ACS Publications. Most Trusted. Most Cited. Most Read
Indirect Magnetic Coupling of Manganese Porphyrin to a Ferromagnetic Cobalt Substrate
My Activity

Figure 1Loading Img
    Article

    Indirect Magnetic Coupling of Manganese Porphyrin to a Ferromagnetic Cobalt Substrate
    Click to copy article linkArticle link copied!

    View Author Information
    Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, Villigen, Switzerland, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden, Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany, General Energy Department, Paul Scherrer Institut, Villigen, Switzerland, and Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
    †Part of the “Alfons Baiker Festschrift”.
    * To whom correspondence should be addressed. E-mail: [email protected], [email protected], and [email protected]
    ‡Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut.
    §Uppsala University.
    ∥University of Kaiserslautern.
    ⊥General Energy Department, Paul Scherrer Institut.
    #Swiss Light Source, Paul Scherrer Institut.
    ∇Present address: Leibniz Institute for Solid State and Materials Research, Dresden, Germany.
    ○Present address: Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.
    ◆Present address: Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany.
    Other Access Options

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2011, 115, 4, 1295–1301
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp106822s
    Published December 20, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The coupling mechanism of magnetic molecules to ferromagnetic surfaces is of scientific interest to design and tune molecular spintronic interfaces utilizing their molecular and surface architecture. Indirect magnetic coupling has been proposed earlier on the basis of density functional theory +U (DFT+U) calculations, for the magnetic coupling of manganese(II) porphyrin (MnP) molecules to thin Co films. Here we provide an experimental X-ray magnetic circular dichroism (XMCD) spectroscopy and scanning tunneling microscopy (STM) study of manganese(III) tetraphenylporphyrin chloride (MnTPPCl) on rough (exhibiting a high density of monatomic steps) and smooth (exhibiting a low density of monatomic steps) thin Co films grown on a Cu(001) single crystal toward the assessment of the magnetic coupling mechanism. After deposition onto the surface, MnTPPCl molecules were found to couple ferromagnetically to both rough and smooth Co substrates. For high molecular coverage, we observed higher XMCD signals at the Mn L-edges on the smooth Co substrate than on the rough Co substrate, as expected for the proposed indirect magnetic coupling mechanism on the basis of its predominance on the flat surface areas. In particular, DFT+U calculations predict a weak ferromagnetic molecule−substrate coupling only if the chloride ion of the MnTPPCl molecule orients away (Co−Mn−Cl) from the Co surface.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 45 publications.

    1. Can Wang, Ruimei Wang, Jakob Hauns, Thomas Fauster. Self-Metalation of Porphyrins by Cobalt Oxide: Photoemission Spectroscopic Investigation. The Journal of Physical Chemistry C 2020, 124 (26) , 14167-14175. https://doi.org/10.1021/acs.jpcc.0c01722
    2. Keitaro Eguchi, Yasumasa Takagi, Takeshi Nakagawa, and Toshihiko Yokoyama . Magnetic Interactions of Vanadyl Phthalocyanine with Ferromagnetic Iron, Cobalt, and Nickel Surfaces. The Journal of Physical Chemistry C 2014, 118 (31) , 17633-17637. https://doi.org/10.1021/jp503851k
    3. Nirmalya Ballav, Christian Wäckerlin, Dorota Siewert, Peter M. Oppeneer, and Thomas A. Jung . Emergence of On-Surface Magnetochemistry. The Journal of Physical Chemistry Letters 2013, 4 (14) , 2303-2311. https://doi.org/10.1021/jz400984k
    4. Sara M. A. Pinto, Mirtha A. O. Lourenço, Mário J. F. Calvete, Artur R. Abreu, Mário T. S. Rosado, Hugh D. Burrows, and Mariette M. Pereira . Synthesis of New Metalloporphyrin Triads: Efficient and Versatile Tripod Optical Sensor for the Detection of Amines. Inorganic Chemistry 2011, 50 (17) , 7916-7918. https://doi.org/10.1021/ic200727f
    5. Iulia Cojocariu, Daniele Perilli, Vitaliy Feyer, Matteo Jugovac. Graphene‐Molecule Hybridization at a Ferromagnetic Interface. Chemistry – A European Journal 2024, 5 https://doi.org/10.1002/chem.202400857
    6. Bogdana Borca. Advances in Organic Multiferroic Junctions. Coatings 2024, 14 (6) , 682. https://doi.org/10.3390/coatings14060682
    7. Yu Wang, Zheng Wang, Xiaoguang Li. Graphene-modulated interfacial exchange coupling across organic molecular/ferromagnet spin interfaces. Physical Review B 2024, 109 (1) https://doi.org/10.1103/PhysRevB.109.014428
    8. Aritra Mukhopadhyaya, Munish Sharma, Peter M. Oppeneer, Md. Ehesan Ali. Probing the spin states of tetra‐coordinated iron(II) porphyrins by their vibrational and pre K‐edge x‐ray absorption spectra. International Journal of Quantum Chemistry 2023, 123 (18) https://doi.org/10.1002/qua.27174
    9. Eva Mutunga, Christopher D'Angelo, Andrew Grizzle, Vincent Lamberti, Pawan Tyagi. Dramatic effect of electrode type on tunnel junction based molecular spintronic devices. Organic Electronics 2022, 106 , 106526. https://doi.org/10.1016/j.orgel.2022.106526
    10. Marzieh Savadkoohi, Christopher D'Angelo, Andrew Grizzle, Bishnu Dahal, Pawan Tyagi. Impact of ferromagnetic electrode length and thickness on Magnetic Tunnel Junction-Based Molecular Spintronic Devices (MTJMSD). Organic Electronics 2022, 102 , 106429. https://doi.org/10.1016/j.orgel.2022.106429
    11. Indukuru Ramesh Reddy, Kartick Tarafder. Understanding and tuning of spinterface for chemisorbed Ni-dinuclear quinonoid on Co(001) substrate. Journal of Physics: Condensed Matter 2021, 33 (35) , 355501. https://doi.org/10.1088/1361-648X/ac0cb6
    12. Bhaskar Chilukuri, Ursula Mazur, K. W. Hipps. Structure, Properties, and Reactivity of Porphyrins on Surfaces and Nanostructures with Periodic DFT Calculations. Applied Sciences 2020, 10 (3) , 740. https://doi.org/10.3390/app10030740
    13. Ilaria Bergenti, Valentin Dediu. Spinterface: A new platform for spintronics. Nano Materials Science 2019, 1 (3) , 149-155. https://doi.org/10.1016/j.nanoms.2019.05.002
    14. M. S. Jagadeesh, A. Calloni, A. Brambilla, A. Picone, A. Lodesani, L. Duò, F. Ciccacci, M. Finazzi, G. Bussetti. Room temperature magnetism of ordered porphyrin layers on Fe. Applied Physics Letters 2019, 115 (8) https://doi.org/10.1063/1.5109750
    15. Luiza Buimaga-Iarinca, Cristian Morari. The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface. Beilstein Journal of Nanotechnology 2019, 10 , 706-717. https://doi.org/10.3762/bjnano.10.70
    16. Meifang Sun, Wenbo Mi. Progress in organic molecular/ferromagnet spinterfaces: towards molecular spintronics. Journal of Materials Chemistry C 2018, 6 (25) , 6619-6636. https://doi.org/10.1039/C8TC01399C
    17. Giovanni Zamborlini, Daniel Lüftner, Zhijing Feng, Bernd Kollmann, Peter Puschnig, Carlo Dri, Mirko Panighel, Giovanni Di Santo, Andrea Goldoni, Giovanni Comelli, Matteo Jugovac, Vitaliy Feyer, Claus Michael Schneider. Multi-orbital charge transfer at highly oriented organic/metal interfaces. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00402-0
    18. Luis E. Jiménez-Ramírez, Dulce C. Camacho-Mojica, Emilio Muñoz-Sandoval, Florentino López-Urías. First-principles study of transition metal adsorbed on porphyrin-like motifs in pyrrolic nitrogen-doped carbon nanostructures. Carbon 2017, 116 , 381-390. https://doi.org/10.1016/j.carbon.2017.02.018
    19. Wolfgang Kuch, Matthias Bernien. Controlling the magnetism of adsorbed metal–organic molecules. Journal of Physics: Condensed Matter 2017, 29 (2) , 023001. https://doi.org/10.1088/0953-8984/29/2/023001
    20. Zheng-Dong Ding, Wei Zhu, Tao Li, Rui Shen, Yunxing Li, Zaijun Li, Xuehong Ren, Zhi-Guo Gu. A metalloporphyrin-based porous organic polymer as an efficient catalyst for the catalytic oxidation of olefins and arylalkanes. Dalton Transactions 2017, 46 (34) , 11372-11379. https://doi.org/10.1039/C7DT02149F
    21. Andrea Droghetti, Philip Thielen, Ivan Rungger, Norman Haag, Nicolas Großmann, Johannes Stöckl, Benjamin Stadtmüller, Martin Aeschlimann, Stefano Sanvito, Mirko Cinchetti. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms12668
    22. J. Michael Gottfried. Surface chemistry of porphyrins and phthalocyanines. Surface Science Reports 2015, 70 (3) , 259-379. https://doi.org/10.1016/j.surfrep.2015.04.001
    23. Pawan Tyagi, Collin Baker, Christopher D’Angelo. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device. Nanotechnology 2015, 26 (30) , 305602. https://doi.org/10.1088/0957-4484/26/30/305602
    24. Pawan Tyagi, Christopher D'Angelo, Collin Baker. Monte Carlo and Experimental Magnetic Studies of Molecular Spintronics Devices. Nano 2015, 10 (04) , 1550056. https://doi.org/10.1142/S1793292015500563
    25. Su-Hong Peng, Mian HR Mahmood, Huai-Bo Zou, Shu-Bao Yang, Hai-Yang Liu. The first manganese N-confused porphyrins catalyzed oxidation of alkene. Journal of Molecular Catalysis A: Chemical 2014, 395 , 180-185. https://doi.org/10.1016/j.molcata.2014.08.016
    26. Jan Girovsky, Kartick Tarafder, Christian Wäckerlin, Jan Nowakowski, Dorota Siewert, Tatjana Hählen, Aneliia Wäckerlin, Armin Kleibert, Nirmalya Ballav, Thomas A. Jung, Peter M. Oppeneer. Antiferromagnetic coupling of Cr-porphyrin to a bare Co substrate. Physical Review B 2014, 90 (22) https://doi.org/10.1103/PhysRevB.90.220404
    27. Claudio Garino, Elisa Borfecchia, Roberto Gobetto, Jeroen A. van Bokhoven, Carlo Lamberti. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coordination Chemistry Reviews 2014, 277-278 , 130-186. https://doi.org/10.1016/j.ccr.2014.03.027
    28. Pawan Tyagi, Collin Baker, Christropher D'Angelo. A Monte Carlo study of molecular nanostructure based spintronics devices. 2014, 377-381. https://doi.org/10.1109/NANO.2014.6968051
    29. Florian Klappenberger. Two-dimensional functional molecular nanoarchitectures – Complementary investigations with scanning tunneling microscopy and X-ray spectroscopy. Progress in Surface Science 2014, 89 (1) , 1-55. https://doi.org/10.1016/j.progsurf.2013.10.002
    30. H. C. Herper, S. Bhandary, O. Eriksson, B. Sanyal, B. Brena. Fe phthalocyanine on Co(001): Influence of surface oxidation on structural and electronic properties. Physical Review B 2014, 89 (8) https://doi.org/10.1103/PhysRevB.89.085411
    31. Jan Girovsky, Michele Buzzi, Christian Wäckerlin, Dorota Siewert, Jan Nowakowski, Peter M. Oppeneer, Frithjof Nolting, Thomas A. Jung, Armin Kleibert, Nirmalya Ballav. Investigating magneto-chemical interactions at molecule–substrate interfaces by X-ray photo-emission electron microscopy. Chemical Communications 2014, 50 (40) , 5190. https://doi.org/10.1039/c3cc47726f
    32. Christian Wäckerlin, Jan Nowakowski, Shi‐Xia Liu, Michael Jaggi, Dorota Siewert, Jan Girovsky, Aneliia Shchyrba, Tatjana Hählen, Armin Kleibert, Peter M. Oppeneer, Frithjof Nolting, Silvio Decurtins, Thomas A. Jung, Nirmalya Ballav. Two‐Dimensional Supramolecular Electron Spin Arrays. Advanced Materials 2013, 25 (17) , 2404-2408. https://doi.org/10.1002/adma.201204274
    33. H. C. Herper, M. Bernien, S. Bhandary, C. F. Hermanns, A. Krüger, J. Miguel, C. Weis, C. Schmitz-Antoniak, B. Krumme, D. Bovenschen, C. Tieg, B. Sanyal, E. Weschke, C. Czekelius, W. Kuch, H. Wende, O. Eriksson. Iron porphyrin molecules on Cu(001): Influence of adlayers and ligands on the magnetic properties. Physical Review B 2013, 87 (17) https://doi.org/10.1103/PhysRevB.87.174425
    34. Christian Wäckerlin, Kartick Tarafder, Jan Girovsky, Jan Nowakowski, Tatjana Hählen, Aneliia Shchyrba, Dorota Siewert, Armin Kleibert, Frithjof Nolting, Peter M. Oppeneer, Thomas A. Jung, Nirmalya Ballav. Ammonia Coordination Introducing a Magnetic Moment in an On‐Surface Low‐Spin Porphyrin. Angewandte Chemie 2013, 125 (17) , 4666-4669. https://doi.org/10.1002/ange.201208028
    35. Christian Wäckerlin, Kartick Tarafder, Jan Girovsky, Jan Nowakowski, Tatjana Hählen, Aneliia Shchyrba, Dorota Siewert, Armin Kleibert, Frithjof Nolting, Peter M. Oppeneer, Thomas A. Jung, Nirmalya Ballav. Ammonia Coordination Introducing a Magnetic Moment in an On‐Surface Low‐Spin Porphyrin. Angewandte Chemie International Edition 2013, 52 (17) , 4568-4571. https://doi.org/10.1002/anie.201208028
    36. Zhenfeng Cao, Qibin Chen, Yunxiang Lu, Honglai Liu, Ying Hu. Density functional theory study on the interaction between metalloporphyrins and NH 3. International Journal of Quantum Chemistry 2013, 113 (8) , 1137-1146. https://doi.org/10.1002/qua.24192
    37. Christian Wäckerlin, Pablo Maldonado, Lena Arnold, Aneliia Shchyrba, Jan Girovsky, Jan Nowakowski, Md. Ehesan Ali, Tatjana Hählen, Milos Baljozovic, Dorota Siewert, Armin Kleibert, Klaus Müllen, Peter M. Oppeneer, Thomas A. Jung, Nirmalya Ballav. Magnetic exchange coupling of a synthetic Co(ii)-complex to a ferromagnetic Ni substrate. Chemical Communications 2013, 49 (91) , 10736. https://doi.org/10.1039/c3cc45401k
    38. Christian Wäckerlin, Dorota Siewert, Thomas A. Jung, Nirmalya Ballav. On-surface coordination chemistry: direct imaging of the conformational freedom of an axial ligand at room temperature. Physical Chemistry Chemical Physics 2013, 15 (39) , 16510. https://doi.org/10.1039/c3cp50966d
    39. Jie Tan, Weifeng Li, Xiujie He, Mingwen Zhao. Stable ferromagnetism and half-metallicity in two-dimensional polyporphyrin frameworks. RSC Advances 2013, 3 (19) , 7016. https://doi.org/10.1039/c3ra40502h
    40. Christopher D’Angelo, Pawan Tyagi. Molecular Magnet Induced Transformative Effects in Molecular Spintronics Devices: A Monte Carlo Study. MRS Proceedings 2013, 1508 https://doi.org/10.1557/opl.2013.488
    41. Pawan Tyagi. Molecule Induced Strong Coupling between Ferromagnetic Electrodes of a Molecular Spintronics Device. Materials Science Forum 2012, 736 , 32-54. https://doi.org/10.4028/www.scientific.net/MSF.736.32
    42. C. S. Guo, L. Sun, K. Hermann, C. F. Hermanns, M. Bernien, W. Kuch. X-ray absorption from large molecules at metal surfaces: Theoretical and experimental results for Co-OEP on Ni(100). The Journal of Chemical Physics 2012, 137 (19) https://doi.org/10.1063/1.4765373
    43. Jamal T. Aldajaei, Scott Gronert. The gas-phase reactions of metal porphyrins with diazoacetate esters. International Journal of Mass Spectrometry 2012, 316-318 , 68-75. https://doi.org/10.1016/j.ijms.2011.12.012
    44. Christian Wäckerlin, Kartick Tarafder, Dorota Siewert, Jan Girovsky, Tatjana Hählen, Cristian Iacovita, Armin Kleibert, Frithjof Nolting, Thomas A. Jung, Peter M. Oppeneer, Nirmalya Ballav. On-surface coordination chemistry of planar molecular spin systems: novel magnetochemical effects induced by axial ligands. Chemical Science 2012, 3 (11) , 3154. https://doi.org/10.1039/c2sc20828h
    45. Katia C. U. Mugnol, Marccus V. A. Martins, Edvaldo C. Nascimento, Otaciro R. Nascimento, Frank N. Crespilho, Jeverson T. Arantes, Iseli L. Nantes. Interaction of Fe3+meso-tetrakis (2,6-dichloro-3-sulfonatophenyl) porphyrin with cationic bilayers: magnetic switching of the porphyrin and magnetic induction at the interface. Theoretical Chemistry Accounts 2011, 130 (4-6) , 829-837. https://doi.org/10.1007/s00214-011-1055-0

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2011, 115, 4, 1295–1301
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp106822s
    Published December 20, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    1497

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.