Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Unique Ultrafast Visible Luminescence in Monolayer-Protected Au25 Clusters

View Author Information
Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States, Department of Chemistry, Yonsei University, Seoul 120-749, Korea, and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
* To whom correspondence should be addressed. E-mail: [email protected]
†Western Michigan University.
‡Yonsei University.
§University of Michigan.
Cite this: J. Phys. Chem. C 2010, 114, 51, 22417–22423
Publication Date (Web):December 9, 2010
https://doi.org/10.1021/jp107033n
Copyright © 2010 American Chemical Society

    Article Views

    4291

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The luminescence of quantum-sized metal clusters has enthralled the scientific community in recent years. In this study, ultrafast luminescence dynamics of hexanethiol (C6S)- and glutathione (GS)-protected Au25 clusters are investigated with time-resolved luminescence spectroscopy. The focus of the present investigation is to understand the dynamics of higher excited states and also the relaxation of core Au states to Au semi-ring states in Au25L18 (“L” is the protecting ligand) clusters. Comparative luminescence measurements on larger monolayer-protected gold clusters (2.2 nm Au(C6S) and 2.2 nm Au(GS)) and gold nanoparticles (3 nm Au(C6S) and 13 nm Au(citrate-stabilized)) are also carried out. The investigated Au25L18 clusters have shown a low quantum-yield visible photoluminescence in addition to near-infrared luminescence, which is used as a probe to follow the dynamics of core Au states. The luminescence decay traces of Au25L18 clusters have shown unique ultrafast growth and decay kinetics that are absent in the larger monolayer-protected gold clusters. The growth time constants are independent of the passivating ligand, suggesting that the luminescence arises out of the Au25 core states. The decay of the luminescence is dependent on the passivating monolayer and is ascribed to the relaxation of the core Au states to S−Au−S−Au−S semi-ring states. However, the excited-state dynamics in Au25L18 clusters is not a typical two-state relaxation from core to semi-ring states, but rather proceeds through a manifold of electronic states as the luminescence traces show wavelength-dependent growth and decay kinetics. Also, femtosecond time-resolved luminescence measurements of Au25L18 have proved that the higher excited states in monolayer-protected Au25 clusters decay with a finite lifetime (200 fs up to a few picoseconds) that can be utilized for applications in solar energy harvesting and catalysis.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    TEM and other experimental details are furnished. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 191 publications.

    1. Muhammad A. Abbas, Minwook Jeon, Jin Ho Bang. Understanding the Photoelectrochemical Behavior of Metal Nanoclusters: A Perspective. The Journal of Physical Chemistry C 2022, 126 (40) , 16928-16942. https://doi.org/10.1021/acs.jpcc.2c05301
    2. Subarna Maity, Sarita Kolay, Srijon Ghosh, Sikta Chakraborty, Dipankar Bain, Amitava Patra. Unraveling the Effect of Single Atom Doping on the Carrier Relaxation Dynamics of MAg24n– Nanoclusters. The Journal of Physical Chemistry Letters 2022, 13 (24) , 5581-5588. https://doi.org/10.1021/acs.jpclett.2c01333
    3. Lloyd Fisher, Jr., Ricardo Javier Vázquez, Madeleine Howell, Angelar K. Muthike, Meghan E. Orr, Hanjie Jiang, Betsy Dodgen, Dong Ryun Lee, Jun Yeob Lee, Paul Zimmerman, Theodore Goodson, III. Investigation of Thermally Activated Delayed Fluorescence in Donor–Acceptor Organic Emitters with Time-Resolved Absorption Spectroscopy. Chemistry of Materials 2022, 34 (5) , 2161-2175. https://doi.org/10.1021/acs.chemmater.1c03668
    4. Anjali Thakran, Amit Nain, Monika Kataria, Christy Roshini Paul Inbaraj, Hsia-Yu Lin, Hung-I Lin, Yu-Ming Liao, Cheng-Fu Hou, Chao-Chu Wang, Huan-Tsung Chang, Yang-Fang Chen. Highly Efficient Photodetection in Metal Nanocluster/Graphene Heterojunctions. ACS Photonics 2021, 8 (10) , 2955-2965. https://doi.org/10.1021/acsphotonics.1c00885
    5. Kunlin Chu, Yucheng Luo, Dongjun Wu, Zhifang Su, Jianying Shi, Jin Zhong Zhang, Cheng-Yong Su. Charge State of Au25(SG)18 Nanoclusters Induced by Interaction with a Metal Organic Framework Support and Its Effect on Catalytic Performance. The Journal of Physical Chemistry Letters 2021, 12 (33) , 8003-8008. https://doi.org/10.1021/acs.jpclett.1c02090
    6. Junghyun Lee, Malenahalli H. Naveen, Jein Park, Kyunglim Pyo, Hahkjoon Kim, Dongil Lee, Jin Ho Bang. Small Change, Big Difference: Photoelectrochemical Behavior of Au Nanocluster-Sensitized TiO2 Altered by Core Restructuring. ACS Energy Letters 2021, 6 (6) , 2305-2312. https://doi.org/10.1021/acsenergylett.1c00990
    7. Hongliang Chen, Vitor Brasiliense, Jingshan Mo, Long Zhang, Yang Jiao, Zhu Chen, Leighton O. Jones, Gen He, Qing-Hui Guo, Xiao-Yang Chen, Bo Song, George C. Schatz, J. Fraser Stoddart. Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors. Journal of the American Chemical Society 2021, 143 (7) , 2886-2895. https://doi.org/10.1021/jacs.0c12664
    8. Yu Fan, Shange Liu, Yu Yi, Hongpan Rong, Jiatao Zhang. Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano 2021, 15 (2) , 2005-2037. https://doi.org/10.1021/acsnano.0c06962
    9. Meng Zhou, Yongbo Song. Origins of Visible and Near-Infrared Emissions in [Au25(SR)18]− Nanoclusters. The Journal of Physical Chemistry Letters 2021, 12 (5) , 1514-1519. https://doi.org/10.1021/acs.jpclett.1c00120
    10. Siping Huo, Yufei Wu, Chongyang Zhao, Fengjiao Yu, Jun Fang, Yang Yang. Core–Shell TiO2@Au25/TiO2 Nanowire Arrays Photoanode for Efficient Photoelectrochemical Full Water Splitting. Industrial & Engineering Chemistry Research 2020, 59 (32) , 14224-14233. https://doi.org/10.1021/acs.iecr.0c02119
    11. Alan McLean, Ruofei Wang, Ying Huo, Alexander Cooke, Thomas Hopkins, Natalie Potter, Qi Li, Joseph Isaac, Jalal Haidar, Rongchao Jin, Raoul Kopelman. Synthesis and Optical Properties of Two-Photon-Absorbing Au25(Captopril)18-Embedded Polyacrylamide Nanoparticles for Cancer Therapy. ACS Applied Nano Materials 2020, 3 (2) , 1420-1430. https://doi.org/10.1021/acsanm.9b02272
    12. Ridwan P. Putra, Yoshinori Ikumura, Hideyuki Horino, Akiko Hori, Izabela I. Rzeznicka. Adsorption and Conformation of Bovine Serum Albumin with Blue-Emitting Gold Nanoclusters at the Air/Water and Lipid/Water Interfaces. Langmuir 2019, 35 (50) , 16576-16582. https://doi.org/10.1021/acs.langmuir.9b02831
    13. K. L. Dimuthu M. Weerawardene, Pratima Pandeya, Meng Zhou, Yuxiang Chen, Rongchao Jin, Christine M. Aikens. Luminescence and Electron Dynamics in Atomically Precise Nanoclusters with Eight Superatomic Electrons. Journal of the American Chemical Society 2019, 141 (47) , 18715-18726. https://doi.org/10.1021/jacs.9b07626
    14. Paul N. Day, Ruth Pachter, Kiet A. Nguyen, Rongchao Jin. Theoretical Prediction of Optical Absorption and Emission in Thiolated Gold Clusters. The Journal of Physical Chemistry A 2019, 123 (30) , 6472-6481. https://doi.org/10.1021/acs.jpca.9b02434
    15. Masoud Shabaninezhad, Abubkr Abuhagr, Naga Arjun Sakthivel, Chanaka Kumara, Amala Dass, Kyuju Kwak, Kyunglim Pyo, Dongil Lee, Guda Ramakrishna. Ultrafast Electron Dynamics in Thiolate-Protected Plasmonic Gold Clusters: Size and Ligand Effect. The Journal of Physical Chemistry C 2019, 123 (21) , 13344-13353. https://doi.org/10.1021/acs.jpcc.9b01739
    16. Li Zhang, Xichuan Yang, Weihan Wang, Gagik G. Gurzadyan, Jiajia Li, Xiaoxin Li, Jincheng An, Ze Yu, Haoxin Wang, Bin Cai, Anders Hagfeldt, Licheng Sun. 13.6% Efficient Organic Dye-Sensitized Solar Cells by Minimizing Energy Losses of the Excited State. ACS Energy Letters 2019, 4 (4) , 943-951. https://doi.org/10.1021/acsenergylett.9b00141
    17. Deepika Menon, Mary Sajini Devadas. Engaging Preservice Secondary Science Teachers in an NGSS-Based Energy Lesson: A Nanoscience Context. Journal of Chemical Education 2019, 96 (3) , 528-534. https://doi.org/10.1021/acs.jchemed.8b00169
    18. Jin Zhang, Santy Sulaiman, Ifeanyi K. Madu, Richard M. Laine, Theodore Goodson, III. Ultrafast Excited-State Dynamics of Partially and Fully Functionalized Silsesquioxanes. The Journal of Physical Chemistry C 2019, 123 (8) , 5048-5060. https://doi.org/10.1021/acs.jpcc.8b07734
    19. Rosina Ho-Wu, Prabhat Kumar Sahu, Nancy Wu, Tian Kai Chen, Carrie Yu, Jianping Xie, Theodore Goodson, III. Understanding the Optical Properties of Au@Ag Bimetallic Nanoclusters through Time-Resolved and Nonlinear Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (42) , 24368-24379. https://doi.org/10.1021/acs.jpcc.8b06360
    20. Kyunglim Pyo, Nguyen Hoang Ly, Sang Myeong Han, Mohammad bin Hatshan, Abubkr Abuhagr, Gary Wiederrecht, Sang-Woo Joo, Guda Ramakrishna, Dongil Lee. Unique Energy Transfer in Fluorescein-Conjugated Au22 Nanoclusters Leading to 160-Fold pH-Contrasting Photoluminescence. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5303-5310. https://doi.org/10.1021/acs.jpclett.8b02130
    21. Goonay Yousefalizadeh, Kevin G. Stamplecoskie. A Single Model for the Excited-State Dynamics of Au18(SR)14 and Au25(SR)18 Clusters. The Journal of Physical Chemistry A 2018, 122 (35) , 7014-7022. https://doi.org/10.1021/acs.jpca.8b07072
    22. Jin-Ting Ye, Li Wang, Hong-Qiang Wang, Xiu-Mei Pan, Hai-Ming Xie, Yong-Qing Qiu. Effective Impact of Dielectric Constant on Thermally Activated Delayed Fluorescence and Nonlinear Optical Properties: Through-Bond/-Space Charge Transfer Architectures. The Journal of Physical Chemistry C 2018, 122 (33) , 18850-18859. https://doi.org/10.1021/acs.jpcc.8b05411
    23. Tanya C. Jones, Leigh Sumner, Guda Ramakrishna, Mohammad bin Hatshan, Abubkr Abuhagr, Saumen Chakraborty, Amala Dass. Bulky t-Butyl Thiolated Gold Nanomolecular Series: Synthesis, Characterization, Optical Properties, and Electrocatalysis. The Journal of Physical Chemistry C 2018, 122 (31) , 17726-17737. https://doi.org/10.1021/acs.jpcc.8b01106
    24. Indrani Nandi, Sayantani Chall, Sourav Chowdhury, Tulika Mitra, Sib Sankar Roy, Krishnananda Chattopadhyay. Protein Fibril-Templated Biomimetic Synthesis of Highly Fluorescent Gold Nanoclusters and Their Applications in Cysteine Sensing. ACS Omega 2018, 3 (7) , 7703-7714. https://doi.org/10.1021/acsomega.8b01033
    25. Muhammad A. Abbas, Prashant V. Kamat, Jin Ho Bang. Thiolated Gold Nanoclusters for Light Energy Conversion. ACS Energy Letters 2018, 3 (4) , 840-854. https://doi.org/10.1021/acsenergylett.8b00070
    26. Raj Kumar Koninti, Sagar Satpathi, Partha Hazra. Ultrafast Fluorescence Dynamics of Highly Stable Copper Nanoclusters Synthesized inside the Aqueous Nanopool of Reverse Micelles. The Journal of Physical Chemistry C 2018, 122 (10) , 5742-5752. https://doi.org/10.1021/acs.jpcc.7b11457
    27. Masanori Ebina, Takeshi Iwasa, Yu Harabuchi, and Tetsuya Taketsugu . Time-Dependent Density Functional Theory Study on Higher Low-Lying Excited States of Au25(SR)18–. The Journal of Physical Chemistry C 2018, 122 (7) , 4097-4104. https://doi.org/10.1021/acs.jpcc.7b12723
    28. Dipankar Bain, Subarna Maity, Bipattaran Paramanik, and Amitava Patra . Core-Size Dependent Fluorescent Gold Nanoclusters and Ultrasensitive Detection of Pb2+ Ion. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 2334-2343. https://doi.org/10.1021/acssuschemeng.7b03794
    29. Rosina Ho-Wu, Kai Sun, and Theodore Goodson, III . Synthesis and Enhanced Linear and Nonlinear Optical Properties of Chromophore–Au Metal Cluster Oligomers. The Journal of Physical Chemistry C 2018, 122 (4) , 2315-2329. https://doi.org/10.1021/acs.jpcc.7b11480
    30. K. L. Dimuthu M. Weerawardene and Christine M. Aikens . Origin of Photoluminescence of Ag25(SR)18– Nanoparticles: Ligand and Doping Effect. The Journal of Physical Chemistry C 2018, 122 (4) , 2440-2447. https://doi.org/10.1021/acs.jpcc.7b11706
    31. Yaping Wang, Lulu Liu, Lingshan Gong, Ying Chen, and Jinbin Liu . Reactivity Toward Ag+: A General Strategy to Generate a New Emissive Center from NIR-Emitting Gold Nanoparticles. The Journal of Physical Chemistry Letters 2018, 9 (3) , 557-562. https://doi.org/10.1021/acs.jpclett.7b03295
    32. Zhenguang Wang, Yuan Xiong, Stephen V. Kershaw, Bingkun Chen, Xuming Yang, Nirmal Goswami, Wing-Fu Lai, Jianping Xie, and Andrey L. Rogach . In Situ Fabrication of Flexible, Thermally Stable, Large-Area, Strongly Luminescent Copper Nanocluster/Polymer Composite Films. Chemistry of Materials 2017, 29 (23) , 10206-10211. https://doi.org/10.1021/acs.chemmater.7b04239
    33. Chongyue Yi, Hongjun Zheng, Patrick J. Herbert, Yuxiang Chen, Rongchao Jin, Kenneth L. Knappenberger, Jr.. Ligand- and Solvent-Dependent Electronic Relaxation Dynamics of Au25(SR)18– Monolayer-Protected Clusters. The Journal of Physical Chemistry C 2017, 121 (44) , 24894-24902. https://doi.org/10.1021/acs.jpcc.7b09347
    34. Rosina Ho-Wu, Sung Hei Yau, and Theodore Goodson, III . Efficient Singlet Oxygen Generation in Metal Nanoclusters for Two-Photon Photodynamic Therapy Applications. The Journal of Physical Chemistry B 2017, 121 (43) , 10073-10080. https://doi.org/10.1021/acs.jpcb.7b09442
    35. Meng Zhou, Chenjie Zeng, Matthew Y. Sfeir, Mircea Cotlet, Kenji Iida, Katsuyuki Nobusada, and Rongchao Jin . Evolution of Excited-State Dynamics in Periodic Au28, Au36, Au44, and Au52 Nanoclusters. The Journal of Physical Chemistry Letters 2017, 8 (17) , 4023-4030. https://doi.org/10.1021/acs.jpclett.7b01597
    36. Ricardo J. Vázquez, Hyungjun Kim, Brandon M. Kobilka, Benjamin J. Hale, Malika Jeffries-EL, Paul Zimmerman, and Theodore Goodson, lll . Evaluating the Effect of Heteroatoms on the Photophysical Properties of Donor–Acceptor Conjugated Polymers Based on 2,6-Di(thiophen-2-yl)benzo[1,2-b:4,5-b′]difuran: Two-Photon Cross-Section and Ultrafast Time-Resolved Spectroscopy. The Journal of Physical Chemistry C 2017, 121 (27) , 14382-14392. https://doi.org/10.1021/acs.jpcc.7b01767
    37. Indranath Chakraborty and Thalappil Pradeep . Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chemical Reviews 2017, 117 (12) , 8208-8271. https://doi.org/10.1021/acs.chemrev.6b00769
    38. Ravithree D. Senanayake, Alexey V. Akimov, and Christine M. Aikens . Theoretical Investigation of Electron and Nuclear Dynamics in the [Au25(SH)18]−1 Thiolate-Protected Gold Nanocluster. The Journal of Physical Chemistry C 2017, 121 (20) , 10653-10662. https://doi.org/10.1021/acs.jpcc.6b09731
    39. Zhennan Wu, Huiwen Liu, Tingting Li, Jiale Liu, Jun Yin, Omar F. Mohammed, Osman M. Bakr, Yi Liu, Bai Yang, and Hao Zhang . Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters. Journal of the American Chemical Society 2017, 139 (12) , 4318-4321. https://doi.org/10.1021/jacs.7b00773
    40. Viraj Dhanushka Thanthirige, Ekkehard Sinn, Gary P. Wiederrecht, and Guda Ramakrishna . Unusual Solvent Effects on Optical Properties of Bi-Icosahedral Au25 Clusters. The Journal of Physical Chemistry C 2017, 121 (6) , 3530-3539. https://doi.org/10.1021/acs.jpcc.6b10948
    41. Sung Hei Yau, Brian A. Ashenfelter, Anil Desireddy, Adam P. Ashwell, Oleg Varnavski, George C. Schatz, Terry P. Bigioni, and Theodore Goodson, III . Optical Properties and Structural Relationships of the Silver Nanoclusters Ag32(SG)19 and Ag15(SG)11. The Journal of Physical Chemistry C 2017, 121 (2) , 1349-1361. https://doi.org/10.1021/acs.jpcc.6b10434
    42. Alessandro Fortunelli, Luca Sementa, Viraj Dhanushka Thanthirige, Tanya C. Jones, Mauro Stener, Kevin J. Gagnon, Amala Dass, and Guda Ramakrishna . Au21S(SAdm)15: An Anisotropic Gold Nanomolecule. Optical and Photoluminescence Spectroscopy and First-Principles Theoretical Analysis. The Journal of Physical Chemistry Letters 2017, 8 (2) , 457-462. https://doi.org/10.1021/acs.jpclett.6b02810
    43. Viraj Dhanushka Thanthirige, Minseok Kim, Woojun Choi, Kyuju Kwak, Dongil Lee, and Guda Ramakrishna . Temperature-Dependent Absorption and Ultrafast Exciton Relaxation Dynamics in MAu24(SR)18 Clusters (M = Pt, Hg): Role of the Central Metal Atom. The Journal of Physical Chemistry C 2016, 120 (40) , 23180-23188. https://doi.org/10.1021/acs.jpcc.6b09386
    44. Rongchao Jin, Chenjie Zeng, Meng Zhou, and Yuxiang Chen . Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chemical Reviews 2016, 116 (18) , 10346-10413. https://doi.org/10.1021/acs.chemrev.5b00703
    45. K. L. Dimuthu M. Weerawardene and Christine M. Aikens . Theoretical Insights into the Origin of Photoluminescence of Au25(SR)18– Nanoparticles. Journal of the American Chemical Society 2016, 138 (35) , 11202-11210. https://doi.org/10.1021/jacs.6b05293
    46. Thomas D. Green, Patrick J. Herbert, Chongyue Yi, Chenjie Zeng, Stephen McGill, Rongchao Jin, and Kenneth L. Knappenberger, Jr. . Characterization of Emissive States for Structurally Precise Au25(SC8H9)180 Monolayer-Protected Gold Nanoclusters Using Magnetophotoluminescence Spectroscopy. The Journal of Physical Chemistry C 2016, 120 (31) , 17784-17790. https://doi.org/10.1021/acs.jpcc.6b05349
    47. Rosina Ho-Wu, Sung Hei Yau, and Theodore Goodson, III . Linear and Nonlinear Optical Properties of Monolayer-Protected Gold Nanocluster Films. ACS Nano 2016, 10 (1) , 562-572. https://doi.org/10.1021/acsnano.5b05591
    48. Brian A. Ashenfelter, Anil Desireddy, Sung Hei Yau, Theodore Goodson, III, and Terry P. Bigioni . Fluorescence from Molecular Silver Nanoparticles. The Journal of Physical Chemistry C 2015, 119 (35) , 20728-20734. https://doi.org/10.1021/acs.jpcc.5b05735
    49. Meng Zhou, Juan Zhong, Shuxin Wang, Qianjin Guo, Manzhou Zhu, Yong Pei, and Andong Xia . Ultrafast Relaxation Dynamics of Luminescent Rod-Shaped, Silver-Doped AgxAu25–x Clusters. The Journal of Physical Chemistry C 2015, 119 (32) , 18790-18797. https://doi.org/10.1021/acs.jpcc.5b05376
    50. Kyunglim Pyo, Viraj Dhanushka Thanthirige, Kyuju Kwak, Prabhu Pandurangan, Guda Ramakrishna, and Dongil Lee . Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)–Thiolate Shell. Journal of the American Chemical Society 2015, 137 (25) , 8244-8250. https://doi.org/10.1021/jacs.5b04210
    51. Chongyue Yi, Hongjun Zheng, Laura M. Howard, Christopher J. Ackerson, Kenneth L. Knappenberger, Jr.. Nanometals: Identifying the Onset of Metallic Relaxation Dynamics in Monolayer-Protected Gold Clusters Using Femtosecond Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (11) , 6307-6313. https://doi.org/10.1021/jp512112z
    52. Li-Yi Chen, Chia-Wei Wang, Zhiqin Yuan, and Huan-Tsung Chang . Fluorescent Gold Nanoclusters: Recent Advances in Sensing and Imaging. Analytical Chemistry 2015, 87 (1) , 216-229. https://doi.org/10.1021/ac503636j
    53. Qingguo Meng . Optical, Electrical, and Catalytic Properties of Metal Nanoclusters Investigated by ab initio Molecular Dynamics Simulation: A Mini Review. 2015, 215-234. https://doi.org/10.1021/bk-2015-1196.ch011
    54. Thomas D. Green, Chongyue Yi, Chenjie Zeng, Rongchao Jin, Stephen McGill, and Kenneth L. Knappenberger, Jr. . Temperature-Dependent Photoluminescence of Structurally-Precise Quantum-Confined Au25(SC8H9)18 and Au38(SC12H25)24 Metal Nanoparticles. The Journal of Physical Chemistry A 2014, 118 (45) , 10611-10621. https://doi.org/10.1021/jp505913j
    55. Shan Jin, Shuxin Wang, Yongbo Song, Meng Zhou, Juan Zhong, Jun Zhang, Andong Xia, Yong Pei, Man Chen, Peng Li, and Manzhou Zhu . Crystal Structure and Optical Properties of the [Ag62S12(SBut)32]2+ Nanocluster with a Complete Face-Centered Cubic Kernel. Journal of the American Chemical Society 2014, 136 (44) , 15559-15565. https://doi.org/10.1021/ja506773d
    56. Mahdi Hesari, Mark Steven Workentin, and Zhifeng Ding . Highly Efficient Electrogenerated Chemiluminescence of Au38 Nanoclusters. ACS Nano 2014, 8 (8) , 8543-8553. https://doi.org/10.1021/nn503176g
    57. Kevin G. Stamplecoskie and Prashant V. Kamat . Size-Dependent Excited State Behavior of Glutathione-Capped Gold Clusters and Their Light-Harvesting Capacity. Journal of the American Chemical Society 2014, 136 (31) , 11093-11099. https://doi.org/10.1021/ja505361n
    58. Ryota Kobayashi, Yoshiyuki Nonoguchi, Akito Sasaki, and Hiroshi Yao . Chiral Monolayer-Protected Bimetallic Au–Ag Nanoclusters: Alloying Effect on Their Electronic Structure and Chiroptical Activity. The Journal of Physical Chemistry C 2014, 118 (28) , 15506-15515. https://doi.org/10.1021/jp503676b
    59. Kevin G. Stamplecoskie, Yong-Siou Chen, and Prashant V. Kamat . Excited-State Behavior of Luminescent Glutathione-Protected Gold Clusters. The Journal of Physical Chemistry C 2014, 118 (2) , 1370-1376. https://doi.org/10.1021/jp410856h
    60. Chongyue Yi, Marcus A. Tofanelli, Christopher J. Ackerson, and Kenneth L. Knappenberger, Jr. . Optical Properties and Electronic Energy Relaxation of Metallic Au144(SR)60 Nanoclusters. Journal of the American Chemical Society 2013, 135 (48) , 18222-18228. https://doi.org/10.1021/ja409998j
    61. Mary Sajini Devadas, Viraj Dhanushka Thanthirige, Semere Bairu, Ekkehard Sinn, and Guda Ramakrishna . Temperature-Dependent Absorption and Ultrafast Luminescence Dynamics of Bi-Icosahedral Au25 Clusters. The Journal of Physical Chemistry C 2013, 117 (44) , 23155-23161. https://doi.org/10.1021/jp408333h
    62. Meng Zhou, Silvije Vdović, Saran Long, Manzhou Zhu, Linyin Yan, Yingying Wang, Yingli Niu, Xuefei Wang, Qianjin Guo, Rongchao Jin, and Andong Xia . Intramolecular Charge Transfer and Solvation Dynamics of Thiolate-Protected Au20(SR)16 Clusters Studied by Ultrafast Measurement. The Journal of Physical Chemistry A 2013, 117 (40) , 10294-10303. https://doi.org/10.1021/jp406336q
    63. Changlin Yu, Gao Li, Santosh Kumar, Hideya Kawasaki, and Rongchao Jin . Stable Au25(SR)18/TiO2 Composite Nanostructure with Enhanced Visible Light Photocatalytic Activity. The Journal of Physical Chemistry Letters 2013, 4 (17) , 2847-2852. https://doi.org/10.1021/jz401447w
    64. Christopher M. Andolina, Andrew C. Dewar, Ashley M. Smith, Lauren E. Marbella, Michael J. Hartmann, and Jill E. Millstone . Photoluminescent Gold–Copper Nanoparticle Alloys with Composition-Tunable Near-Infrared Emission. Journal of the American Chemical Society 2013, 135 (14) , 5266-5269. https://doi.org/10.1021/ja400569u
    65. Semere G. Bairu, Edwin Mghanga, Jameel Hasan, Srinivas Kola, Vaidya Jayatirtha Rao, Kotamarthy Bhanuprakash, Lingamallu Giribabu, Gary P. Wiederrecht, Robson da Silva, Luis G. C. Rego, and Guda Ramakrishna . Ultrafast Interfacial Charge-Transfer Dynamics in a Donor-π-Acceptor Chromophore Sensitized TiO2 Nanocomposite. The Journal of Physical Chemistry C 2013, 117 (9) , 4824-4835. https://doi.org/10.1021/jp310642t
    66. Douglas R. Kauffman, Dominic Alfonso, Christopher Matranga, Gao Li, and Rongchao Jin . Photomediated Oxidation of Atomically Precise Au25(SC2H4Ph)18– Nanoclusters. The Journal of Physical Chemistry Letters 2013, 4 (1) , 195-202. https://doi.org/10.1021/jz302056q
    67. Kalen N. Swanick, Mahdi Hesari, Mark S. Workentin, and Zhifeng Ding . Interrogating Near-Infrared Electrogenerated Chemiluminescence of Au25(SC2H4Ph)18+ Clusters. Journal of the American Chemical Society 2012, 134 (37) , 15205-15208. https://doi.org/10.1021/ja306047u
    68. Xiaoming Wen, Pyng Yu, Yon-Rui Toh, An-Chia Hsu, Yu-Chieh Lee, and Jau Tang . Fluorescence Dynamics in BSA-Protected Au25 Nanoclusters. The Journal of Physical Chemistry C 2012, 116 (35) , 19032-19038. https://doi.org/10.1021/jp305902w
    69. Wei-Ta Chen, Yung-Jung Hsu, and Prashant V. Kamat . Realizing Visible Photoactivity of Metal Nanoparticles: Excited-State Behavior and Electron-Transfer Properties of Silver (Ag8) Clusters. The Journal of Physical Chemistry Letters 2012, 3 (17) , 2493-2499. https://doi.org/10.1021/jz300940c
    70. Jun-ichi Nishigaki, Risako Tsunoyama, Hironori Tsunoyama, Nobuyuki Ichikuni, Seiji Yamazoe, Yuichi Negishi, Mikinao Ito, Tsukasa Matsuo, Kohei Tamao, and Tatsuya Tsukuda . A New Binding Motif of Sterically Demanding Thiolates on a Gold Cluster. Journal of the American Chemical Society 2012, 134 (35) , 14295-14297. https://doi.org/10.1021/ja305477a
    71. Stefan Knoppe, Igor Dolamic, and Thomas Bürgi . Racemization of a Chiral Nanoparticle Evidences the Flexibility of the Gold–Thiolate Interface. Journal of the American Chemical Society 2012, 134 (31) , 13114-13120. https://doi.org/10.1021/ja3053865
    72. Hiroshi Yao . On the Electronic Structures of Au25(SR)18 Clusters Studied by Magnetic Circular Dichroism Spectroscopy. The Journal of Physical Chemistry Letters 2012, 3 (12) , 1701-1706. https://doi.org/10.1021/jz300396u
    73. Timothy J. Pennycook, James R. McBride, Sandra J. Rosenthal, Stephen J. Pennycook, and Sokrates T. Pantelides . Dynamic Fluctuations in Ultrasmall Nanocrystals Induce White Light Emission. Nano Letters 2012, 12 (6) , 3038-3042. https://doi.org/10.1021/nl3008727
    74. Xiaoming Wen, Pyng Yu, Yon-Rui Toh, and Jau Tang . Structure-Correlated Dual Fluorescent Bands in BSA-Protected Au25 Nanoclusters. The Journal of Physical Chemistry C 2012, 116 (21) , 11830-11836. https://doi.org/10.1021/jp303530h
    75. SunYoung Park and Dongil Lee . Synthesis and Electrochemical and Spectroscopic Characterization of Biicosahedral Au25 Clusters. Langmuir 2012, 28 (17) , 7049-7054. https://doi.org/10.1021/la300817j
    76. Pyng Yu, Xiaoming Wen, Yon-Rui Toh, and Jau Tang . Temperature-Dependent Fluorescence in Au10 Nanoclusters. The Journal of Physical Chemistry C 2012, 116 (11) , 6567-6571. https://doi.org/10.1021/jp2120077
    77. Satyender Goel, Kirill A. Velizhanin, Andrei Piryatinski, Sergei A. Ivanov, and Sergei Tretiak . Ligand Effects on Optical Properties of Small Gold Clusters: A TDDFT Study. The Journal of Physical Chemistry C 2012, 116 (5) , 3242-3249. https://doi.org/10.1021/jp208732k
    78. Mary Sajini Devadas, Semere Bairu, Huifeng Qian, Ekkehard Sinn, Rongchao Jin, and Guda Ramakrishna . Temperature-Dependent Optical Absorption Properties of Monolayer-Protected Au25 and Au38 Clusters. The Journal of Physical Chemistry Letters 2011, 2 (21) , 2752-2758. https://doi.org/10.1021/jz2012897
    79. Zhao Liu, Manzhou Zhu, Xiangming Meng, Guoyong Xu, and Rongchao Jin . Electron Transfer between [Au25(SC2H4Ph)18]−TOA+ and Oxoammonium Cations. The Journal of Physical Chemistry Letters 2011, 2 (17) , 2104-2109. https://doi.org/10.1021/jz200925h
    80. Zhikun Wu, Mark A. MacDonald, Jenny Chen, Peng Zhang, and Rongchao Jin . Kinetic Control and Thermodynamic Selection in the Synthesis of Atomically Precise Gold Nanoclusters. Journal of the American Chemical Society 2011, 133 (25) , 9670-9673. https://doi.org/10.1021/ja2028102
    81. Liping Zhang, Hong-Wei Li, Yuqing Wu. Ag(I) Ion-Concentration-Dependent Dynamic Mechanism of Thiolactic-Acid-Capped Gold Nanoclusters Revealed by Fluorescence Spectra and Two-Dimensional Correlation Spectroscopy. Applied Spectroscopy 2024, 14 https://doi.org/10.1177/00037028241241325
    82. Katsuhiro Isozaki, Kenta Iseri, Ryohei Saito, Kyosuke Ueda, Masaharu Nakamura. Dual Catalysis of Gold Nanoclusters: Photocatalytic Cross‐Dehydrogenative Coupling by Cooperation of Superatomic Core and Molecularly Modified Staples**. Angewandte Chemie 2024, 136 (2) https://doi.org/10.1002/ange.202312135
    83. Katsuhiro Isozaki, Kenta Iseri, Ryohei Saito, Kyosuke Ueda, Masaharu Nakamura. Dual Catalysis of Gold Nanoclusters: Photocatalytic Cross‐Dehydrogenative Coupling by Cooperation of Superatomic Core and Molecularly Modified Staples**. Angewandte Chemie International Edition 2024, 63 (2) https://doi.org/10.1002/anie.202312135
    84. Saniya Gratious, Afreen, Eti Mahal, Jibin Thomas, Shubhadeep Saha, Akhil S. Nair, K. V. Adarsh, Biswarup Pathak, Sukhendu Mandal. “Visualizing” the partially reversible conversion of gold nanoclusters via the Au 23 (S- c -C 6 H 11 ) 17 intermediate. Chemical Science 2024, 116 https://doi.org/10.1039/D4SC01225A
    85. Zewen Zuo, Kuo-Juei Hu, Siqi Lu, Shengyong Hu, Sichen Tang, Yongxin Zhang, Zixiang Zhao, Dong Zheng, Fengqi Song. Influence of ligands on the optical properties of rod-shaped Au 25 nanoclusters. Nanoscale 2023, 15 (36) , 15043-15049. https://doi.org/10.1039/D3NR03579D
    86. Wanmiao Gu, Zhikun Wu. Thiolated Gold Nanoclusters with Well‐Defined Compositions and Structures. 2023, 87-140. https://doi.org/10.1002/9781119788676.ch3
    87. Sourov Chandra, Alice Sciortino, Susobhan Das, Faisal Ahmed, Arijit Jana, Jayoti Roy, Diao Li, Ville Liljeström, Hua Jiang, Leena‐Sisko Johansson, Xi Chen, Nonappa, Marco Cannas, Thalappil Pradeep, Bo Peng, Robin H. A. Ras, Zhipei Sun, Olli Ikkala, Fabrizio Messina. Gold Au(I) 6 Clusters with Ligand‐Derived Atomic Steric Locking: Multifunctional Optoelectrical Properties and Quantum Coherence. Advanced Optical Materials 2023, 11 (8) https://doi.org/10.1002/adom.202202649
    88. Sakiat Hossain, Daisuke Hirayama, Ayaka Ikeda, Mai Ishimi, Sota Funaki, Arpan Samanta, Tokuhisa Kawawaki, Yuichi Negishi. Atomically precise thiolate‐protected gold nanoclusters: Current status of designability of the structure and physicochemical properties. Aggregate 2023, 4 (2) https://doi.org/10.1002/agt2.255
    89. Ke Zhang, Fu‐Rong Chen, Lidai Wang, Jinlian Hu. Second Near‐Infrared (NIR‐II) Window for Imaging‐Navigated Modulation of Brain Structure and Function. Small 2023, 19 (14) https://doi.org/10.1002/smll.202206044
    90. Bhuvanachandran Nair Sreekala Sooraj, Thalappil Pradeep. Optical properties of metal clusters. 2023, 83-101. https://doi.org/10.1016/B978-0-323-90879-5.00010-X
    91. . Appendix. 2023, 601-637. https://doi.org/10.1016/B978-0-323-90879-5.00026-3
    92. Carlos Orellana, Sebastián Miranda-Rojas, Dage Sundholm, Fernando Mendizabal. Time-dependent density functional theory studies of the optical and electronic properties of the [M 25 (MPA) 18 ] − (M = Au, Ag, MPA = SCH 2 CH 2 COOH) clusters. Physical Chemistry Chemical Physics 2022, 24 (39) , 24457-24468. https://doi.org/10.1039/D2CP02937E
    93. Manusha Dissanayake, Di Wu, Hui-Fen Wu. Synthesis of Fluorescent Titanium Nanoclusters at ambient temperature for highly sensitive and selective detection of Creatine Kinase MM in myocardial infarction. Colloids and Surfaces B: Biointerfaces 2022, 217 , 112594. https://doi.org/10.1016/j.colsurfb.2022.112594
    94. Dajiao Cheng, Rong Liu, Ke Hu. Gold nanoclusters: Photophysical properties and photocatalytic applications. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.958626
    95. Rebecca L. M. Gieseking. Plasmons: untangling the classical, experimental, and quantum mechanical definitions. Materials Horizons 2022, 9 (1) , 25-42. https://doi.org/10.1039/D1MH01163D
    96. Ewa Banach, Thomas Bürgi. Metal Nanoclusters as Versatile Building Blocks for Hierarchical Structures. Helvetica Chimica Acta 2022, 105 (1) https://doi.org/10.1002/hlca.202100186
    97. Lakshmi V. Nair, Resmi V. Nair, Ramapurath S. Jayasree. Metal nanoclusters as photosensitizers. 2022, 569-587. https://doi.org/10.1016/B978-0-323-88657-4.00017-X
    98. Huizhen Ma, Junying Wang, Xiao-Dong Zhang. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coordination Chemistry Reviews 2021, 448 , 214184. https://doi.org/10.1016/j.ccr.2021.214184
    99. Joy Chatterjee, Abhijit Chatterjee, Partha Hazra. Intrinsic-to-extrinsic emission tuning in luminescent Cu nanoclusters by in situ ligand engineering. Physical Chemistry Chemical Physics 2021, 23 (45) , 25850-25865. https://doi.org/10.1039/D1CP03596G
    100. Senthil Kumar Eswaramoorthy, Amala Dass. Digestive ripening yields atomically precise Au nanomolecules. New Journal of Chemistry 2021, 45 (43) , 20241-20248. https://doi.org/10.1039/D1NJ04042A
    Load all citations