ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors

View Author Information
College of Engineering and Science, Clemson University, Clemson, South Carolina 29634-0921, United States, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6367, United States, and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180-3590 United States
* To whom correspondence should be addressed. E-mail: [email protected]
†Clemson University.
‡Oak Ridge National Laboratory.
§Rensselaer Polytechnic Institute.
Cite this: J. Phys. Chem. C 2010, 114, 41, 18012–18016
Publication Date (Web):September 29, 2010
https://doi.org/10.1021/jp107125m
Copyright © 2010 American Chemical Society

    Article Views

    1288

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (576 KB)

    Abstract

    Abstract Image

    Electrodes featuring subnanometer pores are favorable to the capacitance and energy density of supercapacitors. However, there is an energy penalty to enter subnanometer pores as ions have to shed part of their solvation shell. The magnitude of such an energy penalty plays a key role in determining the accessibility and charging/discharging of these subnanometer pores. Here, we report on the atomistic simulation of Na+ and Cl ions entering a polarizable slit pore with a center-to-center width of 0.82 nm. We show that the free energy penalty for these ions to enter the pore is less than 14 kJ/mol for both Na+ and Cl ions. The surprisingly small energy penalty is caused by the van der Waals attractions between ions and pore walls, the image charge effects, the moderate (19−26%) dehydration of the ions inside the pore, and the strengthened interactions between ions and their hydration water molecules in the subnanometer pore. The results provide strong impetus for further developing nanoporous electrodes featuring subnanometer pores.

    Cited By

    This article is cited by 52 publications.

    1. Md Masuduzzaman, BoHung Kim. Unraveling the Molecular Interface and Boundary Problems in an Electrical Double Layer and Electroosmotic Flow. Langmuir 2022, 38 (23) , 7244-7255. https://doi.org/10.1021/acs.langmuir.2c00734
    2. Jesse G. McDaniel. Capacitance of Carbon Nanotube/Graphene Composite Electrodes with [BMIM+][BF4–]/Acetonitrile: Fixed Voltage Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2022, 126 (13) , 5822-5837. https://doi.org/10.1021/acs.jpcc.2c00256
    3. Yu Zhang, Boris Dyatkin, Peter T. Cummings. Molecular Investigation of Oxidized Graphene: Anatomy of the Double-Layer Structure and Ion Dynamics. The Journal of Physical Chemistry C 2019, 123 (20) , 12583-12591. https://doi.org/10.1021/acs.jpcc.9b01617
    4. Konrad Breitsprecher, Christian Holm, Svyatoslav Kondrat. Charge Me Slowly, I Am in a Hurry: Optimizing Charge–Discharge Cycles in Nanoporous Supercapacitors. ACS Nano 2018, 12 (10) , 9733-9741. https://doi.org/10.1021/acsnano.8b04785
    5. Huachao Yang, Xiaoliang Zhang, Jinyuan Yang, Zheng Bo, Ming Hu, Jianhua Yan, and Kefa Cen . Molecular Origin of Electric Double-Layer Capacitance at Multilayer Graphene Edges. The Journal of Physical Chemistry Letters 2017, 8 (1) , 153-160. https://doi.org/10.1021/acs.jpclett.6b02659
    6. Justin B. Haskins, James J. Wu, and John W. Lawson . Computational and Experimental Study of Li-Doped Ionic Liquids at Electrified Interfaces. The Journal of Physical Chemistry C 2016, 120 (22) , 11993-12011. https://doi.org/10.1021/acs.jpcc.6b02449
    7. Yinghua Qiu, Jian Ma, and Yunfei Chen . Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces. Langmuir 2016, 32 (19) , 4806-4814. https://doi.org/10.1021/acs.langmuir.6b01149
    8. Yinghua Qiu and Yunfei Chen . Capacitance Performance of Sub-2 nm Graphene Nanochannels in Aqueous Electrolyte. The Journal of Physical Chemistry C 2015, 119 (42) , 23813-23819. https://doi.org/10.1021/acs.jpcc.5b06401
    9. Nav Nidhi Rajput, Joshua Monk, and Francisco R. Hung . Ionic Liquids Confined in a Realistic Activated Carbon Model: A Molecular Simulation Study. The Journal of Physical Chemistry C 2014, 118 (3) , 1540-1553. https://doi.org/10.1021/jp408617j
    10. R. K. Kalluri, T. A. Ho, J. Biener, M. M. Biener, and A. Striolo . Partition and Structure of Aqueous NaCl and CaCl2 Electrolytes in Carbon-Slit Electrodes. The Journal of Physical Chemistry C 2013, 117 (26) , 13609-13619. https://doi.org/10.1021/jp4002127
    11. Nav Nidhi Rajput, Joshua Monk, and Francisco R. Hung . Structure and Dynamics of an Ionic Liquid Confined Inside a Charged Slit Graphitic Nanopore. The Journal of Physical Chemistry C 2012, 116 (27) , 14504-14513. https://doi.org/10.1021/jp3041617
    12. Nav Nidhi Rajput, Joshua Monk, Ramesh Singh, and Francisco R. Hung . On the Influence of Pore Size and Pore Loading on Structural and Dynamical Heterogeneities of an Ionic Liquid Confined in a Slit Nanopore. The Journal of Physical Chemistry C 2012, 116 (8) , 5169-5181. https://doi.org/10.1021/jp212440f
    13. Tuan A. Ho, D. Argyris, D. R. Cole, and A. Striolo . Aqueous NaCl and CsCl Solutions Confined in Crystalline Slit-Shaped Silica Nanopores of Varying Degree of Protonation. Langmuir 2012, 28 (2) , 1256-1266. https://doi.org/10.1021/la2036086
    14. Peng Wu, Jingsong Huang, Vincent Meunier, Bobby G. Sumpter, and Rui Qiao . Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores. ACS Nano 2011, 5 (11) , 9044-9051. https://doi.org/10.1021/nn203260w
    15. Guang Feng and Peter T. Cummings . Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size. The Journal of Physical Chemistry Letters 2011, 2 (22) , 2859-2864. https://doi.org/10.1021/jz201312e
    16. Takahiro Ohkubo, Masayasu Nishi, and Yasushige Kuroda . Actual Structure of Dissolved Zinc Ion Restricted in Less Than 1 Nanometer Micropores of Carbon. The Journal of Physical Chemistry C 2011, 115 (30) , 14954-14959. https://doi.org/10.1021/jp2043653
    17. Raja Kirthi Kalluri, Deepthi Konatham, and Alberto Striolo . Aqueous NaCl Solutions within Charged Carbon-Slit Pores: Partition Coefficients and Density Distributions from Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2011, 115 (28) , 13786-13795. https://doi.org/10.1021/jp203086x
    18. Leonardo Morais Da Silva, João Pedro Aguiar dos Santos, Rafael Vicentini, João Pedro Jenson de Oliveira, Gustavo Doubek, Hudson Zanin. Dissipative effects in nonideal supercapacitors and batteries. Journal of Energy Storage 2023, 69 , 107985. https://doi.org/10.1016/j.est.2023.107985
    19. João Pedro Aguiar dos Santos, Cesar J. B. Pagan, Rafael Vicentini, Reinaldo F. Teófilo, Renato Beraldo, Leonardo M. Da Silva, Hudson Zanin. Ion dynamics into different pore size distributions in supercapacitors under compression. Journal of Energy Chemistry 2023, 80 , 110-119. https://doi.org/10.1016/j.jechem.2022.12.063
    20. Claudia S. Cox, Valeria Cossich Galicia, Martina Lessio. Computational Investigation of Adsorptive Removal of Pb. Australian Journal of Chemistry 2022, 75 (2) , 142-154. https://doi.org/10.1071/CH21139
    21. Rafael Vicentini, Leonardo M. Da Silva, Débora V. Franco, Willian G. Nunes, Juliane Fiates, Gustavo Doubek, Luís F.M. Franco, Renato G. Freitas, Cristiano Fantini, Hudson Zanin. Raman probing carbon & aqueous electrolytes interfaces and molecular dynamics simulations towards understanding electrochemical properties under polarization conditions in supercapacitors. Journal of Energy Chemistry 2021, 60 , 279-292. https://doi.org/10.1016/j.jechem.2021.01.003
    22. Fikret Aydin, Maira R. Cerón, Steven A. Hawks, Diego I. Oyarzun, Cheng Zhan, Tuan Anh Pham, Michael Stadermann, Patrick G. Campbell. Selectivity of nitrate and chloride ions in microporous carbons: the role of anisotropic hydration and applied potentials. Nanoscale 2020, 12 (39) , 20292-20299. https://doi.org/10.1039/D0NR04496B
    23. Musanna Galib, Mohammad Mozammal Hosen, Joyanta K. Saha, Md. Mominul Islam, Shakhawat H. Firoz, Md. Ashiqur Rahman. Electrode surface modification of graphene-MnO2 supercapacitors using molecular dynamics simulations. Journal of Molecular Modeling 2020, 26 (9) https://doi.org/10.1007/s00894-020-04483-5
    24. Samuel Delmerico, Jesse G. McDaniel. Free energy barriers for TMEA+, TMA+, and BF 4 - ion diffusion through nanoporous carbon electrodes. Carbon 2020, 161 , 550-561. https://doi.org/10.1016/j.carbon.2020.01.100
    25. Jeongmin Lee, Rakwoo Chang. Saccharide Insertion in Carbon Nanotube: Molecular Dynamics Simulation Studies. Bulletin of the Korean Chemical Society 2020, 41 (4) , 439-443. https://doi.org/10.1002/bkcs.11988
    26. Jie Deng, Jing Li, Zhe Xiao, Shuang Song, Luming Li. Studies on Possible Ion-Confinement in Nanopore for Enhanced Supercapacitor Performance in 4V EMIBF4 Ionic Liquids. Nanomaterials 2019, 9 (12) , 1664. https://doi.org/10.3390/nano9121664
    27. Sharif Md. Khan, Sharifa Faraezi, Yoshifumi Oya, Kenji Hata, Tomonori Ohba. Anomalous changes of intermolecular distance in aqueous electrolytes in narrow pores of carbon nanotubes. Adsorption 2019, 25 (6) , 1067-1074. https://doi.org/10.1007/s10450-019-00082-w
    28. Huachao Yang, Zheng Bo, Jianhua Yan, Kefa Cen. Influence of wettability on the electrolyte electrosorption within graphene-like nonconfined and confined space. International Journal of Heat and Mass Transfer 2019, 133 , 416-425. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.134
    29. Z. Lin, E. Goikolea, A. Balducci, K. Naoi, P.L. Taberna, M. Salanne, G. Yushin, P. Simon. Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today 2018, 21 (4) , 419-436. https://doi.org/10.1016/j.mattod.2018.01.035
    30. Masayasu Nishi, Takahiro Ohkubo, Masaru Yamasaki, Hideyuki Takagi, Yasushige Kuroda. Surplus adsorption of bromide ion into π-conjugated carbon nanospaces assisted by proton coadsorption. Journal of Colloid and Interface Science 2017, 508 , 415-418. https://doi.org/10.1016/j.jcis.2017.08.066
    31. Jing Kong, Zheng Bo, Huachao Yang, Jinyuan Yang, Xiaorui Shuai, Jianhua Yan, Kefa Cen. Temperature dependence of ion diffusion coefficients in NaCl electrolyte confined within graphene nanochannels. Physical Chemistry Chemical Physics 2017, 19 (11) , 7678-7688. https://doi.org/10.1039/C6CP08752C
    32. Je Hyun Bae, Yun Yu, Michael V. Mirkin. Recessed Nanoelectrodes for Nanogap Voltammetry. ChemElectroChem 2016, 3 (12) , 2043-2047. https://doi.org/10.1002/celc.201600463
    33. Takahiro Ohkubo, Tomoko Kusudo, Yasushige Kuroda. Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons. Journal of Physics: Condensed Matter 2016, 28 (46) , 464003. https://doi.org/10.1088/0953-8984/28/46/464003
    34. Alberto Striolo, Angelos Michaelides, Laurent Joly. The Carbon-Water Interface: Modeling Challenges and Opportunities for the Water-Energy Nexus. Annual Review of Chemical and Biomolecular Engineering 2016, 7 (1) , 533-556. https://doi.org/10.1146/annurev-chembioeng-080615-034455
    35. Justin B. Haskins, John W. Lawson. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers. The Journal of Chemical Physics 2016, 144 (18) https://doi.org/10.1063/1.4948938
    36. Gengping Jiang, Chi Cheng, Dan Li, Jefferson Zhe Liu. Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes. Nano Research 2016, 9 (1) , 174-186. https://doi.org/10.1007/s12274-015-0978-5
    37. Cheng Zhan, Yu Zhang, Peter T. Cummings, De-en Jiang. Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration. Physical Chemistry Chemical Physics 2016, 18 (6) , 4668-4674. https://doi.org/10.1039/C5CP06952A
    38. Zheng Bo, Huachao Yang, Shuo Zhang, Jinyuan Yang, Jianhua Yan, Kefa Cen. Molecular Insights into Aqueous NaCl Electrolytes Confined within Vertically-oriented Graphenes. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep14652
    39. Céline Merlet, Alexander C. Forse, John M. Griffin, Daan Frenkel, Clare P. Grey. Lattice simulation method to model diffusion and NMR spectra in porous materials. The Journal of Chemical Physics 2015, 142 (9) https://doi.org/10.1063/1.4913368
    40. Xi Chen, Baoxing Xu, Ling Liu. Nanoscale Fluid Mechanics and Energy Conversion. Applied Mechanics Reviews 2014, 66 (5) https://doi.org/10.1115/1.4026913
    41. Alpha A. Lee, Svyatoslav Kondrat, Alexei A. Kornyshev. Single-File Charge Storage in Conducting Nanopores. Physical Review Letters 2014, 113 (4) https://doi.org/10.1103/PhysRevLett.113.048701
    42. Guoping Xiong, Chuizhou Meng, Ronald G. Reifenberger, Pedro P. Irazoqui, Timothy S. Fisher. A Review of Graphene‐Based Electrochemical Microsupercapacitors. Electroanalysis 2014, 26 (1) , 30-51. https://doi.org/10.1002/elan.201300238
    43. Guang Feng, Peter T. Cummings. Integrated Experimental and Computational Studies of Energy-relevant Interfaces. Physics Procedia 2014, 53 , 32-38. https://doi.org/10.1016/j.phpro.2014.06.022
    44. Ryan Burt, Greg Birkett, X. S. Zhao. A review of molecular modelling of electric double layer capacitors. Physical Chemistry Chemical Physics 2014, 16 (14) , 6519. https://doi.org/10.1039/c3cp55186e
    45. Ling Liu, Xi Chen. Fast Ion Transport and Phase Separation in a Mechanically Driven Flow of Electrolytes through Tortuous Sub‐Nanometer Nanochannels. ChemPhysChem 2013, 14 (11) , 2413-2418. https://doi.org/10.1002/cphc.201300201
    46. R. K. Kalluri, M. M. Biener, M. E. Suss, M. D. Merrill, M. Stadermann, J. G. Santiago, T. F. Baumann, J. Biener, A. Striolo. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Physical Chemistry Chemical Physics 2013, 15 (7) , 2309. https://doi.org/10.1039/c2cp43361c
    47. Masayasu Nishi, Takahiro Ohkubo, Kazuma Tsurusaki, Atsushi Itadani, Bashir Ahmmad, Koki Urita, Isamu Moriguchi, Shigeharu Kittaka, Yasushige Kuroda. Highly compressed nanosolution restricted in cylindrical carbon nanospaces. Nanoscale 2013, 5 (5) , 2080. https://doi.org/10.1039/c2nr33681b
    48. Ramesh Singh, Nav Nidhi Rajput, Xiaoxia He, Joshua Monk, Francisco R. Hung. Molecular dynamics simulations of the ionic liquid [EMIM+][TFMSI−] confined inside rutile (110) slit nanopores. Physical Chemistry Chemical Physics 2013, 15 (38) , 16090. https://doi.org/10.1039/c3cp51266e
    49. Ling Liu, Hyuck Lim, Weiyi Lu, Yu Qiao, Xi Chen. Mechanical-to-Electric Energy Conversion by Mechanically Driven Flow of Electrolytes Confined in Nanochannels. Applied Physics Express 2013, 6 (1) , 015202. https://doi.org/10.7567/APEX.6.015202
    50. Katherine A. Phillips, Jeremy C. Palmer, Keith E. Gubbins. Analysis of the solvation structure of rubidium bromide under nanoconfinement. Molecular Simulation 2012, 38 (14-15) , 1209-1220. https://doi.org/10.1080/08927022.2012.713484
    51. Takahiro Ohkubo, Yutaro Takehara, Yasushige Kuroda. Water-initiated ordering around a copper ion of copper acetate confined in slit-shaped carbon micropores. Microporous and Mesoporous Materials 2012, 154 , 82-86. https://doi.org/10.1016/j.micromeso.2011.09.011
    52. Bin Zhu, Jingjian Li, Dongsheng Xu. Porous biomimetic membranes: fabrication, properties and future applications. Physical Chemistry Chemical Physics 2011, 13 (22) , 10584. https://doi.org/10.1039/c0cp02757j

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect