/10.3390/min7080139
    45. Muthuramalingam Prakash, Thibault Lemaire, Matthieu Caruel, Marius Lewerenz, Nora H. de Leeuw, Devis Di Tommaso, Salah Naili. Anisotropic diffusion of water molecules in hydroxyapatite nanopores. Physics and Chemistry of Minerals 2017, 44 (7) , 509-519. https://doi.org/10.1007/s00269-017-0878-1
    46. A. Rajesh, G. Mangamma, T.N. Sairam, S. Subramanian, S. Kalavathi, M. Kamruddin, S. Dash. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide. Materials Science and Engineering: C 2017, 76 , 203-210. https://doi.org/10.1016/j.msec.2017.02.044
    47. Gloria Belén Ramírez-Rodríguez, José Manuel Delgado-López, Michele Iafisco, Monica Montesi, Monica Sandri, Simone Sprio, Anna Tampieri. Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration. Journal of Structural Biology 2016, 196 (2) , 138-146. https://doi.org/10.1016/j.jsb.2016.06.025
    48. Agnieszka Kaflak, Dariusz Chmielewski, Waclaw Kolodziejski. Solid-state NMR study of discrete environments of bone mineral nanoparticles using phosphorus-31 relaxation. Journal of Applied Biomedicine 2016, 14 (4) , 321-330. https://doi.org/10.1016/j.jab.2016.07.001
    49. Simone Sprio, Monica Sandri, Michele Iafisco, Silvia Panseri, Alessio Adamiano, Monica Montesi, Elisabetta Campodoni, Anna Tampieri. Bio-inspired assembling/mineralization process as a flexible approach to develop new smart scaffolds for the regeneration of complex anatomical regions. Journal of the European Ceramic Society 2016, 36 (12) , 2857-2867. https://doi.org/10.1016/j.jeurceramsoc.2016.01.005
    50. Fabio Chiatti, Massimo Delle Piane, Piero Ugliengo, Marta Corno. Water at hydroxyapatite surfaces: the effect of coverage and surface termination as investigated by all-electron B3LYP-D* simulations. Theoretical Chemistry Accounts 2016, 135 (3) https://doi.org/10.1007/s00214-016-1818-8
    51. Pietro Mandracci, Federico Mussano, Paola Rivolo, Stefano Carossa. Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology. Coatings 2016, 6 (1) , 7. https://doi.org/10.3390/coatings6010007
    52. Anna Tampieri, Michele Iafisco, Simone Sprio, Andrea Ruffini, Silvia Panseri, Monica Montesi, Alessio Adamiano, Monica Sandri. Hydroxyapatite: From Nanocrystals to Hybrid Nanocomposites for Regenerative Medicine. 2016, 119-144. https://doi.org/10.1007/978-3-319-12460-5_6
    53. E. Blanco, C. Lorentz, P. Delichere, L. Burel, M. Vrinat, J.M.M. Millet, S. Loridant. Dehydration of ethyl lactate over alkaline earth phosphates: Performances, effect of water on reaction pathways and active sites. Applied Catalysis B: Environmental 2016, 180 , 596-606. https://doi.org/10.1016/j.apcatb.2015.07.005
    54. Konstantinos Chatzipanagis, Michele Iafisco, Teresa Roncal-Herrero, Matthew Bilton, Anna Tampieri, Roland Kröger, José Manuel Delgado-López. Crystallization of citrate-stabilized amorphous calcium phosphate to nanocrystalline apatite: a surface-mediated transformation. CrystEngComm 2016, 18 (18) , 3170-3173. https://doi.org/10.1039/C6CE00521G
    55. Anna Tampieri, Michele Iafisco, Simone Sprio, Andrea Ruffini, Silvia Panseri, Monica Montesi, Alessio Adamiano, Monica Sandri. Hydroxyapatite: From Nanocrystals to Hybrid Nanocomposites for Regenerative Medicine. 2015, 1-26. https://doi.org/10.1007/978-3-319-09230-0_6-1
    56. Christina G. Weber, Michaela Mueller, Nicolas Vandecandelaere, Iris Trick, Anke Burger-Kentischer, Tanja Maucher, Christophe Drouet. Enzyme-functionalized biomimetic apatites: concept and perspectives in view of innovative medical approaches. Journal of Materials Science: Materials in Medicine 2014, 25 (3) , 595-606. https://doi.org/10.1007/s10856-013-5097-9
    57. M. Mohedano, E. Matykina, R. Arrabal, A. Pardo, M.C. Merino. Metal release from ceramic coatings for dental implants. Dental Materials 2014, 30 (3) , e28-e40. https://doi.org/10.1016/j.dental.2013.12.011
    58. Luis J. del Valle, Oscar Bertran, Gustavo Chaves, Guillermo Revilla-López, Manuel Rivas, María T. Casas, Jordi Casanovas, Pau Turon, Jordi Puiggalí, Carlos Alemán. DNA adsorbed on hydroxyapatite surfaces. J. Mater. Chem. B 2014, 2 (40) , 6953-6966. https://doi.org/10.1039/C4TB01184H
    59. S. Sprio, M. Sandri, M. Iafisco, S. Panseri, G. Filardo, E. Kon, M. Marcacci, A. Tampieri. Composite biomedical foams for engineering bone tissue. 2014, 249-280. https://doi.org/10.1533/9780857097033.2.249
    60. Lukasz Pajchel, Violetta Kowalska, Dariusz Smolen, Aleksandra Kedzierska, Elzbieta Pietrzykowska, Witold Lojkowski, Waclaw Kolodziejski. Comprehensive structural studies of ultra-fine nanocrystalline calcium hydroxyapatite using MAS NMR and FT-IR spectroscopic methods. Materials Research Bulletin 2013, 48 (11) , 4818-4825. https://doi.org/10.1016/j.materresbull.2013.08.048
    61. Lukasz Pajchel, Waclaw Kolodziejski. Solid-state MAS NMR, TEM, and TGA studies of structural hydroxyl groups and water in nanocrystalline apatites prepared by dry milling. Journal of Nanoparticle Research 2013, 15 (8) https://doi.org/10.1007/s11051-013-1868-y
    62. Jaime Gómez-Morales, Michele Iafisco, José Manuel Delgado-López, Stéphanie Sarda, Christophe Drouet. Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Progress in Crystal Growth and Characterization of Materials 2013, 59 (1) , 1-46. https://doi.org/10.1016/j.pcrysgrow.2012.11.001
    63. Valentina Aina, Gabriele Alberto, Chiara Deiana, Yuriy Sakhno, Alessandro Damin, Gianmario Martra. Surface Sites of Nanomaterials: Investigation of Local Structures by In Situ IR Spectroscopy. 2013, 145-163. https://doi.org/10.1007/978-1-4614-7675-7_12
    64. S. Sprio, M. Sandri, M. Iafisco, S. Panseri, C. Cunha, A. Ruffini, N. Zini, R. Toni, A. Tampieri. Biomimetic materials in regenerative medicine. 2013, 3-45. https://doi.org/10.1533/9780857098887.1.3
    65. Michele Iafisco, Nicola Margiotta. Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum–bisphosphonate complexes in the treatment of bone tumors: A mini-review. Journal of Inorganic Biochemistry 2012, 117 , 237-247. https://doi.org/10.1016/j.jinorgbio.2012.06.004
    66. Nicolas Vandecandelaere, Christian Rey, Christophe Drouet. Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. Journal of Materials Science: Materials in Medicine 2012, 23 (11) , 2593-2606. https://doi.org/10.1007/s10856-012-4719-y
    67. Michele Iafisco, Barbara Palazzo, Tomoko Ito, Makoto Otsuka, Mamoru Senna, Josè Manuel Delgado-Lopez, Jaime Gomez-Morales, Anna Tampieri, Maria Prat, Lia Rimondini. Preparation of core–shell poly(l-lactic) acid-nanocrystalline apatite hollow microspheres for bone repairing applications. Journal of Materials Science: Materials in Medicine 2012, 23 (11) , 2659-2669. https://doi.org/10.1007/s10856-012-4732-1
    68. Kaia Tõnsuaadu, Kārlis Agris Gross, Liene Plūduma, Mihkel Veiderma. A review on the thermal stability of calcium apatites. Journal of Thermal Analysis and Calorimetry 2012, 110 (2) , 647-659. https://doi.org/10.1007/s10973-011-1877-y
    69. Norberto Roveri, Michele Iafisco. Biomimetic Nanostructured Apatitic Matrices for Drug Delivery. 2012, 381-416. https://doi.org/10.1002/9783527652273.ch17
    70. Sergey V. Dorozhkin. Biological and Medical Significance of Nanodimensional and Nanocrystalline Calcium Orthophosphates. 2012, 19-99. https://doi.org/10.1002/9781118523025.ch2
    71. José Manuel Delgado-López, Michele Iafisco, Isaac Rodríguez, Anna Tampieri, María Prat, Jaime Gómez-Morales. Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomaterialia 2012, 8 (9) , 3491-3499. https://doi.org/10.1016/j.actbio.2012.04.046
    72. Vera Bolis, Claudia Busco, Gianmario Martra, Luca Bertinetti, Yuriy Sakhno, Piero Ugliengo, Fabio Chiatti,  Marta Corno, Norberto Roveri. Coordination chemistry of Ca sites at the surface of nanosized hydroxyapatite: interaction with H 2 O and CO. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2012, 370 (1963) , 1313-1336. https://doi.org/10.1098/rsta.2011.0273
    73. Michele Iafisco, Ruggero Bosco, Sander C. G. Leeuwenburgh, Jeroen J. J. P. van den Beucken, John A. Jansen, Maria Prat, Norberto Roveri. Electrostatic Spray Deposition of Biomimetic Nanocrystalline Apatite Coatings onto Titanium. Advanced Engineering Materials 2012, 14 (3) https://doi.org/10.1002/adem.201180062
    74. C.A. Ospina, J. Terra, A.J. Ramirez, M. Farina, D.E. Ellis, A.M. Rossi. Experimental evidence and structural modeling of nonstoichiometric (010) surfaces coexisting in hydroxyapatite nano-crystals. Colloids and Surfaces B: Biointerfaces 2012, 89 , 15-22. https://doi.org/10.1016/j.colsurfb.2011.08.016
    75. Simone Sprio, Monica Sandri, Silvia Panseri, Carla Cunha, Anna Tampieri, . Hybrid Scaffolds for Tissue Regeneration: Chemotaxis and Physical Confinement as Sources of Biomimesis. Journal of Nanomaterials 2012, 2012 (1) https://doi.org/10.1155/2012/418281
    76. Pieremanuele Canepa, Fabio Chiatti, Marta Corno, Yuriy Sakhno, Gianmario Martra, Piero Ugliengo. Affinity of hydroxyapatite (001) and (010) surfaces to formic and alendronic acids: a quantum-mechanical and infrared study. Phys. Chem. Chem. Phys. 2011, 13 (3) , 1099-1111. https://doi.org/10.1039/C0CP01143F

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2010, 114, 39, 16640–16648
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp105971s
    Published September 2, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    843

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.